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Abstract

To increase the reliability of existing human motion tracking algorithms, we propose
a method for imposing limits on the underlying hierarchical joint structures in a way that
is true to life. Unlike most existing approaches, we explicitly represent dependencies
between the various degrees of freedom and derive these limits from actual experimental
data.

To this end, we use quaternions to represent individual 3 DOF joint rotations and Eu-
ler angles for 2 DOF rotations, which we have experimentally sampled using an optical
motion capture system. Each set of valid positions is bounded by an implicit surface and
we handle hierarchical dependencies by representing the space of valid configurations for
a child joint as a function of the position of its parent joint.

This representation provides us with a metric in the space of rotations that readily
lets us determine whether a posture is valid or not. As a result, it becomes easy to in-
corporate these sophisticated constraints into a motion tracking algorithm, using standard
constrained optimization techniques. We demonstrate this by showing that doing so dra-
matically improves performance of an existing system when attempting to track complex
and ambiguous upper body motions from low quality stereo data.

∗This work was supported in part by the Swiss National Science Foundation and in part by the EU CogViSys
project.
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1 Introduction

Even though many approaches to tracking and modeling people from video sequences have
been and continue to be proposed [10, 22, 21], the problem remains far from solved. This
in part because image data is typically noisy and in part because it is inherently ambiguous
[25]. As shown in Fig. 1, several postures, some of which are anatomically impossible, can
explain the data equally well. Introducing valid joint limits is therefore one important practical
step towards restricting motion tracking algorithms to humanly feasible configurations, thereby
reducing the search space they must explore and increasing their reliability by eliminating a
many local minima.

(a) (b) (c)
Figure 1: Motion capture from noisy stereo data. (a) One image from a stereo pair. (b,c) Two possible
postures that account for the stereo data, which is depicted by the reprojections of triangulated 3–D
points. These reprojected points appear in gray, or red if printed in color. Note the completely different
shoulder and elbow twists that result in different hand orientations.

This is currently done in many existing vision systems [5, 6, 25, 28] but the limits are usu-
ally represented in an oversimplified manner that does not closely correspond to reality. The
most popular approach is to express them in terms of hard limits on the individual Euler angles
used to parameterize joint rotations. This accounts neither for the dependencies between an-
gular and axial rotations in ball-and-socket joints such as the shoulder joint nor those between
separate joints such as the shoulder and elbow. In other words, how much one can twist one’s
arm depends on its position with respect to the shoulder. Similarly, one cannot bend one’s
knee by the same amount for any configuration of the hip. An additional difficulty stems from
the fact that experimental data on these joint limits is surprisingly sparse: medical text books
typically give acceptable ranges in a couple of planes but never for the whole configuration
space [8], which is what is really needed by an optimization algorithm searching that space.

In earlier work, we proposed a quaternion-based model approach to representing the de-
pendencies between the three degrees of freedom of a ball-and-socket joint such as the shoul-
der [15]. It relies on measuring the joint motion range using optical motion capture, converting
the recorded values to joint rotations encoded by a coherent quaternion field, and, finally, rep-
resenting the subspace of valid orientations as an implicit surface. Here, we extend it so that
it can also handle coupled joints, which we treat as parent and child joints. We represent the
space of valid configurations for the child joint as a function of the position of the parent joint.
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(a) (b) (c) (d)
Figure 2: Coupling of arm position and elbow joint limits. (a,b) When the arm is in front of the body,
the elbow can flex and twist freely. (c,d) By contrast, when the arm is behind ones back, the range of
possible elbow motions is much more limited.

We chose the case of shoulder and elbow joints to validate our approach because the shoul-
der is widely regarded as the most complex joint in the body and because position of the arm
constrains the elbow’s range of motion. The interested reader can easily check by this adopting
the positions depicted by Fig. 2 and trying to flex and twist the elbow. The range of possible
motions in much more limited when the arm is behind ones back than in front of ones chest.

To model this, we developed a motion capture protocol that relies on optical motion capture
data to measure the range of possible motions of various subjects and build our implicit surface
representation. We then demonstrate the applicability of the proposed representation both in
the context of Computer Animation and Computer Vision: For animation purposes, we show
that it allows the automated transformation of an unrealistic animated motion into a realistic
movement that still resembles the original one. For vision purposes, we use our approach to
dramatically improve the performance of an existing system [24] when attempting to track
complex and ambiguous upper body motions from low quality stereo data.

