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Abstract

In this paper, we investigate data fusion techniques for
target tracking using distributed sensors. Specifically, we
are interested in how pairs of bearing or range sensors
can be best assigned to targets in order to minimize the
expected error in the estimates. We refer to this as the
focus of attention (FOA)problem.

In its general form, FOA is NP-hard and not well ap-
proximable. However, for specific geometries we obtain
significant approximation results: a 2-approximation al-
gorithm for stereo cameras on a line, a PTAS for when
the cameras are equidistant, and a 1.42 approximation for
equally spaced range sensors on a circle. In addition to
constrained geometries, we further investigate the prob-
lem for general sensor placement. By reposing as a maxi-
mization problem - where the goal is to maximize the num-
ber of tracks with bounded error - we are able to leverage
results from maximum set-packing to render the problem
approximable. We demonstrate these in simulation for a
target tracking task, and for localizing a team of mobile
agents in a sensor network. These results provide insights
into sensor/target assignment strategies, as well as sensor
placement in a distributed network.

1 Introduction

Sensor networks are the enablers of a technology which
can best be described asomnipresence. Small, inexpen-
sive, low power sensors distributed throughout an environ-
ment can provide ubiquitous situational awareness. The
technology lends itself well to surveillance and monitor-
ing tasks - including target tracking - and it is in this ap-
plication where our interests lie. Unfortunately, the sen-
sors used for these tasks are inherently limited, and indi-
vidually incapable of estimating the target state. Without
additional constraints, a minimum of two bearing sensors
(such as cameras) are required to estimate the position of
a target. For range sensors, three are required to localize a
target (although this can be reduced to two using filtering
techniques). Noting that the measurements provided by

these sensors are also corrupted by noise, we realize that
the choice of which measurements to combine can greatly
influence the accuracy of our tracking estimates.

Consider a distributed set of such sensors charged with
tracking groups of targets. It would be unrealistic to as-
sume that each sensor could track multiple targets or that
the network possessed unlimited computational power and
bandwidth. With this in mind, our problem can be viewed
as an optimal allocation of resources for target tracking.
How should pairs of sensors be assigned to targets so that
the sum of errors in target position estimates is minimized?
We refer to this as thefocus of attentionproblem for dis-
tributed sensors.

2 Related Work

Since the measurements of multiple sensors are com-
bined to estimate target pose, our work relates strongly
to research in sensor fusion. Fusing measurements from
multiple sensors for improving tracking performance has
been the subject of significant research [1]. However, the
focus has been on combining measurements from sensors
(radars, laser range-finders, etc.) individually capable of
estimating the target state (position, velocity, etc.). As our
sensors require the fusion of pairs of measurements, we
desire instead an optimal assignment ofdisjoint sensors
pairs to targets. This added dimension changes the com-
plexity of the problem entirely, and distinguishes our work
from previous approaches.

Within the robotics community, Durrant-Whyteet alpi-
oneered work in sensor fusion and robot localization. This
yielded significant improvements to methods used in mo-
bile robot navigation, localization and mapping [12, 5].
Thrun et al have also contributed significant research to
these areas [14, 15]. However, our work distinguishes it-
self from traditional data fusion techniques in that the sen-
sors themselves are actively managed to improve the qual-
ity of the measurements obtainedprior to the data fusion
phase, resulting in corresponding improvements in state
estimation.

There has been other related research under the heading



of sensor networks. Corteset al investigated the issue of
sensor coverage [3]. This focused on the movement of sen-
sor networks while ensuring optimal coverage. Our work
begins where the sensor coverage problem leaves off, and
is applicable when multiple sensors are required for moni-
toring a single region. Jung and Sukhatme examined a het-
erogeneous network of static and mobile sensors for target
tracking [10]. Using a region based approach, each robot
attempted to maximize the number of tracked targets per
region. In contrast to our work, data fusion issues were
not considered. Lastly, Horlinget al [6] focused on net-
work management optimization to ensure target observ-
ability and synchronized sensor observations in order to
better estimate target position. In sharp contrast, our ap-
proach optimizes explicit sensor error metrics to obtain an
optimal or near optimal sensor-target assignment.

