
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 105 (2007) 200–217
Efficient search and verification for function based classification
from real range images

Guy Froimovich Ehud Rivlin a, Ilan Shimshoni b, Octavian Soldea a,*

a Department of Computer Science, The Technion, Israel Institute of Technology, Haifa, Israel
b Department of Management Information Systems, University of Haifa, Haifa, Israel

Received 10 January 2006; accepted 23 October 2006
Available online 12 December 2006
Abstract

In this work we propose a probabilistic model for generic object classification from raw range images. Our approach supports a val-
idation process in which classes are verified using a functional class graph in which functional parts and their realization hypotheses are
explored. The validation tree is efficiently searched. Some functional requirements are validated in a final procedure for more efficient
separation of objects from non-objects. The search employs a knowledge repository mechanism that monotonically adds knowledge dur-
ing the search and speeds up the classification process. Finally, we describe our implementation and present results of experiments on a
database that comprises about 150 real raw range images of object instances from 10 classes.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Function based reasoning; Recognition; Classification; Computer vision; Raw range images; 3D segmentation
1. Introduction

The object recognition field in computer vision made its
debut in the area of object identification and has moved, in
recent years, towards classification. Object identification
seeks to recognize a certain object with a particular identity.
The classification’s goal is to target shapes that can, after
analysis, be grouped into the same category. This is in
contrast to object identification.

To date, most of the work on recognition has focused on
the identification of objects, that is, recognizing a specific
object in an image, one of a set of well-specified objects.
Structural recognition approaches (e.g., [5,12,32,38]) use
an identification model that is based on a decomposition
of objects into shape parts. These approaches are motivated
by psychological recognition-by-components concepts [7].
Little work has focused on the classification problem,
where the imaged object is to be categorized as one of a
1077-3142/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2006.10.003

* Corresponding author.
E-mail addresses: ehudr@cs.technion.ac.il (G.F.E. Rivlin), ishimsho-

ni@mis.haifa.ac.il (I. Shimshoni), octavian@cs.technion.ac.il (O. Soldea).
set of classes of objects rather than a specific known object.
In this context, functional based classification analyzes the
function an object can fulfill. This function is in fact a clas-
sification criterion.

The difficulties described for the identification of objects
are equally relevant to classification. In fact, classification
of objects requires an even higher level of reasoning –
and a better understanding of the object’s purpose – than
does identification. This high-level reasoning is not directly
related to shape: instances of the same class often bear little
resemblance to each other. Because the imaged objects are
not actually known to the classifier, straightforward tech-
niques for matching the input to a known database – feasi-
ble in identification – are not applicable here. Thus, a set of
high-level criteria is required, along with properties that are
distinct and general enough to describe a class of objects. A
means for extracting these properties from the input images
is also necessary.

The possible advantages of functional approaches to
generic classification were recognized early on in works
such as [16,55]. Although several systems for object classi-
fication (see [4,16,48,51]) were devised on the basis of these

mailto:ehudr@cs.technion.ac.il
mailto:ishimshoni@mis.haifa.ac.il
mailto:ishimshoni@mis.haifa.ac.il
mailto:octavian@cs.technion.ac.il

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 201
approaches, little experimental work has been done to test
them. Only preliminary attempts have been made towards
functional classification using raw images [49] or stereo
image pairs [52].

However, the existing models for functional classifica-
tion are still not truly generic, and the relationship of
high-level concepts to low-level images is still not robust.
In this context, most of the experiments described in the lit-
erature involve range images of non-cluttered scenes as well
as computer generated polygonal models. Moreover, there
is plenty of unexplored and unexploited amount of knowl-
edge in modeling human cognitive processing, which
should address the connections among the high- and low-
level images understanding, see [1].

A promising new trend in the functional approach to
object recognition is the use of image sequences, in con-
junction with the analysis of static 3D models, to under-
stand human interactions with the environment. The
authors in [40] proposed a scheme for analyzing sequences
of images in which a person interacts with a room full of
chairs. While images are segmented by tracking the human
operator, the elements in the room are labelled by measur-
ing the degree at which the human interacts with them. In
this context, in [3], the authors provide an overview of
research on the use of physical tools. Moreover, they claim
that intelligence can be evaluated by analyzing the activity
of agents as tool users.