In short, the method we propose here advances the state-of-the-art because it provides a way
to enforce joint limits on swing and twist of coupled joints while at the same time accounting
for their dependencies. Such dependencies have already been described in the biomechanical
literature [14, 17] but using the corresponding models requires estimating a large number of
parameters, which is impractical for most Computer Vision applications. Our contribution can
therefore be understood as a way of boiling down these many hard-to-estimate parameters into
our implicit surface representation, that can be both easily instantiated and used for anima-
tion of video-based motion capture. Furthermore, the framework we advocate is generic and
could be incorporated into any motion-tracking approach that relies on minimizing an objective
function.

In the remainder of the paper, we first briefly review the state of the art. We then introduce
our approach to experimentally sampling the space of valid postures that the shoulder and
elbow joints allow and to representing this space in terms of an implicit surface in Quaternion
space. Finally, we demonstrate our method’s effectiveness for tracking purposes.
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2 Related Approaches

The need to measure joint limits arises most often in the field of physiotherapy and results in
studies such as [16] for the hip or [8, 20] for the shoulder. Many of these empirical results have
subsequently been used in our community.

2.1 Biomedical Considerations

When we refer to the shoulder joint, we actually mean the gleno-humeral joint, which is the
last joint in the shoulder complex hierarchy. It is widely accepted that modeling it as a ball-
and-socket joint, which allows motion in three orthogonal planes, approximates its motion
characteristics well enough for visual tracking purposes [21]. This approximation has been
validated by a substantial body of biomechanical research that has shown that, because of
large-bone-to-skin displacements, no clavicular of scapular motions can be recovered using
external markers [7, 2].

However, the dependency between arm twist and arm orientation, or swing, is a direct
consequence of the complex joint geometry of the shoulder complex [19]. Coupling between
elbow and shoulder is not only due to anatomical reasons, but also to the physical presence of
the rest of the body, namely the thorax and the head, that limit the amount of elbow flexion for
certain shoulder rotations. As to elbow twist, the dependency is anatomical and the available
range of motion is directly linked to shoulder orientation [31]. It is those intra- and inter-
joint dependencies that make the shoulder and elbow complex ideal to validate our approach.
Furthermore, similar constraints exist for the hip and knee joints and our proposed approach
should be easy to transpose.

Of course, the interdependence of these joint limits has been known for a long time and
sophisticated models have been proposed to account for them, such as those reported in [14,
17]. However, the former involves estimating over fifty elastic and viscous parameters, which
may be required for precise biomedical modeling but is impractical for Computer Vision appli-
cations, and the latter focuses in motions in the sagittal plane as opposed to fully 3–D dimen-
sional movements.

It is worth noting that inter-subject variance has been shown to be extremely small at the
shoulder joint level [31]. The online documentation for the Humanoid Animation Working
Group confirms that the difference in range of motion of women over men is minimal at the
shoulder joint level, and small for the elbow joint. The experimental data we present in Sec-
tion 3 confirms this. Thus, it is acceptable to generalize results obtained on the basis of mea-
surements carried out on a very small number of subjects, as we have done in our case, where
data collection was carried out on three subjects, two females and one male.
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2.2 Angular Constraints and Body Tracking

The simplest approach to modeling articulated skeletons is to introduce joint hierarchies formed
by independent 1-Degree-Of-Freedom (DOF) joints, often described in terms of Euler angles
with joint limits formulated as minimal and maximal values. This formalism has been widely
used [5, 6, 22, 25, 28], even though it does not account for the coupling of the intra- or inter-
joint limits and, as a result, does not properly account for the 3-D accessibility space of real
joints.

Furthermore, Euler angles suffer from an additional weakness known as “Gimbal lock”.
This refers to the loss of one rotational degree of freedom that occurs when a series of rotations
at 90 degrees is performed, resulting in the alignment of the axes [4, 32]. The swing-twist
representation, exponential map, and three-sphere embedding are all adequate to represent
rotations and do not exhibit such flaws [11]. However, only quaternions are free of singularities
[27]. As there is a good approximation of the natural distance between rotations in quaternion
space, it is also the most obvious space for enforcing joint-angle constraints by orthogonal
projection onto the subspace of valid orientations. These properties have, of course, been
recognized and exploited in our field for many years [23, 9].