3 The Focus of Attention Problem

The following are the standard definitions used for anal-
ysis of approximation algorithms [9] that will be used in
the paper:

Definition 1 A polynomial algorithm,A, is said to be a
α-approximation algorithm, if for every problem instance
I,A produces a solution within a factor ofα of the optimal
solution.

Definition 2 A polynomial-time approximation scheme
(PTAS) is a family of algorithmsAε : ε > 0 such that
for eachε > 0, Aε is a (1 + ε)−approximation algorithm
which runs in polynomial time in input size for fixedε.

3.1 Problem Definition

The focus of attention problem (FOA) is formally de-
fined as as follows: The input is a cost functionc(i, j, k)
which indicates the cost of tracking targetk using sensors
i andj wherei, j ∈ [1 . . . 2n] andk ∈ [1 . . . n]. In the
sequel, this cost represents the expected error associated
with a position estimate obtained by fusing the informa-
tion from sensorsi andj. We are required to output an as-
signment: a set ofn triples such that each target is tracked
by two sensors, no sensor is used to track more than one
target and the sum of errors associated with triples is min-
imized.

FOA is closely related to the following problem [7]:

Definition 3 (3D-Assignment) Given three setsX, Y
andW and a cost functionc : X × Y × W → N , find
an assignmentA (that is a subset ofX × Y × W such
that every element ofX ∪ Y ∪ W belongs to exactly one
element ofA) such that

∑
(i,j,k)∈A c(i, j, k) is minimized.

3D-Assignment (3DA) is NP-hard [4] and inapprox-
imable [2]. It is easy to see that any instance of 3DA
can be reduced to an instance of FOA just by setting

c1 c2 c2n

t1

tn

z1

Figure 1: The Focus of Attention Problem on the line.

cFOA(i, j, k) = c3DA(i, j, k) wheneverc3DA(i, j, k) is
defined and infinite otherwise. Moreover, since this re-
duction is approximation preserving, FOA with arbitrary
costs is not approximable as well.

However, usually the error is not arbitrary but a func-
tion of the location of the cameras and the target. In the
next two sections, we consider two error metrics for spe-
cific sensor configurations: Cameras on the line and range
sensors on the circle.

3.2 Cameras on a line

In this section, we consider collinear cameras located
on linel tracking targets on the plane. The error associated
with camerasi andj tracking targetk is Zk

bij
whereZk is

the vertical distance of the targetk to the linel andbij is
the baseline, that is the distance between the two cameras
(see figure 1). This metric can be used to gauge the error in
the stereo reconstruction1 and gives a good approximation
when the targets are not too close to the cameras [11] .
Note that this error metric fails if the targets are very close
to l, therefore in this section we assume that there exists a
minimum clearanceδ such thatZi > δ, for all targetsi.

Suppose that the cameras are sorted from left to right
and letci be the coordinate of theith camera. The follow-
ing lemma enables us to separate matching cameras from
matching targets to pairs.

Lemma 4 Let Zi be the depths of targets,Z1 ≤ Z2 ≤
. . . ≤ Zn andbi be the baselines in an optimal assignment
sorted such thatb1 ≤ b2 ≤ . . . bn. There exists an optimal
matching such that the target at depthZi is assigned to the
pair with baselinebi.

Proof: Suppose not. Then there exists two assignments
(Zi, bj) and(Zk, bi) such thatZi > Zk andbj < bi. But

1In fact, a better approximation isZ2/b, but when all the cameras are
collinear the depth of a target is the same for all cameras and therefore
for simplicity we assume that the depths are squared and the error isZ/b



c1 c2 c3 c4

t1 t2

Figure 2: A greedy assignment assignsc1 andc4 to targett1 and
gets stuck with the pair(c2, c3). The optimal assignment in this
case is to assignt1 to (c1, c3) andt2 to (c2, c4).
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which is always true. Therefore we could improve the op-
timal matching by swapping the pairs leading to a contra-
diction.

