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Abstract these sensors are also corrupted by noise, we realize that
the choice of which measurements to combine can greatly

In this paper, we investigate data fusion techniques for influence the accuracy of our tracking estimates.
target tracking using distributed sensors. Specifically, we  Consider a distributed set of such sensors charged with
are interested in how pairs of bearing or range sensors tracking groups of targets. It would be unrealistic to as-
can be best assigned to targets in order to minimize the sume that each sensor could track multiple targets or that
expected error in the estimates. We refer to this as the the network possessed unlimited computational power and
focus of attention (FOA)problem. bandwidth. With this in mind, our problem can be viewed

In its general form, FOA is NP-hard and not well ap- as an optimal allocation of resources for target tracking.
proximable. However, for specific geometries we obtain How should pairs of sensors be assigned to targets so that
significant approximation results: a 2-approximation al- the sum of errors in target position estimates is minimized?
gorithm for stereo cameras on a line, a PTAS for when We refer to this as thtocus of attentiorproblem for dis-
the cameras are equidistant, and a 1.42 approximation for tributed sensors.
equally spaced range sensors on a circle. In addition to
constrained geometries, we further investigate the prob- 2 Related Work
lem for general sensor placement. By reposing as a maxi-
mization problem - where the goal is to maximize the num-  Since the measurements of multiple sensors are com-
ber of tracks with bounded error - we are able to leverage bined to estimate target pose, our work relates strongly
results from maximum set-packing to render the problem to research in sensor fusion. Fusing measurements from
approximable. We demonstrate these in simulation for a multiple sensors for improving tracking performance has
target tracking task, and for localizing a team of mobile been the subject of significant research [1]. However, the
agents in a sensor network. These results provide insightsfocus has been on combining measurements from sensors
into sensor/target assignment strategies, as well as sensor(radars, laser range-finders, etc.) individually capable of

placement in a distributed network. estimating the target state (position, velocity, etc.). As our
sensors require the fusion of pairs of measurements, we
1 Introduction desire instead an optimal assignmentdigjoint sensors

pairs to targets. This added dimension changes the com-

Sensor networks are the enablers of a technology which plexity of the problem entirely, and distinguishes our work
can best be described amnipresence Small, inexpen-  from previous approaches.
sive, low power sensors distributed throughout an environ- ~ Within the robotics community, Durrant-Whyet al pi-
ment can provide ubiquitous situational awareness. Theoneered work in sensor fusion and robot localization. This
technology lends itself well to surveillance and monitor- Yyielded significant improvements to methods used in mo-
ing tasks - including target tracking - and it is in this ap- bile robot navigation, localization and mapping [12, 5].
plication where our interests lie. Unfortunately, the sen- Thrunet al have also contributed significant research to
sors used for these tasks are inherently limited, and indi- these areas [14, 15]. However, our work distinguishes it-
vidually incapable of estimating the target state. Without self from traditional data fusion techniques in that the sen-
additional constraints, a minimum of two bearing sensors sors themselves are actively managed to improve the qual-
(such as cameras) are required to estimate the position ofity of the measurements obtainpdor to the data fusion
a target. For range sensors, three are required to localize ghase, resulting in corresponding improvements in state
target (although this can be reduced to two using filtering estimation.
techniques). Noting that the measurements provided by There has been other related research under the heading



of sensor networks. Corteg al investigated the issue of e 2
sensor coverage [3]. This focused on the movement of sen- |

sor networks while ensuring optimal coverage. Our work |
begins where the sensor coverage problem leaves off, and 2 |

is applicable when multiple sensors are required for moni- |

toring a single region. Jung and Sukhatme examined a het- oty
erogeneous network of static and mobile sensors for target

tracking [10]. Using a region based approach, each robot o

attempted to maximize the number of tracked targets perﬁ ﬁ ‘ % 3
region. In contrast to our work, data fusion issues were ¢ C2 Can,
not considered. Lastly, Horlingt al [6] focused on net-
work management optimization to ensure target observ-
ability and synchronized sensor observations in order to
better estimate target position. In sharp contrast, our ap- o o .
proach optimizes explicit sensor error metrics to obtain an ¢F0A(i,J,k) = capa(i, j, k) whenevercpa(i, j, k) is

Figure 1: The Focus of Attention Problem on the line.

optimal or near optimal sensor-target assignment. defiqed .and infini.te therWise. Moreover, s_ince tr_\is re-
duction is approximation preserving, FOA with arbitrary
3 The Focus of Attention Problem costs is not approximable as well.

