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Abstract

This paper presents a new model for image blending based on warping. The model
is represented by partial differential equations (PDEs) and gives a sequence of images,
which has the properties of both blending of image intensities and warping of image
shapes. We modified the energy functional in [1] in order to adapt the idea of the shape
warping to the image blending. The PDEs from the proposed energy functional cover
not only overlapped images but also non-overlapped ones.
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1 Introduction

A general image blending method is the linear interpolation of intensity values between two
images, namely source and target. This method is easy to generate a sequence of images.
The sequence, however, has a drawback that the image in the source fades out and the
image in the target fades in except on common regions. The image blending method in [2]
is based on partial differential equations (PDEs) by minimizing the area of the symmetric
difference in each intensity level. In the paper, to create a blending sequence, the method
makes an intermediate image as evolving the source and the target simultaneously. The
level set approach in [2] does not have unreasonable disappearing and appearing effects when
two images have an overlapping region. Unfortunately, if the source and target images are
non-overlapped, this method gives the same weak point as the general image blending case.

Object warping method is a possible solution to the problem for the non-overlapping
case. Warping is one of the important issues of computer vision: pattern recognition, an-
imation and medical image. One of the general warping method is based on landmark or
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control point-matching [3–6]. This method is popular and gives good results, however, it is
not appropriate to our problem because it is based on the matching of the landmark or con-
trol points given by users and we want to develop an automatic image blending algorithm
depending on the given image intensities. Another is the minimization of some measure be-
tween shape objects, which is made under the appropriate constraint; for example, distance
or shape intensity profile, etc. See the references [1, 7–11]. Among them, Liao et al. [1]
introduced a noble model of shape warping for the non-overlapping case, which comes from
the object matching problem in medical image processing. The method was formulated by
the level set function [12, 13] having zero level at the shape boundary. Even though the
model gives a possibility for solving the non-overlapping matching problem, it also needs the
boundary information given by users and causes tadpole shapes in the sequence of images
since this method just tries to make a shape from the source be the target one.

In this paper, we present a new model for the image blending based on the warping.
The model is described by PDEs from the energy functional in [1], which is modified to
extend the shape warping idea to the image blending. To get more smooth shapes without
the tadpole phenomenon, we suggest two deformation fields for the source and the target.
Then the model gives a sequence of images, which has the properties of both blending of
image intensities and warping of image shapes. Furthermore, it covers not only overlapped
images but also non-overlapped ones.

This paper consists of following sections. In Section 2, we design an energy func-
tional which enables to make an image sequence for non-overlapped shapes, and use Euler-
Lagrange method and gradient-decent method to derive the PDEs. Section 3 is organized
into two parts. At first we explain an algorithm for generating a blending sequence based
on warping by using the PDEs in the previous section. Next, we consider the methods of
interpolation to create the sequence of images and comment some points to make a better
result. Before the conclusion, we illustrate six examples using the synthetic and real images
in Section 4.

2 Variational Formulations

In this section, we introduce an energy functional which gives two deformation fields for
non-overlapped shapes. Given two shapes S and T in the domain Ω, so called the source and
the target, respectively, we define φ(x) and ψ(x), x ∈ R2, to be signed distance functions
having zero values on each shape boundary. To match two shapes, we find two deformation
fields u(x) and v(x) ∈ R2 for the source and the target, respectively, by minimizing the
energy functional

E1(u, v) =
∫

Ω
max{|φ(x− u)|, |ψ(x− v)|}{H(ψ(x− v))

[1−H(φ(x− u))] +H(φ(x− u))[1−H(ψ(x− v))]}dx ,

(2.1)

where H(x) is the Heaviside function. If only one deformation field evolving from the source
to the target is used, it may cause the large distortion of shape in the image sequence. This
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(a) (b)

Figure 1: Two deformation fields have smaller distortion than only one deformation field
does. The dotted line in (a) is the shape from the source. The dotted line in (b) is an
intermediate shape from the source and the target.

hinders the mobility of shape in source, which should become identical to the shape in target;
see Figure 1-(a). In order to reduce the distortion, we use two deformation fields u(x) from
the source and v(x) from the target. That is, two vector fields make the movement of both
the source and the target and eventually two shapes become identical with less distortion,
which we call the intermediate shape; see Figure 1-(b).