3.2.1 Performance of known heuristics

It is easy to see that a greedy assignment that assigns
the furthest target the maximum available baseline can be
arbitrarily far from optimal: Consider the setting in fig-
ure 2 with four cameras where the two cameras in the
middle are very close to each other. In this configura-
tion, the greedy algorithm can produce an assignment that
is arbitrarily more costly than the optimal assignment:
(t1, c1, c3), (t2, c2, c4).

Perhaps not so obvious is the performance of the fol-
lowing algorithm: Find a matching between the cameras
that maximizes the sum of the baselines and assign these
pairs to targets. This algorithm, which we call Match As-
sign, gives a3/2 approximation for the 3D-Assignment
problem when the cost of a triple is the perimeter of the
triangle formed by the points in the triple [4].

Match-Assign Algorithm can also be arbitrarily bad:
Suppose there is one target atZ = Z and n − 1 tar-
gets atZ = ε. The cameraci is located atx = i

2n−1 ,
i = [1, . . . , 2n].

First consider the matching(c1, c2n) and (c4i−2, c4i),
(c4i−1, c4i+1) for i = 1, 2, . . . , (2n − 2)/4. The cost of
this matching is1 + 2(n−1)

2n−1 ≈ 2 and the total error is
Z + (n − 1) 2ε

2n−1 .
Next, consider the matching that matchesci with ci+4.

The cost of this matching is also4n
2n−1 ≈ 2 but the total

error is(2n − 1)Z4 + (n − 1) (2n−1)ε
4 .

Therefore, two matchings with equal sum of baselines
may lead to errors such that one can be made arbitrarily
larger than the other and the Match-Assign algorithm can
not be used to obtain a good approximation.

3.2.2 A 2-Approximation Algorithm

In this section we present a 2-approximation algorithm for
the previous assignment problem. The algorithm simply
assigns camerai to cameran + i and these pairs are then
assigned to the targets according to Lemma 4. Letli (resp.
l∗j ) be the baselines of the pairs generated by our (resp. op-
timal) algorithm. The following lemmas show that we can
find a one-to-one correspondence betweenli and l∗j such
that li are longer than half of their corresponding pairs in
the optimal solution.

Lemma 5 ∀i∃j such thatli ≥ l∗j .

Proof: Let k be the the pair such that|(ck, cn+k)| = li.
Let A = {ck, ck+1, . . . , cn+k}. Since|A| = n + 1, in

the optimal matching there must be two cameras inA that
match with each other and the baseline of that match is at
mostlk.

Lemma 6 Let S = {l1, . . . , ln} and OPT =
{l∗1, . . . , l∗n}. For anyA ⊆ S, |A| = k, there exists a sub-
setB ⊆ OPT, |B| = k and a bijectionσk : A → B such
that li ≥ σk(li)/2 for all li ∈ A.

Proof (by induction): Basis: Existence ofσ1 for k = 1
is a corollary of Lemma 5.

Inductive Step: Let ci andcj be the leftmost and right-
most cameras used by the edges inA. W.l.o.g. assume that
|cicn+i| ≥ |cjcn+j |. Let Y be the subset of pairs inOPT
that matches cameras in the setC = {ci, ci+1, . . . , cj}.

We first observe that|Y | ≥ k. This is because|C| ≥
n + k and hence at mostn − k cameras inC could be
matched by OPT to cameras outsideC.

The longest edge inB is easily seen to be at most
2|cicn+i|. We now recursively computeσk−1 for A′ =
A \ {(ci, cn+i)}. Let B′ be the range ofσk−1. Since
|Y | ≥ k, Y must have at least one pair, sayl∗, not in
B′. We match this pair to(ci, cn+i):

σk(l) =
{

σk−1(l), if l ∈ A′ (3.1)

l∗, if l = (ci, cn+i) (3.2)

Therefore by Lemma 6 there exists a mappingσ from
S to the optimal matching such thatli ≥ σ(li)

2 , ∀li ∈ S
which gives us the desired approximation guarantee. This
analysis is tight, there are instances where our algorithm
can be twice as costly as the optimal:

The tight example consists ofn/4 cameras atx = 0,
n/4 cameras atx = 1 − ε, n/4 cameras atx = 1 + ε and
n/4 cameras atx = 2. There is one target atZ = Z and
n − 1 targets atZ = ε (see figure 3).

