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Abstract

Statistical region-based registration methods such as the Active Appearance Model
(AAM) are used for establishing dense correspondences in images. At low resolution,
images correspondences can be recovered reliably in real-time. However, as resolu-
tion increases this becomes infeasible due to excessive storage and computational
requirements. We propose to reduce the dimensionality of the textural components
by selecting a subset of basis functions from a larger dictionary, estimate regres-
sion splines and model only the coefficients of the retained basis functions. We
demonstrate the use of two types of bases, namely wavelets and wedgelets. The
former extends the previous work of Wolstenholme and Taylor where Haar wavelet
coefficient subsets were applied. The latter introduces the wedgelet regression tree
based on triangulated domains. The wavelet and wedgelet regression splines are
functional descriptions of the intensity information and serve to 1) reduce noise and
2) produce a compact textural description. Dimensionality reduction by subsam-
pling in the CDF 9-7 wavelet and wedgelet representations yield better results than
’standard’ subsampling in the pixel domain. We show that the bi-orthogonal CDF
9-7 wavelet yields better results than the Haar wavelet. Further, we show that the
inherent frequency separation in wavelets allows for cost-free band-pass filtering,
e.g. edge-emphasis, and that this edge enhancement provide better results in terms
of segmentation accuracy. Wedgelet representation are superior to wavelet repre-
sentations at high dimensionality-reduction rates. At low reduction rates an edge
enhanced wavelet representation provides better segmentation accuracy than the
full standard AAM model.

Key words: registration, dimensionality reduction, atlases, deformable models,
active appearance models, wavelets, wedgelets, face images
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1 Introduction

Since its introduction the Active Appearance Model (AAM) framework [6,
8] has been applied successfully to registration of many types of deformable
objects in images (e.g. faces, cardiac ventricles, brain structures [8,15,16,19]).
It is based on the estimation of linear models of shape and texture variation
by the use of principal components analysis of landmark coordinates and pixel
intensities and subsequent inference of model parameters from unseen images
by a tangent plane approximation of a shape compensated image manifold.

Modelling every pixel intensity is manageable for low-resolution 2D images.
But moving to high-resolution 2D images, 3D and even 3D time-series, this
approach is rendered at best very slow and at worst infeasible due to excessive
storage and computational requirements.

In order to overcome this problem various alternatives to modelling the raw
pixel intensities have been considered. Cootes et al. [7] used a subsampling
scheme to reduce the texture model by a ratio of 1:4. The scheme selected
a subset of the pixel intensities based on the ability of each pixel to predict
corrections of the model parameters. When exploring different multi-band ap-
pearance representations Stegmann and Larsen [20] studied the registration
accuracy of facial AAMs at different scales in the range 103 − 105 pixels ob-
tained by pixel averaging.

In this paper we will take the path of using linear functional descriptions of
the underlying intensity patterns and carrying out truncated principal compo-
nent decomposition of the parameter set of the functionals in order to extract
a texture model. These parameter sets will typically be of much lower dimen-
sionality than the number of pixels in the images. In particular, we will use
linear functionals based on wavelet and wedgelet basis representation of the
texture. Wavelets as well as wedgelets are able to represent piecewise con-
tinuous functions. This is an important property when modelling real world
images. Wolstenholme and Taylor [21] incorporated a truncated Haar wavelet
representation into the AAM framework and evaluated it on a brain MRI data
set at a reduction of the number of coefficients of 1:20.

Donoho [10] suggested the wedgelet representation for image texture as a
means of edge detection and image compression. An image is represented by
a collection of dyadically organized indicator functions with a variety of lo-
cations, scales and orientations. The wedgelet tree is a quadtree [11] with
terminal nodes being either a dyadic element (degenerate wedgelet) or an
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affinely split dyadic element (non-degenerate wedgelet). The classification and
regression tree (CART) algorithm [4] uses sequential binary splitting of the
spatial domain parallel to the coordinate axes, with splits allowed at every
data point. In contrast to this, the wedgelet regression trees obey special con-
straints: only dyadic partitioning (i.e. recursive midpoint splitting) is allowed,
with the additional feature that at each terminal node a set of affine splits are
also applicable. The constrained splitting leads to fast algorithms. Within each
resulting image terminal node (wedge or square) the pixel values are regressed
to their mean value.