We describe a general scheme for classifying objects
from raw range images. Our scheme combines functional
and structural approaches to obtain a generic description
of object classes. In the low-level phase, we process the
raw input image to obtain a segmentation into primitive
shape parts: sticks, plates, and blobs (deformed and non-
deformed), as well as the relationships between them. In
the high-level phase, we employ functional part recognizers
to compute mappings from primitive parts to their func-
tionalities. These recognizers receive as input primitive
parts and constraints on the functional part to be recog-
nized, and output a collection of hypotheses that measure
how this part may be realized. We employ graph-driven
verification of classes for the actual classification, and ver-
ify if the input image conforms to the generic description of
each of the known classes. Each class verification involves a
validation of hypotheses for the functional parts of the
class.

We address the exponential complexity of the classifica-
tion process by introducing a probability-based efficient
search algorithm. This search algorithm employs a general-
ization of the indexing measure mechanism proposed in
GRUFF (see [47] and [46]) Chapter 6, where indexing is
used (only once) to decide which classes are to be consid-
ered for verification and in which order. In addition, after
hypotheses for all the functional parts have been proposed,
a whole-object-test using functional based reasoning is
performed. This type of test validates the existence of
relatively complex relationships among the functional parts
of the object.
We implemented our algorithm and tested it on a data-
base of 150 range images of real 3D objects. The system
was able to recognize all the objects from the classes it
was designed to recognize. The importance of the probabil-
ity search and the verification stage are demonstrated
experimentally. The probabilistic search increases the speed
at which the objects are recognized. The verification stage
generates accurate classification of the objects and their
functional parts.

This paper is organized as follows. In Section 2, we sur-
vey the existing literature. In Section 3, we review the low-
level stages of segmentation and decomposition into parts,
the high-level method of class representation by generic
functional parts, and the classification process. In Section
4, we give the details of our implementation and in Section
5 we describe our experimental results including time mea-
surements for classification as well as ratios in speed
improvement of our scheme when the probabilistic mecha-
nism is turned on and off. We present our conclusions in
Section 6.

2. Related work

Most of the work addressing the 3D recognition prob-
lem uses a model-based approach, where the input is
matched to several models of objects. Several researchers
use a geometric model in which the input is directly
matched to a model of low-level geometric features (see
[17,19,18,25,27,54]). These works, however, are confined
to specific object shapes. Moreover, the geometric
approach is not easily applicable for more generic recogni-
tion, where the objects to be recognized are not known to
the system and therefore no specific geometric models
can exist.

The structural model approaches propose a higher-level,
cognitive-based model in which recognition is achieved by
matching parts of the input objects and connections
between them to models. The cognitive basis was estab-
lished by Marr and Nishihara [35] which was extended by
Biederman [7]. He employs the RBC (recognition-by-com-
ponents) concept which defines an object category in
human recognition as a particular set of qualitatively
described primitive 3D shapes called geons and the qualita-
tive relationships between them. Recognition is based on
an indexing process that relies on the structural composi-
tion of the object. Examples for such an approach can be
found in [5,12–14,32,38,39]. Although these approaches
are more generic and robust than the geometric model
based schemes, they are still confined to recognition prob-
lems in which the shape of the objects to be recognized is
known. Note that instances of even simple classes of
objects differ from one another greatly in terms of shape
and structure.

In [24], the authors built a recognition system based on a
verifying constraints step followed by a validation one. In
the first step, the constraints are verified employing a finite
set of production generation rules grouped in an attribute

202 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
grammar. In the second step, the validation uses a proba-
bilistic model. This recognition system uses rectangles as
primitives and was tested on four 2D images of interior
rooms that contained objects, that are decomposable into
rectangles. This is an example of perceptual grouping being
used for recognition. In 3D the equivalent perceptual
grouping step groups clouds of 3D points into primitives
and finds the relationships between them (as is done in
the initial step of our algorithm).

The need for ‘‘truly’’ generic models for representing
classes of objects in classification processes has given rise
to functional model approaches. Winston et al. [55] pro-
pose a theory explaining how physical models are learned
and identified using functional definitions, physical exam-
ples, and precedents. The authors in [16] present the
FUR (FUnctional Reasoning) project, a functional reason-
ing and shape–function integration system, in which several
functions (such as support, grasp, enter, and hang) are pre-
sented, and the use of functional expert concepts for iden-
tification of functional primitives is discussed.