The optimal cost in this case isZ2 + (n − 2) ε
1+ε + ε

2ε .
This is achieved by matchingc1 to c2n andcn

4 +1 to c 3n
4

and imitating our algorithm otherwise.



Figure 3: The matchings produced by our algorithm (shown in
dotted lines) can be twice as bad as the optimal matching (shown
in solid lines) by moving the furthest target to infinity.

L1 L2 Li Lq R1 R2 Rj Rq

Figure 4: Partitioning the line segment: A small edge (solid line)
and an edge of type(i, j) (dotted line).

Our cost in this case is isZ1+ε + (n − 1) ε
1+ε which is

2OPT for large enoughZ.
We summarize the main result of this section in the fol-

lowing theorem.

Theorem 7 There exists anO(n)-time algorithm that si-
multaneously gives a 2-approximation to minimizing the
sum of errors metric as well as minimizing the maximum
error metric when the cameras are aligned and the cost of
assigning camerasi and j to targetk is Zk

bij
wherebij is

the distance between the cameras andZk is the distance
of targetk to the line that passes through the cameras.

3.2.3 A PTAS for equidistant cameras

Our next result is a PTAS for equidistant cameras on the
line. Letε > 0 be a fixed constant. We are going to present
an algorithm that computes a(1 + O(ε))-approximate so-
lution. Without any loss of generality assume that the dis-
tance between two consecutive cameras is 1, hence the
length of the line segment is2n.

Lemma 8 In an optimal matching leftmostn cameras
match with rightmostn cameras.

Proof: Assumeci is matched tocj , i, j ≤ n in an op-
timal matching. This implies that among the rightmostn
cameras at least two of them match with each other, sayck

andcl. But then, this matching can be improved by pairing
ci with ck andcj with cl which contradicts the optimality.

Let p = ε2n andq = 1/ε2. Partition then points on
the left into equal sized blocksL1, . . . , Lq so that each

c1 c2 c3 c4

t1

t2

x y z

Figure 5: Figure for lemma 10

block hasp cameras. Similarly, we partition the points on
the right into equal sized blocksR1, . . . , Rq. Consider a
camera pairing(x, y) in OPT. We call it of type(i, j) if x
is Li andy is in Rj .

Clearly, there areq2 (i.e. constant, for a givenε) number
of different types. We will enumarate all possible match-
ings by guessing the number of edges in each type.

Lemma 9 An edge is called small if its length is less than
εn. The number of small edges is at mostεn.

Proof: The lemma follows from the fact that the small
edges may involve at most1/ε left blocks connected to
the1/ε right blocks.

Given a guess, we use the following rule to match the
cameras. Fix a block on the left, sayLi. SupposeLi is
connected tox1 vertices inR1, x2 vertices inR2, etc. Pair
thex1 leftmost vertices inLi to x1 leftmost vertices inR1.
Thenx2 leftmost among remaining ones and so on.

This ensures that small edges in OPT are reduced by at
most a factor of 2.

Lemma 10 Let c1, c2, c3 andc4 be four cameras ordered
from left to right, x = |c1c2|, y = |c2c3|, z = |c3c4|
with z > x. In addition, lett1 and t2 be two targets at
distancesz1 and z2 respectively (figure 5). If(c1, c4, t2)
and(c2, c3, t1) are triples in an optimal assignment then:

Z1

y
≤ Z2

(x + y)
(x + y + z)(y + z)

Proof: Consider the assignment obtained by crossing the
pairs: (c1, c3, t1) and (c2, c4, t2) (see figure 5). Due to
optimality we have

Z1

y
+

Z2

x + y + z
≤ Z1

x + y
+

Z2

y + z

and the lemma follows by simple algebraic manipulation.