The key ingredient of the energy functional (2.1) is the distance information between the
source and the target which are arbitrarily given. More precisely, for a non-overlapping case
the functional does the integration of the distance functions which are zero on the boundary
of one shape over the other shape area. In the shape warping [1], since the shapes of the
source and the target are known, the signed distance functions which are positive inside the
shapes are used in the energy functional. In our algorithm for the image blending, we define
signed distance functions by assigning positive values to the region where the intensity is
higher. Hence it is not possible to distinguish between the inside and the outside of shapes
by the signs of signed distance functions. Therefore, the integration is not performed inside
the target and the source. One possible way to solve this problem is using maximum of
distances to the source and the target from the region where the signed distance is positive.
Obviously, we see that for the non-overlapping case, if a point is inside the source or the
target, then the distance between the point and the other shape is lager than one between
the point and the boundary of its own shape. Therefore, we have the deformation fields
which minimize the distance between the source and the target by minimizing the energy
functional (2.1).

Now, we apply the Euler-Lagrange method to (2.1) with respect to u. Then we get the
Euler-Lagrange equation

−F1(u, v) = 0,
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F1(u, v) =





|ψ(x− v)|[1− 2H(ψ(x− v))]δ(φ(x− u))∇φ(x− u) in Ω̃s,

{|φ(x− u)|[1− 2H(ψ(x− v))]δ(φ(x− u))
+sgn(φ(x− u))[H(ψ(x− v))(1−H(φ(x− u))) elsewhere,
+H(φ(x− u))(1−H(ψ(x− v)))]} ∇φ(x− u)

where Ω̃s := {x : |ψ(x−v)| ≥ |φ(x−u)|}. The function δ(x) denotes the Dirac delta funtion
as the derivative of the Heaviside function in the distribution sense. In the same manner
with respect to v, we obtain the Euler-Lagrange equation:

−G1(u, v) = 0,

G1(u, v) =





|φ(x− u)|[1− 2H(φ(x− u))]δ(ψ(x− v))∇ψ(x− v) in Ω̃t,

{|ψ(x− v)|[1− 2H(φ(x− u))]δ(ψ(x− v))
+sgn(ψ(x− v))[H(φ(x− u))(1−H(ψ(x− v))) elsewhere,
+H(ψ(x− v))(1−H(φ(x− u)))]} ∇ψ(x− v)

where Ω̃t := { x : |φ(x− u)| ≥ |ψ(x− v)|}.
If the shapes are overlapped during the evolution of the deformation fields, we use a

different energy functional in order to satisfy the shape matching condition in the Section
3.4. The functional E2 is the area of the symmetric difference of the two regions with a
positive value of the signed distance function, suggested by Whitaker [2] and Liao et al. [1].
That is,

E2(u, v) =
∫

Ω
H(ψ(x− v))[1−H(φ(x− u))] dx

+
∫

Ω
H(φ(x− u))[1−H(ψ(x− v))] dx .

(2.2)

In the same way as the non-overlapping case, we obtain the Euler-Lagrange equations
corresponding to the overlapping case:

F2(u, v) = −[1− 2H(ψ(x− v))]δ(φ(x− u))∇φ(x− u) = 0,

G2(u, v) = −[1− 2H(φ(x− u))]δ(ψ(x− v))∇ψ(x− v) = 0,

for u and v, respectively.
The deformation fields from the above equations are not smooth enough to obtain an

image sequence with natural moving. In this paper, we use the regularization R(u, v),
proposed by Horn and Shunck [14], to overcome this drawback:

R(u, v) =
1
2

2∑

i=1

{
‖∇ui‖2

L2
+ ‖∇vi‖2

L2

}
(2.3)
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where ui and vi are components of u and v, respectively. Adding the regularization term
(2.3) multiplied by the weight factor α to the energy functional (2.1) and (2.2), we obtain
the penalized energy functionals

Ei(u, v) + αR(u, v) , i = 1, 2.

We apply the Euler-Lagrange method to the above penalized energy functional with respect
to u and v. Then we get

−α∆u− Fi(u, v) = 0
−α∆v −Gi(u, v) = 0

for i = 1, 2.
One method to solve these equations is the gradient descent method. Then we finally

formalize a system of PDEs for the deformation fields:

∂u(x, t)
∂t

= α∆u + Fi(u, v)

∂v(x, t)
∂t

= α∆v + Gi(u, v)
(2.4)

for i = 1, 2.

3 Image Blending based on Warping

We have designed the energy functionals for the non-overlapping shapes and derived the
governing equations (2.4) with i = 1. The models are related to the motion of shapes
without considering the grey intensity values of images. In other words, a sequence of
images is generated not from the image blending but from the shape warping. In this
section, we combine the two methods and suggest the new algorithm for image blending
based on warping. The detailed algorithm is explained in the Section 3.1 and the several
comments are discussed in Sections 3.2, 3.3 and 3.4.

3.1 Algorithm

First of all, we denote given source and target images by Φ0(x, 0) and Ψ0(x, 0), respectively,
which are grey scaled. Let n0 be the second lowest intensity value of given images. We
define two sets S0 and T0 by

S0 = {x ∈ R2 : Φ0(x, 0) ≥ n0},
T0 = {x ∈ R2 : Ψ0(x, 0) ≥ n0}.