An impressive number of good results in the function-
based classification field were demonstrated with the
GRUFF, OMLET, and OPUS systems [22,48,49,51,56].
GRUFF, which employs generic representations using
form and function, was extensively used on more than
two hundred synthetic models of five categories [51].
OMLET, which is a version of GRUFF able to learn clas-
ses, was also extensively tested on several hundreds of syn-
thetic models of two categories: cups and chairs [56].
GRUFF was also tested on a few raw images produced
from simulators and stereo capturing systems (see [52]).
OPUS, which is a version of GRUFF that deals with the
unseen space, was tested on range images that included
mock chairs built from boxes and several cups (see
[46,50]). However, quantitative experiments on real range
imagery of real objects are still lacking in the literature.
An interesting refinement of the function-based recognition
approach can be found in [22], where the authors describe a
system for dealing with articulated objects whose function
depends on how their parts are joined.

In [34], a recognition system of articulated objects is
proposed. This system employs a learning stage based on
accumulative Hopfield matching.

The authors in [4] propose a modeling system for generic
objects. This system, which uses a prototype made up of
superquadric parts, is based on the psychological notions
of categorization as suggested in [45]. The authors in [44]
describe a framework for recognizing objects by means of
functional parts. This framework combines functional
primitives, volumetric shape primitives, and the relation-
ships between them. First, the input images are segmented
into parts, which are further fitted to deformable super-
quadrics. Each part is classified into one of four types:
strips, sticks, blobs, and plates. The recognition process is
based on finding functional features, relationships, and
attachments between pairs of parts (as well as other shape
features).
In [53], a model for recognition functionalities that com-
bines representations of shapes and object categories with
action requirements is proposed. In this context, higher-
level functional concepts are presented in [26], where the
authors describe the problem of improvisation. The
authors study the relation- ship between physical proper-
ties of objects, their functional and behavioral representa-
tion, and their use in problem solving. More recently, the
authors in [31], propose a generic model inference scheme
that is based on examples. That the model is generic is
ensured by its high-level representation of the input object,
which is segmented and partitioned into adjaceny-related
regions. The regions are groups of 2D information ele-
ments that represent the lowest common abstraction
detectable in the sequences of input images. However, the
usefulness of such a generic system in direct recognition
tasks is not clearly demonstrated and is left for future
research. Moreover, the system is based on the assumption
that the viewing direction of different input examples is
consistent, and the problem of merging several views is left
for future research as well.

In [11], a physics based application for automatic under-
standing of gear mechanisms is described. Functional infer-
ences are employed for reverse engineering, making it
possible to cope with occlusion and partial information.

A good overview on function based classification meth-
ods can be found in [6]. The authors feel that common-
sense based reasoning is a particular, specialized, very
high-level type of functional reasoning [15,36,37].

We conclude that the functional approaches, though
more generic than the structural ones, still fail to present
truly generic models on the one hand and a robust relation-
ship between high-level concepts and low-level representa-
tion on the other. The few experimental systems in the
literature were usually designed to perform classification
of high-level models of objects and not of raw images of
them.

3. Generic classification by functional parts

Classification approaches have to cope with at least the
following three fundamental problems: determining how
the different classes of objects can be properly described,
relating class descriptions to input images of objects, and
developing a recognition process in which the matching
of the imaged object to the known classes is verified effi-
ciently and effectively. Because categorization of objects
(and especially man-made objects) into basic categories is
usually based on a well-defined purpose, a high-level func-
tional representation of classes is likely to be useful for rep-
resenting all instances of a class generically. In the
following sections, we present our concepts of generic func-
tional parts and shape parts. We also describe our mapping
of functional parts to shapes, and discuss how functional
recognizers are employed in our approach, as well as how
the conformance of a represented image to a functional
class is verified.

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 203
3.1. Representation by functional parts

If we know the function of the different parts of a shape, we
can use this knowledge to arrive at a generic, abstract interpre-
tation of the environment. Many objects in the real world,
especially the man-made ones, have a function they are
designed to fulfill. This function is sometimes termed the pri-

mary function [8,2]. The primary function, which is often the
basis for categorization of objects into basic categories, pro-
vides a natural and generic representation of classes.