Lemma 11 Let the weight of an edgee for an assign-
ment beZi

|e| whereZi is the depth of the target assigned



to this edge and|e| is the distance between the cameras
connected bye. The total weight on the small edges is at
most an64ε fraction of the overall weight in any optimal
assignment.

Proof: Let M andN be the leftmost and rightmost3n
4

cameras respectively. In an optimal matching, due to
Lemma 8, the edges inM match with rightmostn edges
and at leastn2 of them are inN . Let B = {b1, . . . , bn

2
}

be the set of anyn2 “big” edges that match cameras from
M to cameras inN andS = {s1, . . . , sk} be the set of
“small” edges. By Lemma 9,k ≤ εn.

PartitionB into n
2k ≥ 1

2ε groupsBi of sizek arbitrarily.
We pick any groupBj and match the edgesbi ∈ Bj

to edges inS arbitrarily. LetZs
i andZb

i be the depths of
targets assigned tosi andbi respectively. By Lemma 10
with x + y ≤ n + εn, x + y + z ≥ n

2 andy + z ≥ n
4 we

get:

Zs
i

si
≤ Zb

i

(n + εn)
n
2

n
4

= Zb
i

8(1 + ε)
n

≤ 16Zb
i

n

Let w(S) be the total weight in setS. Since a baseline can
be of length at most2n, by summing up over the elements
in S, we getw(S) ≤ 32w(Bj).

Therefore we conclude:

w(B) ≥ w(Bi)
2ε

≥ w(S)
64ε

since the total weight is greater thanw(B), the lemma fol-
lows.

Theorem 12 There exists a PTAS for assigning equdistant
cameras on a line.

Proof: The matching described ensures that small edges
in OPT are reduced by at most a factor of 2 and long edges
are within a factor of(1 + ε). Using Lemma 11 above, by
combining these matchings, we get an overall1 + O(ε)-
approximation.

3.3 Range-Sensors on a Circle

In this section, we consider range-sensors located on a
circle C at equidistant intervals, tracking targets that are
located insideC. The error associated with a pair of range
sensors(c1, c2) and a targett is approximated by 1

sin θ
whereθ = ∠c1tc2. This is the Geometric Dilution of Pre-
cision (GDOP) for sensors that measure distances from the
targets [11]. In practice three range sensors are required
for explicit target localization. However, target-tracking
need not be an adversarial task. Consider a team of mo-
bile robots negotiating a sensor network. Pairs of sensor
measurements could be paired with heading information

to enable localization. In this application, identifying op-
timal pairs would prove useful for providing optimal posi-
tion estimates while minimizing network transmissions.

For simplicity, assume there are4n sensors and2n tar-
gets. LetS be the set of pairs generated by matching sen-
sori with sensori+n which is90 degrees away clockwise
from i. Assign the targets arbitrarily to pairs2 .

For two sensorsc1 andc2, letx be a point insideC such
that∠c1xc2 = 3π

4 (see figure 6). LetArc1(c1, c2) be the
arc defined byc1, c2 andx andArc2(c1, c2) be the arc
axially symmetric with respect to the the chordc1c2. Note
thatArc2 lies onC.

We call the region insideArc1(c1, c2) andArc2(c1, c2)
a defectiveregion for the pair(c1, c2), because any tar-
get outside this region is viewed by an angle less than
3π
4 and greater thanπ4 degrees from(c1, c2). This an-

gle is enough to guarantee a 1.42-approximation since
1/ sin(3π

4 ) < 1.42 and the least error possible in this met-
ric is 1. We summarize the properties of defective regions
in the following propositions, which can be proven using
basic geometric formulas.

Proposition 13 Any target outside the defective region of
sensorsc1 andc2 is viewed by an angle less than3π

4 and
greater thanπ

4 from c1 andc2.