We generalize the wedgelet transform to triangulated domains (cf. triangu-
lated quadtrees [3]). This has the major advantage of rendering the wedgelet
representation independent of piece-wise affine warps of the triangulated do-
main. Such piece-wise affine warps are customarily chosen in AAM for their
speed [19] and the triangulated wedgelet representation thus embraces this
choice. The wedgelet transform results in a truncated change of basis for the
texture and is represented by a regression tree. The regression tree is esti-
mated using the minimization of the cross validation prediction error across
the training set.

The registration accuracy in wavelet and wedgelet based AAMs is evaluated
for a case of human face registration using cross validation.

2 Active Appearance Models

AAMs establish a compact parametrization of object variability as learned
from a training set by estimating a set of latent variables. The modelled ob-
ject properties are usually shape and pixel intensities. The latter is hence
forward denoted texture. By exploiting prior knowledge of the nature of the
optimization space, these models of shape and texture can be rapidly fitted
to unseen images, thus providing image interpretation through synthesis.

Training examples are defined by marking up each example image with points
of correspondence (i.e. landmarks) over the set either by hand, or by semi-
to completely automated methods. From these landmarks a shape model [9]
is built. Further, given a suitable warp function a dense (i.e., per-pixel) cor-
respondence is established between the convex hull of the landmarks in each
training example. Thus we allow for modelling of texture variability.

Joint variability in shape and texture is modelled by a set of truncated prin-
cipal components, estimated by an eigen-analysis of the dispersions of shape
and texture across the training set. The shape examples are aligned to a com-
mon mean using a Generalized Procrustes Analysis (GPA) [2, 13] where all
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effects of translation, rotation and scaling are removed. The obtained Pro-
crustes shape coordinates are subsequently projected onto the tangent plane
of the shape manifold at the mean shape. The texture examples are warped
into correspondence using a piece-wise affine warp and subsequently sampled
from this shape-free reference. Typically, this geometrical reference shape is
the Procrustes mean shape.

Let si = vec{(xijk)}, i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , K be J land-
marks in K dimensions sampled from a training set of I images, and let
ti = vec{(yilm)}, l = 1, . . . , L, m = 1, . . . ,M be pixel intensities sampled at
L sites in M color components for the same I training images. Furthermore,
let s̄ and t̄ denote the mean shape and texture. Synthesized examples are
parameterized by θ and generated by

E{s} = s̄+ Φsθ (1)

E{t} = t̄+ Φtθ (2)

where Φs and Φt contain the first p eigenvectors of the estimated joint dis-
persion matrix of the shape and texture vectors, si and ti. Equations (1) and
(2) constitute the appearance model.

In addition to the parameters θ the four scalar parameters of a 2D Euclidean
similarity group are also needed. These four parameters accounting for scale,
orientation, and translation are denoted ψ. In order to infer the parameters θ
and ψ of a previously unseen image a Gaussian error model between model and
pixel intensities is assumed. Furthermore, a linear relation between changes
in parameters and difference between model and image pixel intensities ∆t is
assumed, i.e.

∆t = X




∆ψ

∆θ


 . (3)

X may be estimated by weighted averaging over perturbations of model pa-
rameters and training examples. For an in depth description of AAM and the
software implementation used the reader is referred to [8, 19], respectively.

The relation in Eq. (3) is inverted using the least squares solution




∆̂ψ

∆̂θ


 =

(
XTX

)−1
XT∆t = Q∆t. (4)
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(a) (b)

Fig. 1. (a) Human face annotated with 58 landmarks; (b) triangulated mean shape.

The computational problem lies in the repeated application of this relation in
the innermost loop of the fitting algorithm. Q is a non-sparse matrix of di-
mensions (p+4)× (LM). LM increases exponentially with numbers of spatial
dimension. To reduce the computational burden we propose to use a trun-
cated basis for the representation of the pixel intensities. This introduces the
added overhead of transforming between image pixel intensities and this new
representation. However, if this transform is based on a sparse matrix, as is
the case with wavelet and wedgelet transforms, the computational burden can
be considerably reduced.

3 Wavelet Enhanced Appearance Modelling

Wavelets are a family of basis functions that decompose signals into both space
and frequency. In the following we use the discrete wavelet transform [14],
which can be viewed as a set of linear, rank-preserving matrix operations.
In practice these are carried out in a convolution scheme known as the fast
wavelet transform (FWT) [1] where an image is decomposed by a high-pass
filter into sets of detail wavelet sub-bands, and by a low-pass filter into a
scaling sub-band. These bands are then down-sampled and can be further de-
composed. We use the dyadic (octave) decomposition scheme that successively
decomposes the scaling sub-band, yielding a discrete frequency decomposition.
Alternative decomposition schemes include the wavelet packet basis where suc-
cessive decompositions are carried out in the detail sub-bands as well.