Recognizing an object’s primary function requires a very
high-level understanding of the task and the scene in which
the object is used. Therefore, we decompose the primary
function into several lower-level functions. The high-level
primary function is realized by derived functions. Derived
functions are lower-level functions that relate to functional
parts. A functional part is, therefore, a region in the object
responsible for a well-defined set of derived functions.
These functional parts and the relationships between them
are designed to realize the derived functions. For example,
in a chair, the primary function is ‘‘sittability.’’ We decom-
pose the primary ‘‘sittability’’ function into several derived
functions: the object should provide a surface for a person
to sit on, the sitting surface should be stably placed at sitting
height, the object may provide a support for the person’s
back, and the object should provide room (proper clearance
space) for the person’s body. The chair is decomposed into
the previously mentioned functional parts according to how
the parts realize these derived functions: the chair seat pro-
vides the sitting surface, the back-support provides the sup-
port for the back, the support-to-ground provides a stable
support for the seat at the specified height. The functional
parts are connected by means of certain required
relationships: for instance, the distance between the parts
of a chair provide clearance, while the support-to-ground
provides stability. We demonstrate this decomposition into
functional parts, as identified for a chair, in Fig. 1.

Each functional part has several functional properties.
These properties may be simple properties such as orienta-
tion or dimension, or higher-level, task-specific properties
such as graspability for handles or stability for supports.
Fig. 1. Identifying functional parts in a chair.
A functional description of a class is, thus, represented
hierarchically by the primary function, its derived func-
tions, and a list containing the functional parts of that
class, the constraints on their properties, and the relation-
ships between the parts.

Different classes may share low-level (derived) functions.
In this context, generic functional parts can be defined for
several classes. A generic functional part can be seen as a
functional part for which several properties and constraints
are parametric. The functional description of a specific
class consists of parts that are instantiations of generic
parts and constraints. As an example, we define the follow-
ing two generic functional parts: a ‘‘placeable’’ and a ‘‘sup-
port-to-ground.’’ The ‘‘placeable’’ is a flat part on which
objects are to be placed and, for its functionality, requires
proper clearance from above. A ‘‘support-to-ground’’ is a
part designed to provide proper support for other parts
at a specific height above the ground. For the placeable,
we impose several constraints as parameters: allowed
dimension range, placed object size, and allowed deforma-
tion. Note that these generic parts can be instantiated as
functional parts for a set of classes and are sufficient to
account for most of the furniture classes: chairs (where
the placeable accounts for both seat and back support),
tables (where the placeable is allowed to be a plate,
however, not a deformed one), beds, benches, sofas, etc.

3.2. Relating class description to shape

Recall that the input at hand consists of raw range images
of objects which are first processed to obtain low-level
shape information. The following section describes how
the low-level shape information relates to functional
descriptions.

Following the RBC (recognition-by-components) con-
cepts defined in [7], we decompose the imaged object into
a collection of primitive shape parts that will be used for
high-level shape representation. Following [44], we classify
primitive shape parts into three basic classes: sticks, plates,
and blobs. A stick is a part in which one dimension is con-
siderably larger than the others. A plate is a part in which
two dimensions are considerably larger than the third. A
blob is a part in which no dimension is considerably differ-
ent than the others. In order to account for the variety of
shapes in even simple classes such as mugs, we also allow
bending deformations of sticks and plates.

We address criteria for decomposition of the parts, geo-
metric properties, and the functional constraints on primi-
tive shape parts. We use several representations to
describe each primitive part: a general assembly of surface
regions, a vertex representation of a part (consisting of sev-
eral vertices on the deformed surface), and the conformity
of the part to a known volumetric surface (that is, quadric
surfaces such as cylinders, ellipsoids, cones or superquad-
rics), if such a match exists. We define several interesting
properties of primitive parts: their class, deformation level,
convexity, vertices, orientation, pose, and dimensions. We

204 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
consider the following relationships between such parts to
be of particular interest: the nature of the connections and
the relative orientation.

If we bear in mind that there is no one-to-one mapping
between functional parts and shape parts, it is easy to see
that a single functional part may be realized in several dif-
ferent shape configurations. However, all realizations con-
form to the same functional properties defined for the
functional part. For example, the ‘‘placeable’’ generic func-
tional part defined above may be realized by a single plate
or by a collection of plates or sticks placed side-by-side in a
specific orientation. All of these, however, conform to the
‘‘placeable’’ functional properties and constraints.