However, usually the error is not arbitrary but a func-

The following are the standard definitions used for anal- tion of the location of the cameras and the target. In the

ysis of approximation algorithms [9] that will be used in Next two sections, we consider two error metrics for spe-
the paper: cific sensor configurations: Cameras on the line and range

sensors on the circle.
Definition 1 A polynomial algorithm,A4, is said to be a

a-approximation algorithm, if for every problem instance 3.2 Cameras on aline

1, A produces a solution within a factor afof the optimal

solution. In this section, we consider collinear cameras located
on linel tracking targets on the plane. The error associated

Definition 2 A polynomial-time approximation scheme with cameras andj tracking target: is Z= whereZ is

(PTAS) is a family of algorithmsl. : ¢ > 0 such that  he yertical distance of the targeto the linel andb;; is

for eache > 0, A is a (1 + ¢)—approximation algorithm e paseline, that is the distance between the two cameras

which runs in polynomial time in input size for fixed (see figure 1). This metric can be used to gauge the errorin

the stereo reconstructidrand gives a good approximation

when the targets are not too close to the cameras [11] .

Note that this error metric fails if the targets are very close

fined as as follows: The input is a cost functiefs, j, ) to/, therefore in this section we assume that there exists a

which indicates the cost of tracking targetising sensors ~ Minimum clearance such thatz; > ¢, for all targets..

i andj wherei,j € [1...2n] andk € [1...n]. Inthe Suppose that the cameras are sorted from left to right
sequel, this cost represents the expected error associate@nd letc; be the coordinate of thé" camera. The follow-
with a position estimate obtained by fusing the informa- ing lemma enables us to separate matching cameras from
tion from sensors and;. We are required to outputan as- Mmatching targets to pairs.

signment: a set of triples such that each target is tracked

by two sensors, no sensor is used to track more than ON€ cmma 4 Let Z: be the depths of targets;, < Z, <
target and the sum of errors associated with triples is min- < 7 andb: l;e the baselines in an optimlalassizn_ment
AR — n 7

imized. - :
: . i sorted such thal; < by < ...b,. There exists an optimal
FOA s closely related to the fallowing problem [7]: matching such that the target at degthis assigned to the

Definition 3 (3D-Assignment) Given three setsX,Y pair with baseline;.

andW and a cost functiom : X x Y x W — N, find

an assignment (that is a subset o x Y x W such

that every element of UY U IV belongs to exactly one  Proof:  Suppose not. Then there exists two assignments
element of) such thaty ; ;¢ 4 (i, j, k) is minimized.  (Zi,b;) and(Zy, b;) such thatZ; > Zj andb; < b;. But

3.1 Problem Definition

The focus of attention problem (FOA) is formally de-

3D-Assignment (SDA) is NP-hard [4] and INapprox- Lin fact, a better approximation &2 /b, but when all the cameras are

imable [2]. It is easy t(? see that any ins_tance of 3[?A collinear the depth of a target is the same for all cameras and therefore
can be reduced to an instance of FOA just by setting for simplicity we assume that the depths are squared and the etfgbis
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Figure 2: A greedy assignment assigasindc, to targett; and
gets stuck with the paifcz, c3). The optimal assignment in this
case is to assigh to (c1, c3) andtz to (c2, ca).

then
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which is always true. Therefore we could improve the op-
timal matching by swapping the pairs leading to a contra-
diction. [ |

3.2.1 Performance of known heuristics

3.2.2 A 2-Approximation Algorithm

In this section we present a 2-approximation algorithm for
the previous assignment problem. The algorithm simply
assigns camerato cameran + ¢ and these pairs are then
assigned to the targets according to Lemma 4.L@esp.

[7) be the baselines of the pairs generated by our (resp. op-
timal) algorithm. The following lemmas show that we can
find a one-to-one correspondence betwgesmd!; such
that/; are longer than half of their corresponding pairs in
the optimal solution.

Lemma5 Vidj such that; > l;f.

Proof: Letk be the the pair such thftcy, cn11)| = 1.