Figure 2 shows a three-level octave wavelet decomposition. The first, third
and fourth quadrants are the detail sub-bands and stem from the initial de-
composition (level 1). The first, third and fourth sub-quadrants of the second
quadrant are detail sub-bands from the second decomposition (level 2). Fi-
nally, the sub-sub-quadrants of the second sub-quadrant are detail sub-bands
from the third decomposition (level 3) with the scaling sub-band at the top

5



(a)

(b)

Fig. 2. (a) Face image; (b) the wavelet coefficients of a three-level octave decompo-
sition using the Haar wavelet.

left corner.

Wavelets are invertible, which is typically achieved by orthogonality. Wavelet
transforms can thus be considered a rotation in function space, which – through
successive decompositions – adds a notion of scale. This scale property lends
itself nicely to progressive signal processing. Wavelets for image compression
are designed to perform rotations that decorrelate image data by using van-
ishing moments. Wavelet coefficients close to zero can thus be removed with
minimal impact on the reconstruction.

Bi-orthogonal wavelets (cf. [5]) will also be considered in the following. These
are not strictly orthogonal and therefore in contrast to orthogonal wavelets
have odd numbers of filter taps and linear phase filters. They come in pairs of
analysis and synthesis filters, together forming a unitary operation.
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Now we introduce a notation for wavelet representation and describes how
it can be integrated into an AAM framework thereby obtaining a wavelet
enhanced appearance model.

First, let an n-level wavelet transform be denoted by

W(t) = Γt = ŵ = [ âT ûT
1 · · · ûT

n ]T (5)

where â and û denote scaling and detail wavelet coefficients, respectively. For
2D images each set of detail coefficients is an ensemble of horizontal, vertical
and diagonal filter responses. Reduction of dimensionality is now obtained by
a truncation of the wavelet coefficients

C(ŵ) = Cŵ = w = [ aT uT
1 · · · uT

n ]T (6)

where C is a modified identity matrix, with rows corresponding to truncated
coefficients removed.

As in [21] a wavelet enhanced appearance model is built on the truncated
wavelet basis, w = C(W(t)), rather than the raw image intensities in t. This
splits all texture-related matrices into scale-portions. For the texture PCA of
wavelet coefficients we have

w = w + Φwbw ⇔ (7)




a

u1

...

un




=




a

u1

...

un




+




Φa

Φu1

...

Φun




bw

where Φw is the eigenvectors of the wavelet coefficient covariance matrix.
Rearranging this into scaling and detail terms we get

a = a+ Φabw (8)

and

{ui = ui + Φuibw}ni=1. (9)

The texture model is thus inherently multi-scale and may be used for analy-
sis/synthesis at any given scale. Motivations for doing so include robustness
and computational efficiency. Compared to multi-scale AAMs this also gives
a major decrease in storage requirements.
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Fig. 3. Two-level wavelet decomposition of a texture vector: the texture vector t is
represented in image space; the image space is padded to have dimensions that are
powers of 2; the n-level discrete wavelet transform (W) is applied. The darker shaded
coefficients represent scaling (or low frequency) components, the brighter shaded
coefficients represent detail (or high frequency) components; all wavelet coefficients
are concatenated to form a wavelet coefficient vector ŵ; ŵ is pruned to form the
final truncated wavelet representation of the texture vector w - usually most scaling
coefficients are retained.

Using non-truncated orthogonal wavelets (i.e. C = I),W(t) is a true rotation
in texture hyperspace. Hence the wavelet PCA is a rotation of the original
intensity PCA, i.e. Φw = ΓΦt , iff. W is fixed over the training set. The PC
scores are identical, bw = bt. If C is chosen to truncate the wavelet basis along
directions with near-zero magnitude, wavelet PC scores obviously resemble the
original PC scores closely.

Direct usage of the sparse matrix Γ is excessively slow. Instead the fast wavelet
transform (FWT) is applied. Figure 3 shows the stages of transformation.
First, a normalized texture vector is rendered into its equivalent shape-free
image. Secondly, the shape-free image is expanded into a dyadic image rep-
resentation to avoid any constraints on n due to image size. This image is
then transformed using FWT and rendered into the vector ŵ by masking out
areas outside the octave representation of the reference shape. Finally, ŵ is
truncated into w.