The joint limits representation we propose can therefore be understood as a way of encoding
the workspace of the human upper arm positions using a formalism that could be applied to
any individual joint, or set of coupled joints, in the human body model.

3 Measuring and Representing Shoulder and Elbow Motion

For the shoulder and elbow coupled joint set, we will be using respectively quaternions and
Euler angles to express their rotations. For the case of the shoulder joint, of all 3 DOF rotation
representations, we opt for quaternions whose natural distance metric between rotations is well
approximated by the Euclidean distance [18], thus supplying the most natural space in which
to enforce 3 DOF joint-angle constraints by orthogonal projection onto the subspace of valid
orientations [27]. Furthermore, quaternions are not subject to singularities such as the “Gimbal
lock” of Euler angles or the mapping of 2nπ rotations to zero rotations of axis-angles. For the
elbow joint, we have chosen to represent its 2 DOF rotation with two successive Euler angles,
as this is the most compact representation for such a rotation in terms of number of parameters,
has no singularities in this configuration, and the rotation decomposition is unique, contrary to
the 3 DOF case. As a result, it becomes easy to incorporate these sophisticated constraints into
a motion tracking algorithm using standard constrained optimization techniques [1].

We will consider the set of possible joint orientations and positions in space as a path of
referential frames in 3-D space [3]. In practice, we represent rotations by the sub-space of unit
quaternions S3 forming a unit sphere in 4-dimensional space. Any rotation can be associated
to a unit quaternion but we need to keep in mind that the unitary condition needs to be ensured
at all times. A rotation of θ radians around the unit axis v is described by the quaternion:

q = [qx, qy, qz, qw]T = [sin(
1

2
θ)v, cos(

1

2
θ)]T
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Since we are dealing with unit quaternions, the fourth quaternion component qw is a dependent
variable and can be deduced, up to a sign, from the first three. Given data collected using optical
markers, we obtain a cloud of 3-D points by keeping the spatial or (qx, qy, qz) coordinates of
the quaternion. In other words, these three numbers serve as the coordinates of quaternions
expressed as projections on three conventional Cartesian axes.

(a) (b) (c) (d)
Figure 3: Marker positions and associated referentials. (a) Motion capture actor with markers. (b)
Shoulder and elbow coordinate frame. (c) Quaternion shoulder data. (d) Euler angle elbow data.

Because we simultaneously measure swing and twist components, and because the quater-
nion formalism lets us express both within one rotation, this representation can capture the
dependencies between swing and twist that will appear in our motion capture data.

3.1 Motion Measurement

We captured shoulder and elbow motion using the ViconTM System, with a set of strategically-
placed markers on the upper arm as shown in Figure 3(a). An additional marker is placed at
neck level to serve as a fixed reference.

If we wish our joint limits to be as precise as possible, and to reflect the range of motion as
closely as possible, we need to pay attention to sampling the space of attainable postures not
only as homogeneously, but also as densely as possible.

To acquire the data used in this paper, the motion capture actor was requested to place
the upper arm at all possible elevations, and then to apply an incremental twist at the shoulder
level. At each such position, the actor should then completely flex and extend the lower arm, as
well as twist the forearm as far as possible in both directions. Once the entire reachable space
has been so sampled, the Vicon system outputs the 3–D global positions of all the markers and
labels them.

3.2 Motion representation

For each recorded position, we construct a rotating co-ordinate frame for the shoulder joint. As
shown in Fig. 3(b), the first axis of the frame corresponds to the line defined by the shoulder
and upper arm markers. The second axis is the normal to the triangle whose vertices are the
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upper arm, elbow and forearm markers. The corresponding plane represents axial rotation and
the third axis is taken to orthogonal to the other two. The orientation of each frame is then
converted into a quaternion.