Two signed distance functions φ0(x) and ψ0(x) have positive values in the interior of S0

and T0, negative in Sc
0 and T c

0 and zero on each interface ∂S0 and ∂T0. With the signed
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distance functions, we obtain the deformation fields u0(x, t) and v0(x, t) by solving the
PDEs (2.4) with i = 1. The sequences of images Φ0(x− u0(x, t), 0) and Ψ0(x− v0(x, t), 0)
are, respectively, denoted by Φ0(x, t) and Ψ0(x, t). That is, we have

Ψ0(x, t) = Ψ0(x− v0(x, t), 0),
Φ0(x, t) = Φ0(x− v0(x, t), 0).

The regions corresponding to the levels ≥ n0 for the source and the target become identical
in the steady state of (2.4) with i = 1. However, we may not have the identical shape easily
when we only solve (2.4) with i = 1. If the shape is almost same, then the distance between
the source and the target are very small. Hence, much computing time is required to reach
the intermediate shape. To have the fast convergence, with some overlapping criterion, we
switch over to the equation(2.4) with i = 2 for overlapping case, which is derived without
considering the distance information and solve (2.4) with i = 2 until the shapes are identical.
But, it is not guaranteed that the two images over n0 level coincide. In order to match the
rest of the two images over n0 level, we choose the next intensity level n1 which is strictly
larger than n0 on the final images Φf

0(x) and Ψf
0(x) which are obtained by the steady state

vector fields, that is,

Φf
0(x) = lim

t→∞Φ0(x, t),

Ψf
0(x) = lim

t→∞Ψ0(x, t).

We secondly denote Φ1(x, 0) and Ψ1(x, 0) as Φf
0(x) and Ψf

0(x), respectively. The values
of new signed distance functions φ1(x) and ψ1(x) are assigned for two sets

S1 = {x ∈ R2 : Φ1(x, 0) ≥ n1},
T1 = {x ∈ R2 : Ψ1(x, 0) ≥ n1}

using the same way as for φ0(x) and ψ0(x). Then two deformation fields u1(x, t) and v1(x, t)
are also obtained. We don’t need to apply two deformation fields u1(x, t) and v1(x, t) to
all pixels in domain Ω since the regions where intensities of the source image Φ1(x, 0) and
target image Ψ1(x, 0) are less than n0 are already the same. Hence, we preserve the intensity
values < n0 until the whole process ends.

The concept of the algorithm is illustrated in Figure 2. After nk step is finished, we
choose the level nk+1 which is larger than nk and calculate the deformation fields uk+1(x, t)
and vk+1(x, t) for k = 0, 1, 2, · · · , m while keeping the regions where the intensities of the
source and the target images are less than nk. If nm is greater than the maximum intensity,
then the process is completed.

3.2 Interpolations

We consider interpolation methods to generate the image sequence. The intensity values
on non-grid points should be calculated because the images of the sequence Φk(x, t) and
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(a)

(b)

(c)

Figure 2: The algorithm for image blending based on warping: Suppose that the intensity
profiles of images are the shape of rounding corn. (a) Choose the initial intensity level nk;
the regions over nk level are the parts with the oblique lines (b) The two shapes at the
intensity level nk become same but the intensity profiles cannot be identical. (c) Choose
the next intensity level nk+1 that is larger than nk. Do the same process over the level nk+1

as before.
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Ψk(x, t) in the nk level are obtained by Φk(x − uk(x, t), 0) and Ψk(x − vk(x, t), 0). Three
methods of interpolation are considered: the bilinear interpolation (BI), the nearest intensity
assignment (NIA) and the monotone cubic interpolation (MCI). Let ξ(x, t) ∈ R2 be the
translated point of the point x by the vector u(x, t), i.e.,

ξ(x, t) = x− u(x, t).

The simplest striking method is the BI using four grid points near ξ. It generates the
severe blurring in the image sequence. To avoid blurring, we consider the NIA to assign the
intensity value at the closest grid point from ξ to ξ. We observe that the image sequence
does not have the blurring since the generated images Φk(x, t) and Ψk(x, t) have only the
intensities sampled in the previous images Φk(x, 0) and Ψk(x, 0), respectively. However, if
the magnitudes of the deformation fields are alternatively 0.49 and 0.51 near an edge and
the directions are similar, the slight difference between the magnitudes makes the values of
intensity non-smooth along the edge even though the previous values are smooth enough.
That is, NIA causes zig-zag in the sequence of images. Instead of NIA, we consider the
MCI [15] based on the bicubic interpolation with reducing overshooting along the each axis.
The image sequence naturally has less zig-zag effect than NIA and less blurring than BI.
But, it still causes the noticeable blurring near edges. Therefore, we suggest the weighted
sum of NIA and MCI. The typical weight ratio of NIA to MCI is 7:3 or 8:2.