3.1 Free Parameters and Boundary Effects

To apply the above, the type of wavelet, W , must be chosen and values for
n and C must be determined. The key issue of estimating C is described in
Section 3.3.

The choice of wavelet type depends on three factors, i) the nature of the data,
ii) image-boundary issues, and iii) computational issues. Data containing sharp
edges suggests sharp filters such as the Haar wavelet and smooth data requires
smooth wavelets.

Because the wavelets operate in a finite discrete domain, boundary issues arise.
To calculate filter responses for a full image, boundaries are typically extended
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by mirroring pixel values across the boundaries. The width of the boundary
extension is half the width of the wavelet filter. Normally, this is carried out
as a rectangular extension but in this application the border extension adapts
to the shape of the texture image.

Finally, the Haar wavelet represents the computationally simplest wavelet filter
having only two non-zero coefficients. In contrast the CDF 9-7 wavelet has 9
non-zero coefficients in the encoding filter and 7 non-zero coefficients in the
decoding filter.

3.2 Model Building

Building a wavelet enhanced appearance model can be summarized in five
major steps:

(1) Sample all training textures into {ti}Ii=1.
(2) Transform {ti}Ii=1 into {ŵi}Ii=1.
(3) Estimate ŵ and C.
(4) Truncate {ŵi}Ii=1 into {wi}Ii=1.
(5) Build an AAM on {wi}Ii=1.

Further, all incoming textures in subsequent optimization stages should be
replaced with their truncated wavelet equivalents, i.e. C(W(t)). The synthe-
sis of a wavelet enhanced appearance model is the reverse of Fig. 3, again
with appropriate masking and mirroring. Truncated wavelet coefficients are
reconstructed using the corresponding mean values:

ŵsynth = Csynth(w) = CTw + Csynthŵ (10)

where Csynth is a modified identity matrix, with rows corresponding to non-
truncated coefficients zeroed.

3.3 Wavelet Coefficient Selection

For registration purposes the optimal C is given by the minimum average error
between the optimized model shape and the ground truth shape over a test
set of t examples

arg min
C

(
t∑

i=1

|si,model − si,ground truth|2
)
, (11)
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subject to the constraint that C has g rows. This gives rise to a dimensionality
reduction of ratio 1 : L/g.

However, direct optimization of Eq. (11) is not feasible since each cost function
evaluation involves building a complete model from the training set and a
subsequent evaluation on a test set. The traditional approach when dealing
with reduction of training data ensembles, also taken by [21], is to let C
preserve per-pixel variance over the training set.

First, we compute the empirical variance of each coefficient across the training
set, i.e.

σ̂2
j =

1

I

I∑

i=1

(wij − w·j)2, (12)

where wij denotes the jth wavelet coefficient of the ith training image, w·j is
the empirical mean of these jth coefficients across training images. Second, we
construct C to select the g coefficients that express the largest variance σ̂2

j .

In order to regularize this selection procedure we carry out a smoothing of the
wavelet coefficients in the image domain, i.e. intra-quadrant smoothing of the
wavelet representation as shown in Fig. 2(b).

3.4 Signal Manipulation

An important added bonus from the wavelet representation is that certain
signal manipulations become exceedingly simple. Due to the band separation,
frequency response modifications are easily carried out. The simplest modifi-
cation is to change the norm of the high- and low-pass filters used. To preserve
variance the filters must be normalized. With a minor abuse of notation this
is denoted by ||W||2 = 1. We call this the normalized case. To emphasize high-
frequency content ||W||2 must be less than one. In the following we propose
to use the norm ||W||2 = 1/

√
2 and call this the edge-enhanced case.

4 Wedgelet Enhanced Appearance Modelling

The wedgelet approach is a way of representing images locally, orientation
adaptively and at the appropriate scale. It involves a very simple basis used
at different scales. The formulation in [10] is for a square dyadic domain but
the nature of the AAM imposes a shift of basis from dyadic to triangulated
domains.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Templates on the square dyadic domain and the triangulated domain. Plots
(a) and (e) show the applicable affine splits beginning at a particular perimeter
point.

For each node in the wedgelet tree we may consider the following three wedgelets
types:

(1) a degenerate wedgelet, this is a terminal node without an affine split, cf.
Figs. 4(b) and 4(f);

(2) a non-degenerate wedgelet, this is a terminal node with an affine split,
cf. Figs. 4(c) and 4(g), in Figs. 4(a) and 4(e) all affine splits beginning at
a single border point are shown;

(3) an interior node corresponding to a step through scale space, cf. Figs. 4(d)
and 4(h).