This conversion is achieved by first converting the computed frame to a 3 × 3 matrix M ,
where, using Euler’s theorem, M may be expressed in terms of its lone real eigenvector n̂ and
the angle of rotation θ about that axis. This in turn may be expressed as a point in quaternion
space, or, equivalently, a point on a three-sphere S3 embedded in a Euclidean 4–D space. The
identification of the corresponding quaternion follows immediately from

q(θ, n̂) = (cos
θ

2
, n̂ sin

θ

2
) (1)

up to the sign ambiguity between the two equivalent quaternions q or −q, which correspond to
the same rotation [13]. To resolve this ambiguity, we will from here on always assume that a
quaternion’s scalar component is positive. Such an assumption however causes a discontinuity
in the 3–D space of so-mapped quaternions, as shown by Fig. 4. In the illustrated case, we
are carrying out a single axis rotation, the corresponding quaternions with a positive scalar
component moving from the centre of the 3–D sphere towards its surface, along the axis. When
the surface of the sphere is reached, we are at a rotation of approximately π. If we rotate further
than π, the equivalent quaternion with qw > 0 appears on the opposite pole. We therefore need
to keep in mind this phenomenon when measuring the distance between two quaternions [26],
as in reality the two rotations represented by Fig. 4 are close, but in 3–D space end up far apart.
In the case of joint rotations, however, we have positioned our local axes and defined our initial
poses in such a manner as to never reach this discontinuity, all rotations involved being within
] − π, +π[, but never including both ends of the interval. Special attention would need to be
paid in a character animation context, when re-projecting an invalid rotation to the closest valid
one, as in the case of a rotation exceeding pi or −pi, the rotation will get re-projected onto the
wrong side of the unit quaternion space. The simplest way to prevent this is to define the zero
angle init posture in the middle of the range of motion, thus ensuring that the possible angles
always remain in the ] − π, +π[ interval.

When converting our motion capture data in the manner described above, we obtain the
volumetric data depicted by Fig. 3(c). For the elbow, we transform all marker positions from the
global referential to the local shoulder joint referential. Since the elbow has only two degrees
of freedom, in Fig. 3(d), we represent the resulting data in terms of its two Euler angles. For
2 DOF rotations, two successive Euler angles are a perfectly acceptable representation [12], as
they do not present a singularity in this configuration, and the decomposition of any rotation in
two planes into a Euler angle is unique within the ] − π, +π[ interval.

4 Hierarchical Implicit Surface Representation of the Data

In order to capture the coupling between two joints in terms of range of motion, we propose
a hierarchical scheme where for each set of similar postures of the parent joint, different joint
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Figure 4: Discontinuity on the 3-sphere, for quaternions with a positive scalar component. When the
rotations is equivalent to π, the corresponding quaternion is located on the surface of the sphere. As
soon as the rotation exceeds π, the equivalent quaternion is situated at the opposite pole.

limits are derived for the child joint. More precisely, joint limits, whether for parent or child
joint, are represented by implicit surfaces. The hierarchical setup is based on a voxelisation of
the parent joint range of motion, from which the child joint data sub-sets are then derived, to
be in turn approximated by an implicit surface each.

Given the volumetric data of Fig.3(c,d), we approximate it as an implicit surface. This will
provide us with a smooth and differentiable representation of the space of allowable rotation
and its associated metric, which we will use in Section 5 to enforce the corresponding con-
straints in a very simple manner. This is important because, having been produced by people
instead of robots, this data is very noisy. In particular, the regions of lower point density often
correspond to motion boundaries and therefore to uncomfortable positions.

Implicit surfaces for shape reconstruction are extremely popular, and work well, under the
condition that surface data is available, is sufficiently dense, and not too noisy. In our case,
extraction of surface points through various methods proved unreliable, due to data undersam-
pling for the postures that the motion capture actor deemed uncomfortable. Furthermore, our
volumetric data is not smooth on the outside of the data cloud, and this added to the difficulty
of attempting to derive surface points. For these reasons, we will approach the problem directly
from its volumetric aspect.

4.1 Fitting an Implicit Surface

In order to get an approximate of the shape of the volumetric data, we voxelize our space and
compute the point density of each voxel. This density corresponds to the number of points
within each voxel, normalized with respect to voxel volume. We then recursively sub-divide
the voxels until each voxel has a point density higher than a given threshold, which can be,
for example, the density of the data around the center of mass. All voxels not satisfying this
condition are discarded. Carrying out this voxelization for our shoulder and elbow data yields
the results shown in Fig. 5(a,d), where the resulting voxel arrays already represent the shape.
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To obtain the implicit surface enclosing this shape, we propose to place an implicit surface
primitive within each of the voxels. For this, we first define the primitives and implicit surface
we use.