Proposition 14 Letc1, c2, c3 andc4 be four sensorsπ2 de-
grees apart. Defective regions of(c1, c2), (c2, c3), (c3, c4)
and(c4, c1) are disjoint (figure 6 right).

Having assigned the targets to sensorsπ
2 degrees apart

we proceed as follows: We scan the pairs assigned to each
targetti. Suppose the current pair is(c1, c2) .

Now suppose thatt1 assigned to(c1, c2) is defective
(i.e. in the defective region ofc1 andc2). Consider the
pair (c3, c4), such thatc3 (resp. c4) is the antipodal ofc1

(resp.c3) and the targett2 assigned to(c3, c4).

• if t2 is also defective, we swap targets: the new as-
signment is(c1, c2, t2) and(c3, c4, t1).

• if t2 is good and outside the defective region of
(c1, c2) again we swap targets: the new assignment
is (c1, c2, t2) and(c3, c4, t1).

• if t2 is good and inside the defective region of(c1, c2)
we swap pairs: the new assignment is(c1, c4, t1) and
(c2, c3, t2).

The reason we picked the angle as3π
4 is to make the

defective regions disjoint: As the right figure in figure 6
illustrates, by construction the defective regions only in-
tersect at the sensors. This makes each assignment to have
an error of 1.42 at most. In addition, once an assignment

2In practice one would run a matching algorithm, however this does
not affect the analysis.
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Figure 6: Sensors on circle:LEFT: The defective region for sen-
sorsc2 andc2 is the shaded area defined by arcsArc1(c1, c2)
andArc2(c1, c2). RIGHT: The defective regions are disjoint.

is modified we never return to it. Therefore this algorithm
gives a 1.42-approximation for1/ sin θ error metric.

The main result of this section is summarized in the fol-
lowing theorem:

Theorem 15 There exists anO(n)-time algorithm that si-
multaneously gives a 1.42-approximation to minimizing
the sum of errors metric as well as minimizing the maxi-
mum error metric when the4n sensors are equally spaced
on a circle and the cost of assigning sensorsi and j to
targetk is 1

sin ∠ikj .

Discussion: Universal Placement Note that the anal-
ysis above shows that the equidistant placement for1

sin θ
metric is universal: No matter where the targets are lo-
cated, our algorithm guarantees a 1.42-approximation for
the optimal matchings generated byanyplacement of sen-
sors on circle.

Similarly, a universal placement for cameras on a line
segment[x, y] for theZ/b metric would be to put half of
the cameras tox and the other half ony, which guarantees
an optimal assignment for this metric.

3.4 Arbitrary Sensor Placement

The inapproximability of FOA for general sensor place-
ment lead us to repose it as its “dual” maximization prob-
lem. To do this, we define the notion of avalid track.
An assignment(ci, cj , tk) is considered a valid track if
Err(ci, cj , tk) ≤ δ0, whereδ0 represents an acceptable
error threshold predefined by the user. The problem then
becomes: Given a set of sensorsC with ci ∈ C, a set of
targetsT with t ∈ T , and an error thresholdδ0, construct
a set of disjoint assignmentsA, where(ci, cj , tk) ∈ A iff
Err(ci, cj , tk) ≤ δ0, such that|A| is maximized.

When the error metric is arbitrary, this problem is equiv-
alent toMaximum 3-Set Packing3, which is known to be

3Given a 3-set system(S, C) – a setS and a collectionC of size 3
subsets ofS, find a maximum cardinality collection of disjoint sets inC.

NP-hard [7]. It is also known that a greedy solution is
within a factor of 3 of optimal. A “2-locally-optimal” so-
lution is defined as a maximal solution that can not be im-
proved further by removing any item from the current so-
lution, and attempting to insert 2 non-conflicting items. It
has been shown that any 2-locally optimal solution pro-
vides a5

3 approximation [8, 16].