The wedgelet decomposition is seen to be embedded into a quadtree structure.
In this structure the templates are the nodes and the step through scale space
the branches. Furthermore, the terminal nodes are all either degenerate or
non-degenerate wedgelets. The resulting structure is a regression tree [4]. The
corresponding regression model predicts the pixel intensity – greyscale, RGB
or other – at the lth image coordinate xl in the ith image, yil, with a constant
µir in each region r for each image

fi(xl) =
∑
r

µirI{xl ∈ r}. (13)

I{xl ∈ r} is an indicator function returning 1 if xl belongs to r and 0 oth-
erwise. Note that for notational simplicity we have dropped the index m for
color component on the intensity values, yil. For M > 1, yil is a vector of
intensities of the M color components modelled. For the sum of squared error
loss criterion

∑
l ‖yil− fi(xl)‖2 it is easy to see that the optimal µir is just the

average of yil in region r, µ̂ir = ave(yil|xl ∈ r).

4.1 Optimal Partitioning

The optimal partitioning is found by a bottom-up approach. For each triangle
at each level we seek the model that minimizes the C-fold cross-validation
estimate of the prediction error across all affine splits/no split. Specifically,
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let κ : {1, . . . , I} 7→ {1, . . . , C} be an indexing function that indicates the
partition to which training object (image) i = 1, . . . , I is allocated by random-
ization, and denote by ŝ−κ(i) a split estimated with the κ(i)’th part removed.
â = a(ŝ−κ(i)) and b̂ = b(ŝ−κ(i)) are the regions resulting from splitting a dyadic
square or triangle by this affine split ŝ−κ(i), and ĉ is the entire dyadic square
or triangle. Furthermore, let the regression parameters from the ith image
resulting from applying the split ŝ−κ(i) be

µ̂ir = ave(yil|xl ∈ r), r ∈ {â, b̂, ĉ}. (14)

Then the cross-validation errors become

CVEsplit =
I∑

i=1


∑

xl∈â
‖yil − µ̂iâ‖2 +

∑

xl∈b̂
‖yil − µ̂ib̂‖2




CVEno split =
I∑

i=1

∑

xl∈ĉ
‖yil − µ̂iĉ‖2 (15)

The optimal split/no split cross-validation errors for a triangle and its three
siblings are then compared to those for their parent in order to determine
if a non-degenerate or a degenerate wedgelet should be declared, or if the
four siblings should be merged into a triangle or a dyadic at the next higher
(parent) level.

In order to be able to control the dimensionality reduction ratio obtained, we
add a complexity penalty to the error term over which we carry out cross-
validation. This complexity penalty is proportional to the image variance, σ2

and the cardinality of the wedgelet tree. λ2 is the proportionality constant,
i.e.

CP(λ) = λ2 · σ2card(P). (16)

P is the partition, and card(P) is the cardinality of P . The multiplication of
the CP with the image variance compensates for (gain) differences between
training images. Except for the image variance weight this is the same com-
plexity penalty proposed by Donoho [10] for the case of wedgelet compression
over a single image.

The optimization over all affine splits is conducted as an exhaustive search over
a discretization (cf. Figs. 4(a) and 4(e)) corresponding to the pixel size. The
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(a)

(b)

Fig. 5. A representation of (a) a binary image and (b) the resulting tree structure;
the tree nodes are of types a degenerate, b non-degenerate, c interior.

indexing of pixels within a triangle and computation of areas are conveniently
done by the use of barycentric coordinates [17]. Figure 5 shows how a result
on a binary image might look.

4.2 Model building

When working on an AAM, an initial triangulation is available from the an-
notation and Delaunay triangulation on the mean shape (cf. Fig. 1(b)). This
initial collection of triangles will be the root of the tree. From here each branch
will be equivalent to the type of tree shown in Fig. 5.