(a) (b) (c)

(d) (e) (f)
Figure 5: Joint limits for the shoulder and elbow joints. (a) voxelization of the shoulder joint quater-
nions. (b) extracted implicit surface. (c) wire-frame shoulder implicit surface and data. (d) voxelization
of the elbow joint Euler angles. (e) extracted flat implicit surface. (f) wire-frame elbow implicit surface
and data.

As in [29], given a set of spherical primitives of center Si and thickness ei, the implicit
surface is defined as

S = {P ∈ <3|F (P ) = iso} (2)

where

F (P ) =
n

∑

i=1

fi(P ) ,

fi(P ) =

{

−kd + kei + 1 if d ∈ [0, ei]
1

4
[k(d − ei) − 2]2 elsewhere

where d = d(P, Si) is the Euclidean distance, iso controls the distance of the surface to the
primitives’ surface, which is set by the thickness ei, and k defines its blending properties. We
additionally define a cut-off value at Ri = ei + 2

k
, in order to ensure that the influence of each
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primitive is local, with respect to the total surface. All points beyond the radius of influence
are discarded, and a spherical primitive so defined has a continuously decreasing function, as
plotted in Fig. 6(a), for iso = 1.0, k = 5.0 and e = 1.0.

(a) (b)
Figure 6: (a) Local influence of a spherical primitive. (b) Filling a voxelization with spherical primi-
tives.

We place such a primitive in each voxel of our data voxelization, adjusting the primitive’s
parameters to that its radius of influence is half the width of the voxel, as in Fig. 6(b). This
yields the implicit surfaces depicted by Fig. 5(b,e), where iso = 7.0 and stiffness k = 20.0,
these values having been determined experimentally. To see how closely our envelope fits our
data, we display the implicit surface in wire-frame, in Fig. 5(c,f). The properties of implicit
surfaces and their field functions being the same in 2 and 3–D, we apply the same fitting
procedure to the 2–D data for the elbow joint as for the 3–D data of the shoulder joint.

(a) (b)
Figure 7: Comparing subjects against each other. In black, the data for the female reference subject we
used to compute the field function F of Eq. 2. In gray, the data corresponding to a second female subject
(a) and to a male subject (b). We computed the average distance in terms of closest points between each
cloud set, as well as the standard deviation. For (a), this yields an average distance of 0.0403 and a
standard deviation of 0.0500. For (b), we obtain an average distance of 0.0314 and a standard deviation
of 0.0432.

To illustrate the relative insensitivity of these measurements across subjects, we have gath-
ered motion data for two additional people, one of each sex. In Fig. 7, we overlay the sets of
quaternions for each additional person on those corresponding to the reference subject. Visual
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inspection in 3–D shows that they superpose well. This is confirmed by computing the average
closest-point distance between the points of the three data-sets, as well as the corresponding
standard deviation. The computed values highlight the similarity between the measures for the
three subjects over the entire range of motion.

4.2 Representing Dependencies

The method described above treats the data for the shoulder and the elbow independently,
which does not account for known anatomical dependencies. Having measured simultaneously
the shoulder and elbow rotations, we could represent the coupled postures as 5–D vectors
by concatenating all the degrees of freedom. However, instantiating such a representation
would require a dense sampling of the 5–D space, which would be hard to collect in practice
and cannot be expected to ever generalize to more complete joint hierarchies. To avoid this
difficulty and work with the sparser data sets that can realistically be obtained, we introduce
a hierarchical representation that allows us to group the data relative to the child joint for a
particular position of the parent joint.

Our method is based on the observation that for each set of rotations of the shoulder joint,
there is a defined set of acceptable rotations for the elbow joint. We take advantage of the
voxel structure to obtain these data sets. Each voxel of the parent shoulder joint defines a
local cluster of similar joint positions, which we will refer to as keyframe voxels. As to each
measured shoulder joint rotation is associated an elbow joint position, we immediately obtain
the sub-set of elbow rotations corresponding to this keyframe voxel. As shown in Fig. 8(a), for
each keyframe voxel, we compute the implicit keyframe surface corresponding to the subset of
child joint rotations that have been observed for those positions of the parent joint.