3.3 Laplacian weight factor α

The Laplacian weight factor α makes the diffusion effect in the deformation fields. The
larger α value is in the process, the shorter period of time is taken to obtain the steady
deformation fields. For the fixed large α, the steady state can be rashly happened before
the regions in a level are identical. Then the images in both source and target cannot be
updated. In order to get out of stuck, we flexibly reduce the weight factor α by observing
the difference between vector fields at the time t and t + ∆t, since the small α value can
generate more dynamic transitions in the vector fields.

3.4 Stop Criterion

We measure the relative area of symmetric difference of Sk and Tk in nk level and use the
value as the stop criterion to finish the process in the level. The process in nk level ends
when the relative area is less than 1%. Even though we adjust the Laplacian weight factor
α in the Section 3.3, the stop criterion in nk level may not be satisfied when we only use
the equations (2.4) with i = 1. We start to solve (2.4) with i = 1 derived from the energy
functional (2.1) for the non-overlapping case until the relative common area of Sk and Tk in
nk level is over 90%. After that, we solve (2.4) with i = 2 derived from the energy functional
(2.2) for the overlapping case up to satisfying the stop criterion. These are applied for all
nk levels.
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Figure 3: Disk and rectangle (top), dart and airplane (bottom)

4 Examples

In this section, we illustrate six examples which consist of 250 by 250 pixels. The first
image pairs in Figure 3 are synthetic. We use the disk and the rectangle which are non-
overlapped and have simple intensity profiles. We use the synthetic dart and the airplane
as more complex shapes. Figure 4 consists of human faces; one is a woman’s face that has
changed from the inexpressive face to the smiling one and another is a man’s face that has
changed from the blank face to the angry one. Finally, we illustrate a pair of cups with the
clockwise rotation and the Digimon images, namely Koromon and Agumon, which have the
relationship of evolution in the animation. Note that handles of cups are non-overlapped.

In Figure 6, the images of the left column are the blending result of the disk and the
rectangle. Even though there is no common area of the disk and the rectangle, we can
obtain a blending sequence by the proposed method, which gives a dynamic and plausible
motion. The right column is the result for the synthetic dart and the airplane. We can see
the natural movement, even for the complex geometries.

In Figure 7, we illustrate the blending results of Figure 4. In the woman’s face, the
natural change of facial expression can be observed in view of the moving of the mouse and
eyes. The man’s face shows raising left eyebrows which are non-overlapped in the source and
the target. Therefore, the pre-existing methods, for examples linear interpolation or level-
set approach [2], give the fade-out and the fade-in of the eyebrows and huge blurring occurs
in the images of the blending sequence. We can see the dynamic and plausible movement of
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Figure 4: Woman’s face (top), man’s face (bottom)

Figure 5: Cup with clockwise rotation (top), Digimon: Koromon (left bottom) and Agumon
(right bottom)
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Figure 6: The blending results of Figure 3: The left column is the blending sequence of
the disk and the rectangle. The right column is the blending sequence of the dart and the
airplane. The images in the third row are the intermediate state.
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eyebrows in the image sequence generated by the proposed blending method. It, however,
makes a small amount of the zig-zag phenomenon near the shoulder in accordance with the
effect of NIA.

In Figure 8, we present the result of cup images which rotate clockwise. The angle
of the rotation is enough for handles to be non-overlapped in the source and the target.
In the example, we find some troubles in the proposed blending method. The blending
sequence has the images whose texture is missing since there is no texture in the right side
of the handle in the source. A small amount of the zig-zag effect also occurrs. Despite of
the drawbacks, we successfully obtain the images in the blending sequence which contains
the rotation of the handle. As the last example, we make the blending sequence with
the cartoon images. Agumon is the evolution of Koromon in the animation of DIGIMON
ADVENTURE. We embody the intermediate states of the evolution between Koromon and
Agumon in the blending sequence. We observe the growing of arms and legs and the moving
of the mouse in accordance with the proposed blending method.

5 Conclusion

In this paper, we introduced a new blending method based on warping for non-overlapped
images. The energy functional in [1] is modified for non-overlapped images without the
restriction to take the proper signed distance functions. We derive a system of PDEs for
two deformation fields. The blending sequence by the proposed method has the dynamic
and plausible motions from the source and the target simultaneously even though the two
images are non-overlapped. The two deformation fields reduce the tadpole effects in the
blending sequence. We suggest the weighted sum of NIA and MCI in order to get the
image intensity on non-grid points. The blending sequence generated by the weighted sum
naturally has less zig-zag effect than NIA and less blurring than BI.
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