Let A = {ck,Ckt1,---,Cnt+k}. SiNce|A] =n+1,in
the optimal matching there must be two camerad that
match with each other and the baseline of that match is at
mostly. [ |

Lemma6 Let S {li,...,l,} and OPT
{I3,...,1}}. Forany A C S,|A| = k, there exists a sub-
setB C OPT,|B| = k and a bijections;, : A — B such
thatl; > oy (l;)/2 forall I; € A.

Proof (by induction): Basis: Existence obr; fork =1

It is easy to see that a greedy assignment that assignsg a corollary of Lemma 5.

the furthest target the maximum available baseline can be

arbitrarily far from optimal: Consider the setting in fig-

ure 2 with four cameras where the two cameras in the lci
1

middle are very close to each other. In this configura-

tion, the greedy algorithm can produce an assignment that

is arbitrarily more costly than the optimal assignment:
(tla C1, 03)) (t2) C2, 64)-

Perhaps not so obvious is the performance of the fol-
lowing algorithm: Find a matching between the cameras
that maximizes the sum of the baselines and assign these, \ {(

pairs to targets. This algorithm, which we call Match As-
sign, gives a3/2 approximation for the 3D-Assignment
problem when the cost of a triple is the perimeter of the
triangle formed by the points in the triple [4].

Match-Assign Algorithm can also be arbitrarily bad:
Suppose there is one targetat = Z andn — 1 tar-
gets atZ = e. The camera; is located atv = 5,
i=[1,...,2n].

First consider the matchin@:, co,,) and (cqi—2, c4;),
(cgi—1,cai41) fori = 1,2,...,(2n — 2)/4. The cost of
this matching ist + 2”2 ~ 2 and the total error is
Z+ (n—1)52.

Next, consider the matching that matclgsvith ¢; 4.
The cost of this matching is alsgt”; ~ 2 but the total

erroris(2n — 1)Z + (n — 1)@.

~
~

Inductive Step: Let¢; andc; be the leftmost and right-
most cameras used by the edgedinW.l.0.g. assume that
Cnti| > |ejentj]. LetY be the subset of pairs PT
that matches cameras in the 6e& {c¢;, ¢i+1,...,¢;}.

We first observe that’| > k. This is becaus&”| >
n + k and hence at most — k cameras inC' could be
matched by OPT to cameras outside

The longest edge iB is easily seen to be at most
2|¢cicn+il. We now recursively computey,_, for A’
¢i,cnti)}. Let B’ be the range ofj_;. Since
Y| > k, Y must have at least one pair, s&y not in
B’. We match this pair tdc;, ¢, 14 ):

h_ [ o), iflea (3.1)
o1(l) = { ", if 1= (ciyensi)  (3.2)
[ |

Therefore by Lemma 6 there exists a mappinffom
S to the optimal matching such thit > # Vi, € S
which gives us the desired approximation guarantee. This
analysis is tight, there are instances where our algorithm
can be twice as costly as the optimal:

The tight example consists of/4 cameras at = 0,
n/4 cameras at = 1 — ¢, n/4 cameras at = 1 + ¢ and
n/4 cameras at = 2. There is one target & = Z and

Therefore, two matchings with equal sum of baselines n — 1 targets atZ = ¢ (see figure 3).
may lead to errors such that one can be made arbitrarily The optimal cost in this case % +(n— 2)1%6 + 5.
larger than the other and the Match-Assign algorithm can This is achieved by matching to ¢z, andcz 4 to Can
not be used to obtain a good approximation. and imitating our algorithm otherwise.
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Figure 5: Figure for lemma 10

Figure 3: The matchings produced by our algorithm (shown in

dotted lines) can be twice as bad as the optimal matching (shown ek hasp cameras. Similarly, we partition the points on
in solid lines) by moving the furthest target to infinity.

the right into equal sized blockBy, ..., R,. Consider a
f— camera pairingx, y) in OPT. We call it of type(, j) if
L. L L. L. Ri R R, R is L; andy is in R;.
A T A W, Iy s A I A . Clearly, there are? (i.e. constant, for a giver) number

\
o rrrrrrr 1 1 T | of different types. We will enumarate all possible match-
ings by guessing the number of edges in each type.