As shown in Fig. 8(b), to refine this representation and ensure a smoother transition between
elbow joint limits from one keyframe voxel to the next, we can compute intermediate keyframe
surfaces by morphing between neighboring ones.

We have chosen to implement an interpolation scheme that morphs between unions of
spheres, and we will designate by A the source object and by B the target object. We use the
distance function between a primitive a of shape A and a primitive b of shape B defined by [30]
as follows:

d(a, b) = [(xa − xb)
2 + (ya − yb)

2 + (za − zb)
2] + (ea − eb) (3)

where (xa, ya, za) is the centre and ea the thickness of primitive a and (xb, yb, zb) and eb the
corresponding parameters of primitive b.

Starting from the shape with lowest primitive cardinality, we perform an injective matching
of its primitives with those of the other shape, such a matching being carried out between prim-
itives that are closest in terms of the distance notion of eq.(3). After this matching, the shape
that has the larger number of primitives is now left with some unmatched ones. These we sim-
ply match to the closest primitive of the other shape, therefore yielding a one-to-many match
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between the shapes. Once this matching has been established, we just need to interpolate be-
tween the centres and radii of the matched primitives, over the chosen number of interpolation
steps.

In Fig. 9, we show the effect of imposing hierarchical shoulder and elbow joint limits to a
tennis serve motion that was hand-generated without taking limits into account, which resulted
in many invalid rotations. For each frame, we enforce the limits by orthogonal projection onto
the implicit surface that represents them, which results in a motion of the same nature as the
original one but that is now plausible. Fig. 10 depicts a similar behavior for a random motion.
Note that, as a beneficial side effect, enforcing joint limits also prevents penetration between
body parts without having to explicitly detect collisions.

(a) (b)
Figure 8: Hierarchical joint limits. (a) Two keyframe voxels and the corresponding keyframe surfaces.
(b) Example of an intermediate keyframe surface obtained midway through morphing one keyframe
surface into the other.

5 Enforcing Constraints during Tracking

To validate our approach to enforcing joint limits, we show that it dramatically increases the
performance of an earlier system [24] that fits body models to stereo-data acquired using syn-
chronized video cameras. It relies on attaching implicit surfaces, also known as soft objects,
to an articulated skeleton to represent body shape. The field function of the primitives how-
ever differs from the one used for defining our joint limits in the sense that its density field
is exponential, which increase the robustness of the system in the presence of erroneous data
points. The skin is taken to be a level set of the sum of these fields. Defining the body model
surface in this manner yields an algebraic distance function from 3–D points to the model that
is differentiable. We can therefore formulate the problem of fitting our model to the stereo data
in each frame as one of minimizing the sum of the squares of the distances of the model to the
cloud of points produced by the stereo.

The stereo data depicted by Fig. 11 was acquired using a Digiclopstm operating at a 640 ×
480 resolution and a 14Hz framerate. It is very noisy, lacks depth, and gives no information on
the side or the back of the subject. As a result, in the absence of constraints, there are many sets
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Figure 9: Applying hierarchical joint limits to a keyframed tennis serve sequence. In the top row,
we show the frames of the sequence with invalid rotations both at the shoulder and elbow level. In the
bottom row, the invalid rotations are corrected by enforcing the coupled implicit surface joint limits. The
corresponding mpeg movies can be downloaded from http://cvlab.epfl.ch/research/body/limits/fig/cviu .

Figure 10: Applying hierarchical joint limits to an arbitrary motion. Note that we model not only joint
limits but also self penetration between body parts. The corresponding mpeg movies are also available
at http://cvlab.epfl.ch/research/body/limits/fig/cviu .

of motion parameters that fit the data almost as well, most of which correspond to anatomically
impossible postures.

In this section, we will show that enforcing the constraints using the formalism allows to
eliminate these impossible postures very effectively and results in much more robust tracking.

13



Figure 11: Stereo data for a subject standing in the capture volume, rotated from a left-side view to a
right-side view.