We employ functional recognizers (see Fig. 2) to map
functional parts to shape parts. Each such recognizer
receives as input a set of primitive shape parts (decomposed
from the raw image) and an optional set of cues containing
additional knowledge about the part. The output is a set of
hypotheses that use configurations of the input shape parts
to realize the functional parts. Each hypothesis is given a
grade that specifies how well it conforms to its functional
requirements. The given cues are, in fact, a set of additional
constraints on the part that emerge from relationships with
other parts and from class-specific constraints. These con-
straints allow a more effective classification and reduce the
number of hypotheses. For example, a search for the func-
tional ‘‘support-to-ground’’ of a chair, if carried out with no
additional knowledge about the support, would output all
possible collections of sticks (or blobs) that might provide
support for any arbitrary part in an arbitrary direction.
However, by providing the support recognizer with addi-
tional cues, such as ground direction or type of surface to
be supported, the classification process can be made more
robust and many irrelevant hypotheses avoided.
3.3. Design patterns

The design of many classes should account for the pri-
mary function of the class and its derived functionality.
For example: a chair design is considered ‘‘valid’’ if it
hypothesis
#3

Functional Part

hypothesis
#1

#2
hypothesis hypothesis

#n

parts
Primitive

Cues

Recognizer

+grade +grade +grade +grade

Fig. 2. A functional part recognizer.
accounts for the functionality imposed by the ‘‘seatability’’
criterion. However, in many cases, among the possible
realizations that conform to the derived functionality,
several realizations (or patterns of realization) are preferred
over others. The existence of such preferred patterns
may account for very high-level functionality (such as
convenience, reliability, etc.), in which a derivation to
well-defined and computable criteria is very difficult, or even
non-functional criteria (such as aesthetics, historical
reasons, etc.).

We conclude that many functional parts, especially the
ones that belong to man-made objects, are confined to sev-
eral ‘‘popular’’ patterns for the realization of the derived
functionality. We will term these patterns design patterns.
For example: the common patterns for realizing ‘‘supporter-
to-ground’’ of chairs are collections of three or four sticks
or one stick with a base support. Collections of ten sticks,
for example, may also be a valid ‘‘supporter-to-ground’’,
however, they are not likely to be found in chairs. Making
design patterns explicit, several advantages are gained:
Very high-level functional and non-functional criteria can
be taken into consideration in recognizing realization
hypotheses for functional parts without having to derive
these criteria explicitly.

We can define a more robust and straightforward func-
tion-to-shape mapping to these specific design patterns
(also accounting more robustly to occlusion). Although
these mappings would be less generic, they would still
account for most common realizations of functional parts.

When several hypotheses are considered for the realiza-
tion of a functional part, design patterns help set the cor-
rect priority order (which hypothesis is more likely to
actually realize the functional part). In the support-to-
ground example, a hypothesis that realizes four legs would
be much preferred to one that realizes ten legs. Priority can
be defined even for common design patterns: for instance, a
four-leg pattern is more common than a three-leg pattern.

3.4. Functional verification

Having introduced the shape representation of the
image, the functional class descriptions, and the mapping
of functional parts to shapes, we now describe the
high-level process of verifying that the represented image
conforms to the functional description of the class. This
verification process is the basis for our classification
scheme.

To facilitate the description of functional verification,
we represent each class as a graph (see Fig. 3), in which
each node represents a functional part of the class, and
the edges represent relationships between functional parts.
We call this graph the functional class graph. A ‘‘functional
part recognizer’’ is assigned to each functional part, and
additional knowledge, in the form of cues, is provided to
them. This additional knowledge is gathered throughout
the verification process and makes relationships between
parts explicit. For example, the cue ‘‘what surface is to

recognizer

part

part

recognizerrecognizer

part

functional

part #1

part #3

part #2

functional

functional

relationships between parts relationships between parts

relationships between parts

Fig. 3. A functional class graph.