Figure 4: Partitioning the line segment: A small edge (solid line)

L A i I Ilifits | his | h
and an edge of typés. ) (dotted fine). emma 9 An edge is called small if its length is less than

en. The number of small edges is at mast

Our cost in this case is i§% + (n — 1) Which is Proof: The lemma follows from the fact that the small
20PT for large enougltg. edges may involve at most/e left blocks connected to
We summarize the main result of this section in the fol- the1/e right blocks. | |
lowing theorem. Given a guess, we use the following rule to match the
) . ) . cameras. Fix a block on the left, sdy. Supposel; is
Theorem 7 There exists ai®)(n)-time algorithm that si- connected ta;; vertices inR;, - vertices inRs, etc. Pair

multaneously gives a 2-approximation to minimizing the the ., leftmost vertices ifl,; to z; leftmost vertices iR, .
sum of errors metric as well as minimizing the maximum Thenaz, leftmost among remaining ones and so on.
error metric when the cameras are aligned and the cost of  This ensures that small edges in OPT are reduced by at

assigning cameras and j to targetk is bZ—t whereb;; is most a factor of 2.

the distance between the cameras dhdis the distance

of targetk to the line that passes through the cameras. Lemma 10 Letcy, ¢2, c3 andcy be four cameras ordered
from left to right,z = |cico|, ¥y = |cacs|, 2 = |escy]

3.2.3 APTAS for equidistant cameras with z > x. In addition, lett; andt, be two targets at

distances:; and z, respectively (figure 5). Ifci, ca, t2)
Our next result is a PTAS for equidistant cameras on the and (c,, 3, ¢1) are triples in an optimal assignment then:
line. Lete > 0 be afixed constant. We are going to present
an algorithm that computes(& + O(¢))-approximate so- Z1 <z (x+y)
lution. Without any loss of generality assume that the dis- y ~ 2 (x+y+2)(y+2)
tance between two consecutive cameras is 1, hence the
length of the line segment s:.

Lemma 8 In an optimal matching leftmost cameras Proof: Consider the assignment obtained by crossing the

match with rightmost. cameras. pairs: (c1,cs,t1) and (cg, cq,t2) (see figure 5). Due to
optimality we have

Proof: Assumec; is matched ta:;, ¢, < n in an op- 7 Zs 7 Zs
timal matching. This implies that among the rightmast —
cameras at least two of them match with each other¢gay
andc;. Butthen, this matching can be improved by pairing and the lemma follows by simple algebraic manipulation.
iq; with ¢, andc; with ¢; which contradicts the optimality.

Letp = ¢?n andg = 1/€2. Partition then points on Lemma 11 Let the weight of an edge for an assign-
the left into equal sized blocké,, ..., L, so that each  ment belzj where Z; is the depth of the target assigned

< +
Y r+y+z r+y Y+ z



to this edge ande| is the distance between the cameras
connected by. The total weight on the small edges is at
most an64e fraction of the overall weight in any optimal
assignment.

Proof: Let M andN be the leftmost and rightmoé’f
cameras respectively. In an optimal matching, due to
Lemma 8, the edges i match with rightmost: edges
and at least; of them are inN. Let B = {b1,...,bs}

be the set of any; “big” edges that match cameras from
M to cameras inV andS = {si,..., st} be the set of
“small” edges. By Lemma &% < en.

PartitionB into 5 > i groupsB; of sizek arbitrarily.
We pick any groupB; and match the edges € B;
to edges inS arbitrarily. LetZ$ and Z? be the depths of
targets assigned tg¢ andb; respectively. By Lemma 10
withz +y<n+en,r+y+2z>5andy+z> 7 we

get:

zZ?

Sq

n+ en)
nn
24

b
(L+e) _ 16Z]

< Zf’(

(2

zzbS
v n

Letw(S) be the total weight in sef. Since a baseline can
be of length at mostn, by summing up over the elements
in S, we getw(S) < 32w(B;).

Therefore we conclude:

(Bi)
2€

w(S)
64e

w

w(B) =

>

since the total weight is greater thaiiB), the lemma fol-
lows.

Theorem 12 There exists a PTAS for assigning equdistant
cameras on a line.

Proof: The matching described ensures that small edges
in OPT are reduced by at most a factor of 2 and long edges
are within a factor of1 + ¢). Using Lemma 11 above, by
combining these matchings, we get an ovetalt O(e)-
approximation.