5.1 Unconstrained Least Squares

To derive the posture of the body model from the stereo data, we apply the Levenberg-Marquardt
least-squares optimiser. As discussed earlier, the body model is represented by an articulated
structure to which volumetric primitives are attached. Let Θ = (Θ1, ..., Θm) correspond to the
vector of joint angle values defining the current posture of the model. Given n 3–D data points
1 ≤ xi ≤ n, let D(xi, Θ) be the distance to be minimized, from the data points to the skin
surface defined by the sum of the field functions of the primitive(s) minus the iso-value of the
surface.

In the absence of constraints, fitting the model to n data points xi simply amounts to mini-
mizing:

n
∑

i=1

D(xi, Θ)2 (4)

with respect to Θ. The expression of the derivative of D(xi, Θ) with respect to a parameter Θj

is given by [24]:

∂D(xi, Θ)

∂Θj

= 2.xT
i .QT

Θ.

[

∂QΘ

∂Θj

]

.xi

where QΘ defines the position, orientation and size of the primitive(s) the current observation
is attached to, for state vector Θ.

Given the Jacobian matrix

JD = (
∂D(xi, Θ)

∂Θj

)1≤i≤n,1≤j≤m

and its pseudo-inverse J+
D , this involves iteratively adding to Θ increments proportional to

∆Θ0 = J+
D [D(x1, Θ), ..., D(xn, Θ)]t

to find the value of Θ that minimizes D(xi, Θ).

14



(a) (b)
Figure 12: Objective function associated to a joint-limit constraint. (a) Value of the objective function
value along a line drawn through the middle of an implicit surface with 16 primitives. (b) Gradient along
the same line.

5.2 Constrained Least Squares

Enforcing hierarchical constraints can be effectively achieved using well known task-priority
strategies. Here we use a damped least-squares method that can handle potentially conflicting
constraints [1]: When a high-priority constraint is violated, the algorithm projects the invalid
posture onto the closest valid one, which requires computing the pseudo-inverse of its Jacobian
matrix with respect to state variables, which in our case are the rotation values of the model’s
joints. When a lower-priority constraint is violated, the algorithm reprojects the Jacobians into
the null-space of the higher level constraints so that enforcing the lower-order constraint does
not perturb the higher level one.

Let us assume we are given a vector of constraints C with Jacobian matrix JC . The problem
becomes minimizing D subject to C(Θ) = 0.0. This can be done very much in the same way
as before, except that the increments are now proportional to

∆Θ1 = J+
C C(Θ) + (I − J+

C JC)∆Θ0 ,

where (I −J+
C JC) is the projector into the null space of C. This extends naturally to additional

constraints with higher levels of priority, but additional care must be taken when constructing
the projectors [1].

In short, all that is needed to enforce the constraints, is the ability to compute their Jacobian
with respect to state variables. The implicit surface formulation of Section 4 lets us do this very
simply:

1. For the parent joint, determine whether its rotation is valid by evaluating the function F

of Eq. 2 and its derivatives with respect to joint angles if not. In other words, the higher
priority constraint can be expressed as max(0, iso − F (Θ)) or, equivalently, treated as
an inequality constraint.
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2. For the child joint, determine to which voxel its parent rotation belongs, load the corre-
sponding child joint limits, and verify its validity and evaluate the derivatives using the
corresponding implicit surface representation. This allows us to express a lower priority
constraint using the corresponding field function.

In practice, for each constraint, the algorithm minimizes

c(Θ) =











(F (θ) − iso)2 if F (θ) < iso

0 elsewhere
,

whose behavior is depicted by Fig. 12. This is natural given that the points for which F (Θ) =
iso correspond to the largest allowable rotations. c(Θ) is smooth and convex, thereby guaran-
teeing that joint limit constraints will be satisfied at every iteration. It is also albegraic and its
derivatives can be computed by differentiating the fi polynomials of Eq. 2.

This results in an algorithm that fits the model to data, while enforcing the joint angles
constraints at a minimal additional computational cost.

5.3 Tracking Results

We applied unconstrained and constrained tracking to several 100-frame long sequences, which
corresponds to a little over 7 seconds at 14 Hz. The optimization of the least-squares criterion
of Eq. 4 is then minimized off-line, which takes several seconds per frame.