After having grown a common wedgelet tree as described in the previous
section for the training set, we can proceed to train the wedgelet enhanced
appearance model. As before the shape is described by the landmark coordi-
nates, i.e. si = vec{(xijk)}. However, for the texture we substitute the wedgelet
coefficients for the original intensity samples, i.e. we use µi = vec{(µ̂irm)},
r = 1, . . . , R, m = 1, . . . ,M . R is the number of regions used by the wedgelet
tree.
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4.3 Computational Requirements

The active part of the wedgelet enhanced appearance model is trained using
Eqs. (3) and (4). The resultingQmatrix has dimensions (p+4)×(RM). In each
iteration of model to image fitting this is also the number of multiplications
and additions to be carried out. However, we must also take into consideration
the added overhead of calculating the wedgelet representation of the image
patch that is covered by the model in each iteration. Letting every pixel fall
into just one region of the wedgelet tree the computational load in computing
the regional means is essentially LM additions and RM multiplications. Let
the dimensionality reduction ratio of the wedgelet representation be η = L/R,
then the reduction in computational load is better than a factor

RM + (p+ 4)RM

(p+ 4)LM
=

[
1

p+ 4
+ 1

]
1

η
≈ 1

η
(17)

As we shall see dimensionality reduction ratios of 1:100 are achievable. We have
here ignored the computational load related to warping the image patch to the
model. This is the same whether we use wedgelets or not and is conveniently
and very quickly accomplished using modern graphics hardware [19].

5 Results and Discussion

Data for the experiments are an image database of 37 annotated faces. Each
image is a 640 × 480 RGB image of a face of an adult human. The data set
consists of images of 7 female and 30 male faces. Each face has been manually
annotated with 58 corresponding landmarks (see [19] for a detailed analy-
sis). The average landmark distance from model to ground truth (pt.pt.) was
used as performance measure. Model searches were initialized by displacing
the mean configuration ±10% of its width and height in x and y from the
optimal position. Cross validation experiments were carried out to assess the
performance of the proposed algorithms.

5.1 Wavelet enhancement

Two wavelet bases were evaluated; the orthogonal Haar wavelet and the widely
used bi-orthogonal CDF 9-7 wavelet (cf. [5]). Both of these were tested in the
normalized and the edge-enhanced case using dimensionality reduction ratios
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Fig. 6. The average registration error vs. the dimensionality reduction ratio for the
truncated wavelet and wedgelet representations of the texture. We show the reg-
istration error for the ‖W‖2 = 1 wavelet selection weighting scheme (solid), the
‖W‖2 = 1/

√
(2) wavelet selection weighting scheme (dashed), standard subsam-

pling AAM (dotted), and wedgelet AAM (dash-dotted). In the left plot we have
applied the Haar wavelet and in the right plot the CDF 9-7 wavelet. The stan-
dard subsampling AAM and wedgelet AAM are the same for the two plots. The
horizontal lines show values for a full standard AAM. The standard error is 0.15

in the range 1:1 – 1:40. We compare the wavelet enhanced methods to the
standard uncompressed AAM as well as a series of experiments where standard
AAM are built from subsampled images as described in [7].

All experiments used three wavelet decomposition levels. Results are shown
in Figs. 6 and 7. The standard AAM contained 31224 pixels on average over
all leave-one-out experiments.

Our first observation from Fig. 6 is that the average segmentation accuracy
degrades gracefully with increasing dimensionality reduction ratio. Further-
more, the CDF 9-7 wavelet outperforms the Haar wavelet representation for
all reduction ratios. The results for the Haar wavelet using the normalized
weighting scheme coincides with the results obtained for simple subsampling
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Fig. 7. Registration accuracy determined by cross validation. The abscissae are the
ratio between the number of pixels and the number of retained wavelet coefficients
or wedges in the model. This is the dimensionality reduction ratio. The ordinate is
the mean point to point prediction error evaluated at the original 58 landmarks for
all faces in the cross validation study.
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Fig. 8. Selected wavelet coefficients for the face training set (CDF, ratio 1:10).
The scaling coefficients are shown in the upper left. Left: ||W||2 = 1. Right:
||W||2 = 1/

√
2.

(a) Haar - PC1

(b) CDF 9-7 - PC1

Fig. 9. The first combined mode of texture and shape variation; c1 = {−3σ1, 0, 3σ1}.
(a) wavelet enhanced appearance model (b) Haar, ratio 1:10; (b) CDF 9-7, ratio 1:10.

of pixels in the texture representation. The CDF 9-7 wavelet representation
with the normalized weighting scheme performs better than pixel-wise sub-
sampling.

However, the most striking result is that putting an increased weight on the
high frequency wavelet bands by using the weighting scheme ||W||2 = 1/

√
2
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(i.e. enhancing the edges) results in a much better performance for all reduc-
tion ratios. We even observe for both wavelets that for reduction ratios be-
tween 1 and 10 the segmentation accuracy is better than for the full un-reduced
standard AAM model. In conclusion pure intensity based AAM methods are
outperformed by methods that put an emphasis on edge information.