One might suspect that a 2-locally optimal solution
would yield better performance for restricted error met-
rics. However, this is not the case: Consider the example
in figure 7 with cameras on a line,Z/b as our error met-
ric and an error thresholdδ0 = 1. There are five targets,
t1, . . . , t5 andz1 = 9, z2 = 7, z3 = 5, z4 = 3 andz5 = 1.
Ten camerasc1 to c10 are located atx = 1, . . . , 10. Op-
timum packing is five targets with(t1, 1, 10), (t2, 2, 9),
(t3, 3, 8), (t4, 4, 7) and(t5, 5, 6), represented by the nodes
on the left in figure 7. Suppose our solution is(t4, 3, 6),
(t5, 8, 9) and(t3, 5, 10). Note that it is not possible to re-
move a triple from this solution and insert two, therefore
it is 2-locally optimal. But this implies a53 approxima-
tion, which shows that the analysis is tight. It is possible
to generalize this example to5k targets, just by replicating
k instances of the same example and putting them on the
top of each other. Thus, the53 lower bound is tight even
for equispaced cameras on a line.

We further investigate the utility of the greedy and 2-
local algorithms in Section 4.

(t5,5,6)

(t4,4,7)

(t3,3,8)

(t2,2,9)

(t1,1,10)

(t4,3,6)

(t5,8,9)

(t3,5,10)

Figure 7: The conflict graph for the optimal solution and a 2-local
solution: The nodes on the left (resp. right) represent the optimal
(resp. 2 local) solution. There is an edge between two nodes if
the assignments conflict. In this case, a 2-local solution gives a
5
3

approximation, showing that the analysis is indeed tight.

4 Simulation Results

We implemented simulations for several of our results
in both target tracking and cooperative localization tasks.
We contrasted the performance of these empirically with
greedy approaches. Each sensor was constrained to track-
ing a single target at any given time. For the line and cir-
cle cases, no limitations were assumed regarding sensor
range.
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Figure 8: Left: A tracking scenario with targets performing a random walk.Middle, Right: Histograms of the mean-squared error
(MSE) for 2-approximation and greedy algorithm with no re-assignment.

4.1 Cameras on the line

In this simulation, we modeled the target tracking task
as outlined in Section 3.2. Specifically, we considered 10
cameras charged with tracking 5 targets performing a ran-
dom walk as shown in Figure 8. The sensors measured
bearings to targets. Measurements from pairs of sensors
were then merged (via triangulation) to obtain an estimate
of the position of the target. We modeled this scenario for
two different algorithms.

Algorithm 1 initially assigned each target to the best
available pair and kept this assignment fixed through-
out the simulation. Algorithm 2 employed the 2-
approximation algorithm presented in Section 3.2. In this
approach, sensor pairs communicated target position esti-
mates (requiringO(n) communications), and sensor pair-
target assigments were dynamically updated as necessary.

We simulated the performance of these two algorithms
for 1000 iterations. The error in bearing was simulated
by drawing samples from zero mean Gaussian withσ =
1◦. The middle figure in Figure 8 is the histogram of the
average error for the dynamic update method. The mean
squared error is 3.62 and the standard deviation of the error
is 3.22. In this simulation, the 2-approximation algorithm
performs better than the no-optimization version (given in
Figure 8 right), whose mean error is 12.22 and the standard
deviation of the error is 17.98.

4.2 Sensors on the circle

Target tracking need not be adversarial. We demonstrate
this in a cooperative localization task. In this simulation,
n robots are operating within a sensor network defined by
2n range sensors on a circle. The robots rely on pairs of
sensor measurements to fuse with odometry information.
Both the sensor and odometry measurements are corrupted
with random Gaussian noise. Additionally, the odometry
measurements have an unmodeled bias (to reflect wheel
imperfections, for example). Each robot employs a parti-
cle filter to fuse the imperfect odometry and sensor mea-
surements to estimate its position.