In each sequence, the subject moves and rotates her right arm and elbow. In Figs 13, 14,
and 15, we reproject the recovered 3–D skeleton onto one of the images. We also depict the
skeleton as seen from a slightly different view to show whether or not the recovered position is
feasible or not.

The unconstrained tracker performs adequately in many cases, but here we focus on the
places where it failed, typically by producing the solution that matches the data but is not
humanly possible. Among other things, this can be caused by the sparsity of the data or by
the fact that multiple state vectors can yield identical error values, each state vector equally
explaining the data, and each such state representing a local minima of the error function. We
show that enforcing hierarchical joint limits on the shoulder and elbow joints during tracking
allows our system to overcome these problems.

The interested reader can download mpeg movies for Figs 13, Figs. 14 and 15 from our
website at http://cvlab.epfl.ch/research/body/limits/fig/cviu . They include the complete se-
quences along with depictions of the fit of the model to the 3–D data that are easier to interpret
than the, of necessity, still pictures that appear in the printed version of the paper.
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6 Conclusion

We have proposed an implicit surface based approach to representing joint limits that account
for both intra- and inter-joint dependencies. We have developed a protocol for instantiating this
representation from motion capture data and shown that it can be effectively used to improve
the performance of a body-tracking algorithm.

This effectiveness largely stems from the fact that our implicit surface representation allows
us to quickly evaluate whether or not a constraint is violated and, if required, to enforce it using
standard constrained optimization algorithms. We have demonstrated this in the specific case
of the shoulder and elbow but the approach is generic and could be transposed to other joints,
such as the hip and knee or the many coupled articulations in the hands and fingers.

The quality of the data we use to create our representation is key to its accuracy. The cur-
rent acquisition process relies on optical motion capture. It is reasonably simple and fast, but
could be improved further: Currently, when sampling the range of motion of a joint, we have
no immediate feed-back on whether we have effectively sampled the entire attainable space. To
remedy this problem, we will consider designing an application that provides immediate visual
feed-back directly during motion acquisition. This should prove very useful when extending
the proposed technique to larger hierarchies of joints than the parent-and-child one considered
in this paper. Another promising direction for future work is to replace the valid/invalid di-
chotomy we have used is this work by a more probabilistic approach. It is well known that
some postures are more comfortable than others, and human being, unlike robots, will tend to
avoid the unpleasant ones unless they have no choice. These uncomfortable positions usually
are the ones close the limits and our implicit surface formalism is potentially well adapted to
describe a smooth transition from “possible without any trouble” to “absolutely impossible
without serious injury.”
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(42) (43) (44) (45) (56)
Figure 13: Top rows: Unconstrained tracking. Bottom rows: Tracking with joint limits enforced. Up
until the first frame shown here, the arm is tracked correctly in both cases. However, at frame 42, the
subject straightens her arm. In the unconstrained case, this is accounted for by backward bending of
the elbow joint, which results in the correct reprojection but the absolutely impossible position of frame
56. By contrast, with the constraints enforced, the reprojection is just as good but the position is now
natural with an arm that has become relatively straight.
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(48) (49) (50) (51)
Figure 14: Top rows: Unconstrained tracking. Bottom rows: Tracking with joint limits enforced.
Tracking without constraints results in excessive shoulder axial rotation at frame 50, followed by wildly
invalid elbow extension on top of the incorrect shoulder twisting at frame 51. In this frame, there
happens to be very little data for the forearm, which ends up being erroneously “attracted” by the data
corresponding to the upper arm. As can be seen in the bottom rows, when the constraints are enforced,
the erroneous attraction remains but, since it would lead to an illegal position, it is ignored by the
optimizer.
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(1) (23) (25) (31) (34)
Figure 15: Top rows: Unconstrained tracking. Bottom rows: Tracking with joint limits enforced. In
the absence of constraints, the shoulder axial rotation is wrong from frame 1 onwards. In frames 23 to
25, this results in the arm being erroneously “attracted” by the 3–D data corresponding to the hip. The
tracker then recovers in frame 31, only to yield an invalid elbow flexion in frame 34. As before, the
constraints keep the erroneous attractors from having a damaging impact.
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