3.3 Range-Sensors on a Circle

In this section, we consider range-sensors located on a

circle C at equidistant intervals, tracking targets that are
located inside&C. The error associated with a pair of range
sensors(ci, cz) and a target is approximated by~
wheref) = Zciteo. This is the Geometric Dilution of Pre-

cision (GDOP) for sensors that measure distances from the

targets [11]. In practice three range sensors are requiredt

for explicit target localization. However, target-tracking
need not be an adversarial task. Consider a team of mo-

to enable localization. In this application, identifying op-
timal pairs would prove useful for providing optimal posi-
tion estimates while minimizing network transmissions.

For simplicity, assume there ate sensors andn tar-
gets. LetS be the set of pairs generated by matching sen-
sori with sensoti +n which is90 degrees away clockwise
from i. Assign the targets arbitrarily to paits

For two sensorg; andcs, letxz be a point insid€ such
that Zcyze, = 3T (see figure 6). Letdrcl(cy, co) be the
arc defined by, c; andz and Arc2(cy, c2) be the arc
axially symmetric with respect to the the chaerd,. Note
that Arc2 lies onC.

We call the region insiddrcl(cy, c2) and Arc2(cq, c2)
a defectiveregion for the pair(c;, c2), because any tar-
get outside this region is viewed by an angle less than
3 and greater thaf degrees from(cy, c2). This an-
gle is enough to guarantee a 1.42-approximation since
1/sin(2r) < 1.42 and the least error possible in this met-
ric is 1. We summarize the properties of defective regions
in the following propositions, which can be proven using
basic geometric formulas.

Proposition 13 Any target outside the defective region of
sensors:; andcs is viewed by an angle less théfi and
greater than’ fromc; andc;.

Proposition 14 Letcy, ¢z, c3 andcy be four sensorg de-
grees apart. Defective regions @f;, c2), (c2,¢c3), (c3,¢4)
and(cq, c1) are disjoint (figure 6 right).

Having assigned the targets to sensprdegrees apart
we proceed as follows: We scan the pairs assigned to each
targett;. Suppose the current pair(ie;, cz2) .

Now suppose that; assigned to(cy, c2) is defective
(i.e. in the defective region af, andc,). Consider the
pair (c3, c4), such thats (resp. ¢4) is the antipodal ot
(resp.cs) and the target, assigned tdcs, c4).

o if t5 is also defective, we swap targets: the new as-
signment iicl, C2, tg) and((:3, C4, tl).

e if ¢5 is good and outside the defective region of
(c1,c2) again we swap targets: the new assignment
is (Cl, C2, tg) and(C3, C4, tl).

e if t5 is good and inside the defective regionof, ¢3)
we swap pairs: the new assignmentds, ¢4, t1) and
(62 » €3, t2 ) .

The reason we picked the angle s is to make the
defective regions disjoint: As the right figure in figure 6
illustrates, by construction the defective regions only in-
ersect at the sensors. This makes each assignment to have

an error of 1.42 at most. In addition, once an assignment

bile robots negotiating a sensor network. Pairs of sensor
measurements could be paired with heading information

2|n practice one would run a matching algorithm, however this does
not affect the analysis.



Figure 6: Sensors on circleEFT: The defective region for sen-
sorsce andc: is the shaded area defined by artscl(ci, c2)
andArc2(c1, c2). RIGHT: The defective regions are disjoint.

is modified we never return to it. Therefore this algorithm
gives a 1.42-approximation fdy/ sin 6 error metric.

The main result of this section is summarized in the fol-
lowing theorem:

Theorem 15 There exists aW(n)-time algorithm that si-
multaneously gives a 1.42-approximation to minimizing
the sum of errors metric as well as minimizing the maxi-
mum error metric when thén sensors are equally spaced
on a circle and the cost of assigning sensémnd j to

H 1
targetk is i

Discussion: Universal Placement Note that the anal-
ysis above shows that the equidistant placements;f;eér
metric isuniversal No matter where the targets are lo-
cated, our algorithm guarantees a 1.42-approximation for
the optimal matchings generateddnyy placement of sen-
sors on circle.