Again, we modeled two algorithms for this scenario.
Both initiated with a globally optimal assignment of sen-
sor pairs to targets. In Algorithm 1, this assignment was
maintained throughout the simulation. Algorithm 2 fol-
lowed the 1.42-approximation as outlined in Section 3.3.
In this case, reassignment of sensor pairs to targets was
constrained to within the initial 4 sensor/2 target assign-
ment. Localization then proceeded with each robot trans-
mitting a position estimate to its assigned sensor pair. The
sensor pair in turn transmitted range measurements to the
target. These measurements, and the knowledge of sensor
positions, allowed each robot to condition its particle filter
set for improved position estimation. The procedure then
iterated.

Localization performance for both algorithms is re-
flected in Figure 9. In this example, 8 robots were tracked
by 16 sensors. The robots localized while following
pseudo-random trajectories through the network. As ex-
pected, results indicate that although both approaches rely
on identical filtering techniques, significant improvements
in localization performance can be achieved by intelli-
gently assigning targets to sensors prior to the data fusion
phase.

4.3 Arbitrary Sensor Placement

In this last simulation, we examined the arbitrary sen-
sor placement problem as outlined in Section 3.4. For this
example, 20 cameras were distributed roughly uniformly
on the plane and charged with tracking 10 targets. Here,
the objective was to maximize the number of valid tracks,
in contrast to the error minimization objective of previ-
ous simulations. Targets followed random trajectories, and
were tracked in simulation using particle filters. The re-
spective particle sets were employed to generate a numer-
ical error metric for the targets as discussed in [13].

Two algorthms were investigated for this maximization
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Figure 9: Left: Simulator snapshot showing robot positions overlaid with corresponding particle set estimates.Center, Right: MSE
histograms for the 1.42-approximation and static assignment trials. The former reduces MSE in position by 50%.

approach. The first employed a greedy assignment strat-
egy, and the second a 2-locally optimal approach as dis-
cussed in Section 3.4. The latter took the greedy solu-
tion as input, and as a consequence could only improve
on its performance. Reassignment was made for both al-
gorithms at each timestep. Several trials were conducted
corresponding to sparse and dense solution sets. Data from
a representative trial can be found at figure 10.

In each trial, the 2-local solution improved over greedy
by 5-15%. As expected, the larger improvements corre-
sponded to dense solution sets - i.e. when there were more
opportunities for finding local improvements. These re-
sults are by no means encompassing, and provide only in-
sights into expected performance which is a function of
too many variables to address here. However, they imply
that unless the guarantee of improved performance is crit-
ical, the significantly greater computational complexity of
2-local may not be warranted by the expected performance
improvement over greedy for real-time applications.

5 Conclusions and Discussion

In this paper, we have introduced the focus of attention
problem for distributed sensors. We observed that for a
general cost metric, the problem is NP-hard and not well
approximable. However, for constrained geometric cases
we were able to exploit relations between the sensor ge-
ometry and corresponding error metrics. From this, we ob-
tained: a 2-approximation for stereo cameras constrained
to the same baseline, a PTAS solution for the same ge-
ometry when the cameras are spaced equidistantly, and a
1.42-approximation for4n-range sensors equi-spaced on
the circle. For arbitrary sensor placement, we reposed the
problem in a maximization vein. Using results from max-
imum set-packing, we obtained a53 -approximate solution.
This was implemented in simulation, and its performance
contrasted against a greedy approach.

The 2-approximation for stereo cameras and the 1.42-
approximation for range sensors have several desirable

attributes. Their matchings have twofold approxima-
tion guarantees; the sums of errors are bounded, as are
the individual target errors. Additionally, they are read-
ily implemented, and are inexpensive both computation-
ally (O(n log n) and O(n), respectively) and in terms
of network communications (O(n)). In simulation, both
showed significant improvements in performance over
greedy/static assignment strategies. The constraints to ge-
ometry are restrictive but still useful, and we are currently
working to extend these to additional configurations.

Empirical results for arbitrary sensor placement simu-
lations indicate on average a 5-15% improvement for the
5
3 -approximate solution over a greedy approach. However,
the former is more expensive computationally. As a con-
squence, a greedy strategy may be preferred for real-time
applications.
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