In addition to the overall average performance of the methods we also compare
the error distribution over test examples for the wedgelet AAM and for both
wavelet AAMs using weighting scheme ||W||2 = 1/

√
2. In Fig. 7 standard

boxplots of the mean error for all test faces are shown for all dimensional-
ity reduction ratios. The plots should be interpreted as follows: each box has
horizontal lines at the lower quartile, median and upper quartile of the dis-
tribution. The lines extending from each box show the range of the rest of
the data. Single crosses beyond the end of these lines are outliers with values
above 1.5 times the interquartile range from the respective lower or upper
quartile. The notches at the median (the rotated V-shapes at the sides of each
box) are robust estimates of the uncertainty about the medians for box-to-
box comparison. If the notches of pairs of boxes do not overlap, then the true
medians are significantly different at the 0.05 significance level by Wilcoxon’s
rank sum test [12].

First off all this confirms that the “raw” standard AAM is significantly out-
performed wrt. segmentation accuracy by the edge-enhanced wavelet AAM
applying low dimensionality reduction rates. Furthermore, we can conclude
that no significant decrease in segmentation accuracy is seen, as we move
from no dimensionality reduction to a dimensionality reduction by a factor of
40. We do however, see a slight increase in variance of the errors for increased
dimensionality reduction rates for the wavelet cases.

In order to investigate the edge enhancing weighting scheme further, Fig. 8
shows the selected wavelet coefficients using the CDF 9-7 wavelet at ratio
1:10 using both normalized and edge-enhancing filters. The normalized case
tends to preserve mostly low-frequency content, while the edge-enhanced case
distributes wavelets coefficients near image details more evenly across levels.
Together with the nature of the weighting this leads to models with more
emphasis on edges.

Finally, Fig. 9 shows the first combined mode of texture and shape deforma-
tion for two compressed models at dimensionality reduction ratio 1:10. Subtle
blocking artifacts from the Haar wavelet are present, while the smooth 9-7
leaves a more visually pleasing synthesis result. Quantitatively, the 9-7 wavelet
also offered a better reconstruction of the training textures in terms of mean
squared error (MSE).
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(a) (b) (c)

Fig. 10. Images compressed using triangulated wedgelets. (a) 1:3 ratio and (b) 1:40
using the triangulation from Fig. 1(b). (c) Result (b) superimposed with the sub-
divided mesh.

5.2 Wedgelet enhancement

Figure 10 shows the result of compressing a single image using the approach
described above. The original Delauney triangulation of the face data set (cf.
Fig. 1(b)) is subdivided using the penalized complexity criterion in Eqs. (15)
and 16) above. In Fig. 10 wedgelet dimensionality reduction at ratios 1:3 and
1:40 for a single face are shown.

In Fig. 11 the combined principal components of the texture descriptors µirm
and the tangent space aligned landmark coordinates are shown. Comparing
Figs. 11(a) with a dimensionality reduction ratio of 1:3 and Figs. 11(b) with
a dimensionality reduction ratio of 1:40, we see that the first principal com-
ponents contain the same variations independently of the dimensionality re-
duction ratios. This leads us to conjecture that the wedgelet representation
similarly to the wavelet case indeed dismisses irrelevant noise components and
retains original signal information.

In Fig. 12 examples of the segmented facial features using a wedgelet enhanced
AAM with dimensionality reduction ratios 1:3 and 1:40 are shown. Again the
results are indistinguishable.

In order to compare the registration quality of the wedgelet enhanced AAM
and its ability to perform with increasing dimensionality reduction ratio we
have conducted a cross-validation study across the construction of the wedgelet
decomposition of the training set and the construction of the AAM. The av-
erage point to point landmark distance from model to ground truth has been
used to measure the performance. The models were initialized using a dis-
placement of ±10% of the width and the height of the mean AAM model
from the optimal position in the x and y direction.
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(a) PC1

(b) PC1

Fig. 11. 1st principal components shown at +3 standard deviation, mean and -3
standard deviation for (a) wedgelet dimensionality reduction ratio 1:3, (b) wedgelet
dimensionality reduction ratio 1:40.