Similarly, a universal placement for cameras on a line
segmen{z, y] for the Z/b metric would be to put half of
the cameras to and the other half on, which guarantees
an optimal assignment for this metric.

3.4 Arbitrary Sensor Placement

The inapproximability of FOA for general sensor place-
ment lead us to repose it as its “dual” maximization prob-
lem. To do this, we define the notion ofvalid track
An assignment{(c;, ¢;, tx) is considered a valid track if
Err(c,cj,te) < do, Whered, represents an acceptable

NP-hard [7]. It is also known that a greedy solution is
within a factor of 3 of optimal. A “2-locally-optimal” so-
lution is defined as a maximal solution that can not be im-
proved further by removing any item from the current so-
lution, and attempting to insert 2 non-conflicting items. It
has been shown that any 2-locally optimal solution pro-
vides a5 approximation [8, 16].

One might suspect that a 2-locally optimal solution
would yield better performance for restricted error met-
rics. However, this is not the case: Consider the example
in figure 7 with cameras on a ling/b as our error met-
ric and an error thresholéh, = 1. There are five targets,
t1,...,t5 andz; = 9,20 ="T,23=05,24 = 3andz5 =1.

Ten cameras; to ¢i are located at = 1,...,10. Op-
timum packing is five targets witli¢;, 1, 10), (¢2,2,9),
(t3,3,8),(t4,4,7) and(ts, 5, 6), represented by the nodes
on the left in figure 7. Suppose our solution(id, 3, 6),
(t5,8,9) and(¢3,5,10). Note that it is not possible to re-
move a triple from this solution and insert two, therefore
it is 2-locally optimal. But this implies a} approxima-
tion, which shows that the analysis is tight. It is possible
to generalize this example & targets, just by replicating

k instances of the same example and putting them on the
top of each other. Thus, thg lower bound is tight even
for equispaced cameras on a line.

We further investigate the utility of the greedy and 2-
local algorithms in Section 4.

(t1,1,10
(12,2, 9) (t5,8,9)
(t3,3,8) (t4,3,6)
(t4,4,7) (t3,5,10)
(t5,5,6)

Figure 7: The conflict graph for the optimal solution and a 2-local
solution: The nodes on the left (resp. right) represent the optimal
(resp. 2 local) solution. There is an edge between two nodes if
the assignments conflict. In this case, a 2-local solution gives a
% approximation, showing that the analysis is indeed tight.

error threshold predefined by the user. The problem then4 ~Simulation Results

becomes: Given a set of sensérfswith ¢; € C, a set of
targetsT” with ¢ € T, and an error thresholg, construct
a set of disjoint assignments where(c;, ¢;, t) € A iff
Err(c;,cj,ti) < do, such thatA| is maximized.

When the error metric is arbitrary, this problem is equiv-
alent toMaximum 3-Set Packiigwhich is known to be

3Given a 3-set systerfiS, C') — a setS and a collectionC' of size 3
subsets of, find a maximum cardinality collection of disjoint setsGh

We implemented simulations for several of our results
in both target tracking and cooperative localization tasks.
We contrasted the performance of these empirically with
greedy approaches. Each sensor was constrained to track-
ing a single target at any given time. For the line and cir-
cle cases, no limitations were assumed regarding sensor
range.
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Figure 8: Left: A tracking scenario with targets performing a random walkiddle, Right: Histograms of the mean-squared error
(MSE) for 2-approximation and greedy algorithm with no re-assignment.

4.1 Camerason the line Again, we modeled two algorithms for this scenario.
Both initiated with a globally optimal assignment of sen-
In this simulation, we modeled the target tracking task gor pairs to targets. In Algorithm 1, this assignment was
as outlined in Section 3.2. Specifically, we considered 10 maintained throughout the simulation. Algorithm 2 fol-
cameras charged with tracking 5 targets performing a ran-|owed the 1.42-approximation as outlined in Section 3.3.
dom walk as shown in Figure 8. The sensors measured|n thjs case, reassignment of sensor pairs to targets was
bearings to targets. Measurements from pairs of sensorsconstrained to within the initial 4 sensor/2 target assign-
were then merged (via triangulation) to obtain an estimate ment. Localization then proceeded with each robot trans-
of the position of the target. We modeled this scenario for mitting a position estimate to its assigned sensor pair. The
two different algorithms. sensor pair in turn transmitted range measurements to the
Algorithm 1 initially assigned each target to the best target. These measurements, and the knowledge of sensor
available pair and kept this assignment fixed through- positions, allowed each robot to condition its particle filter

out the simulation.  Algorithm 2 employed the 2-  set for improved position estimation. The procedure then
approximation algorithm presented in Section 3.2. In this jierated.