For face registration we show dimensionality reduction rates of 1:150 with a
decrease in registration accuracy of 8%. By comparison, for brain registration
the wavelet compressed AAMs reports dimensionality reduction rates of 1:20
with a decrease in registration accuracy of 7% [21].

As expected a slight decrease in performance is seen as the dimensionality re-
duction ratio increases (cf. Figs. 6 and 7(c)). However, using wedgelets yields
good results all the way up to 1:150, (cf. Fig. 13). A major differences between
wedgelets and wavelets are in the synthesized image. The truncated wavelet
representation yields nice and smooth synthetic images very pleasing to the
eye. However, it should be noted that the purpose of the wedgelet enhanced
appearance model is registration with minimum storage and computational
cost and not image reconstruction. Therefore the model should not be evalu-
ated on the ”blockyness” of Figs. 10 and 11.

Fig. 10 serves to demonstrate where in the images important information re-
garding registration is present. Fig. 11 demonstrates that the low order princi-
pal components of the uncompressed and the compressed data set are similar.

The truncated wavelet transform is computationally more demanding than
the truncated wedgelet transform for the same number of basis functions. Ini-
tial off-line determination of the wedgelet regression tree is computationally
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(a) (b)

Fig. 12. (a) Wedgelet AAM using a wedgelet dimensionality reduction rate of 1:3,
(b) 1:40.
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Fig. 13. Additional wedgelet registration accuracy study determined by cross val-
idation for high reduction ratios. The abscissa is the ratio between the number of
pixels and the number of wedges in the model. The ordinate is the mean point to
point prediction error evaluated at the original 58 landmarks for all faces in the
cross validation study.

expensive. However, wedgelets reduce the texture descriptor size and hereby
reduce the computational cost and storage cost significantly due to the reduc-
tion of Q in Eq. (4).

6 Conclusion

This paper extends the previous work of Wolstenholme and Taylor where an
AAM was augmented with the Haar wavelet and evaluated on brain MRI
using a fixed dimensionality reduction ratio of 1:20. Our work validates their
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previous findings in a different case study using a more thorough evaluation
methodology. In addition, the more recent CDF 9-7 wavelet is evaluated and
compared to the Haar wavelet. The CDF 9-7 wavelet proves to yield better
accuracy for the same reduction rate than the Haar wavelet representation.

We have also shown that the inherent frequency separation in wavelets allows
for simple band-pass filtering, which enables dimensionality reduction schemes
that both decrease complexity and increase registration accuracy. Increased
registration accuracy is seen for Haar as well as CDF 9-7 wavelet represen-
tations. In particular, we have shown that applying a weighting scheme that
emphasize high frequency content results in an improved segmentation accu-
racy over the standard intensity based AAM.

Although no significant difference was observed between the two wavelets in
terms of registration accuracy; the CDF 9-7 wavelet performed consistently
better. Where the Haar wavelet did not perform better than standard pixel
subsampling this was the case for the CDF 9-7 wavelet. Further, the CDF
9-7 also provided the best synthesis quality. However, if low computational
complexity is required the Haar wavelet should be chosen.

Our case study supports the expected behavior that it is the high-frequency
image content that provides the registration accuracy, i.e. edges hold pre-
cise information about position. Variance preserving filters are optimal for
reconstruction but not necessarily for registration. Inherent scale-separation
has been obtained in the presented unified AAM and DWT framework and
enabled a very simple method for favoring high-frequency content. This is
obtained while still retaining the robustness gained from a low frequency rep-
resentation of the object.

Furthermore, we have defined a 2D wedgelet transform on the triangulated
domain. We have used cross-validation to arrive at a truncated wedgelet rep-
resentation of the texture in an active appearance model setting. The triangu-
lated wedgelet transform embraces the triangulated domains used in AAMs.

The original wedgelet representation uses a complexity penalized (CP) RSS
criterion. For the multi-object (image) situation we introduce a new ensem-
ble complexity penalized cross-validation error. This complexity penalty fa-
vors relative larger wedges/triangles while compensating for scaling differ-
ences/warps and gain differences between images.

In applying the wedgelet transform to ensembles of face images we arrive
at dimensionality reduction rates up to 1:150 with only subtle degradation
of the registration accuracy. The truncated wedgelet representation yielded
better segmentation accuracy than the wavelet representations for the same
reduction ratios.
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We have used the wavelet and wedgelet based functional representation of the
image intensity patterns in order to obtain a more parsimonious description
of the texture. However, we can also think of such a functional representation
as a way of regularizing the principal components solution (cf. [18]).
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