approach, sensor pairs communicated target position esti-

mates (requiring)(n) communications), and sensor pair-  |ocalization performance for both algorithms is re-

target assigments were dynamically updated as necessaryflected in Figure 9. In this example, 8 robots were tracked
We simulated the performance of these two algorithms py 16 sensors. The robots localized while following

for 1000 iterations. The error in bearing was simulated pseudo-random trajectories through the network. As ex-

by drawing samples from zero mean Gaussian witk pected, results indicate that although both approaches rely

1°. The middle figure in Figure 8 is the histogram of the on identical filtering techniques, significant improvements

average error for the dynamic update method. The meanin |ocalization performance can be achieved by intelli-

squared error is 3.62 and the standard deviation of the errorgently assigning targets to sensors prior to the data fusion

is 3.22. In this simulation, the 2-approximation algorithm phase.

performs better than the no-optimization version (given in

Figure 8 right), whose mean erroris 12.22 and the standard

deviation of the error is 17.98. 4.3 Arbitrary Sensor Placement

4.2 Sensors on the circle
In this last simulation, we examined the arbitrary sen-

Targettracking need not be adversarial. We demonstratesor placement problem as outlined in Section 3.4. For this
this in a cooperative localization task. In this simulation, example, 20 cameras were distributed roughly uniformly
n robots are operating within a sensor network defined by on the plane and charged with tracking 10 targets. Here,
2n range sensors on a circle. The robots rely on pairs of the objective was to maximize the number of valid tracks,
sensor measurements to fuse with odometry information. in contrast to the error minimization objective of previ-
Both the sensor and odometry measurements are corrupte@us simulations. Targets followed random trajectories, and
with random Gaussian noise. Additionally, the odometry were tracked in simulation using particle filters. The re-
measurements have an unmodeled bias (to reflect wheebpective particle sets were employed to generate a numer-
imperfections, for example). Each robot employs a parti- ical error metric for the targets as discussed in [13].
cle filter to fuse the imperfect odometry and sensor mea-

surements to estimate its position. Two algorthms were investigated for this maximization



Figure 9: Left: Simulator snapshot showing robot positions overlaid with corresponding particle set esti@®atdsr, Right: MSE
histograms for the 1.42-approximation and static assignment trials. The former reduces MSE in position by 50%.

approach. The first employed a greedy assignment strat-attributes. Their matchings have twofold approxima-
egy, and the second a 2-locally optimal approach as dis-tion guarantees; the sums of errors are bounded, as are
cussed in Section 3.4. The latter took the greedy solu- the individual target errors. Additionally, they are read-
tion as input, and as a consequence could only improveily implemented, and are inexpensive both computation-
on its performance. Reassignment was made for both al-ally (O(nlogn) and O(n), respectively) and in terms
gorithms at each timestep. Several trials were conductedof network communicationg](n)). In simulation, both
correspondingto sparse and dense solution sets. Data fronshowed significant improvements in performance over
a representative trial can be found at figure 10. greedy/static assignment strategies. The constraints to ge-
ometry are restrictive but still useful, and we are currently

In each trial, the 2-local solution improved over greed . > ) i
P g y working to extend these to additional configurations.

by 5-15%. As expected, the larger improvements corre- o | ; .
Empirical results for arbitrary sensor placement simu-

sponded to dense solution sets - i.e. when there were mor
P ?ations indicate on average a 5-15% improvement for the
5

opportunities for finding local improvements. These re- X 3
sults are by no means encompassing, and provide only in-3-@PProximate solution over a greedy approach. However,

sights into expected performance which is a function of the former is more expensive computationally. As a con-
too many variables to address here. However, they imply SAUENCce, a greedy strategy may be preferred for real-time
that unless the guarantee of improved performance is crit- 2PPlications.

ical, the significantly greater computational complexity of
2-local may not be warranted by the expected performance
improvement over greedy for real-time applications.
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