Algorithm 1. Functional Verification Algorithm

Input:

A set of primitive parts - PP

FCG - A functional class graph, (let FP be its set of
functional parts)
map - A list of pairs (p1, p2) 2 PP · FP

A set of cues - repository
A threshold for grade - threshold

Output:

A functional classification grade

Functional Verification (PP, map, FCG, reposi-

tory, threshold)

1: if all the nodes in FCG have been explored then

2: return (whole – object – test(PP, map, FCG,
repository))

3: end if

4: grade ‹ 0.0
5: (Lfp, SL) ‹ UP_Algorithm(PP, FCG, map,

repository, threshold) (see Algorithm 2)
6: for all fp 2 Lfp do

7: for all hypothesis h 2 SL(fp) do

8: map_fp ‹ map ¨ h

9: repository_fp ‹ repository [{new_cues}
10: grade ‹ max (grade, FunctionalVerification(PP,

map_fp, FCG, repository_fp, threshold))
11: if grade > threshold then

12: return (grade)
13: end if

14: end for

15: end for

16: return(grade)

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 205
be supported’’ suggested in the above support-to-ground
example is, in fact, provided by a hypothesis for the chair
seat. This cue explicitly addresses relationships between
the seat and the support-to-ground (stable support and
height above ground, for example).

Our classification scheme employs a bottom-up verifi-
cation of each class and can also be seen as searching
for a best mapping of primitive parts to functional ones.
This verification process is performed as described in
Algorithm 1.

Let FP be the set of functional parts that appear in a
functional class graph FCG and PP a set of primitive parts.
Our classification algorithm (see Algorithm 1) constructs
a set of pairs denoted by map 2 PP · FP. An object is
classified if

8fp 2 FP ; 9p 2 PP � FP ; p ¼ ðp; fpÞ:
Each hypothesis h is described in our algorithm as a sub-

set of PP · FP.
Note that the recursive steps, in which map is constructed

(in the input and in lines 8 and 10 of Algorithm 1), are equiv-
alent to proposing and verifying hypotheses. We describe the
algorithm in terms of extending the mapping and hypothe-
ses. In this algorithm, we call a utility and probability evalu-
ation procedure, denoted UP_Algorithm, which is
responsible for determining the search path to be followed.
This procedure employs our probabilistic model and is
described in Section 3.5 in Algorithm 2. The UP_Algorithm

returns two sets as lists Lfp and SL. Lfp (line 5 of Algorithm
1) is a list of functional parts ordered by their decreasing util-
ity U values, and SL is a set of lists of hypotheses, where
SL(fp) represents an ordered list of hypotheses, realizing
the different design patterns, for the functional part fp, sorted
in decreasing probability.

Each hypothesis (line 7 of Algorithm 1) is explored by
picking a functional part and exploring its possible realiza-
tions. Relationships between functional parts are expressed
throughout the traversal of the search graph by cues pro-
vided by already found hypotheses, which are given as
input to recognizers of unexplored parts.
We keep a common knowledge repository (line 9 of Algo-
rithm 1) – a set of cues that are relevant to several functional
parts. This repository, which is updated when different
hypotheses are explored, provides cues for classification pro-
cesses of other parts. By using a common repository, we can
often avoid the exponential nature of the classification prob-
lem. The cues are updated whenever a new hypothesis is pro-
posed. For example, in the case of the chair, the sitting
surface may be kept in the common repository of the chair
class. When a hypothesis of a sitting placeable is explored,
the repository is updated accordingly. The sitting surface real-
ization, as found in the repository, can then provide an effec-
tive cue for the classification of a support-to-ground.

When the algorithm finds a possible realization for each
functional part in FCG, a ‘‘whole object test’’ is performed
(line 2 of Algorithm 1). This test is necessary because some
relationships cannot be expressed in terms of cues. These
relationships would best be tested after all hypotheses have
been found. When verifying a chair, for example, we
should test whether the combination of a seat, a back-sup-
port, and a support-to-ground provides enough room for

to ground

supportsupport

to ground

whole

object

test test

object

whole

ok

verification

#2
hypothesishypothesis

#1

no hypotheses found

#4#3#2

hypothesishypothesishypothesishypothesis

#1

placeable

Fig. 4. A verification tree.

Algorithm 2. Utility and Probability Computation
Algorithm

Input:

PP - A set of primitive parts
FCG - A functional class graph, (let FP be its set of
functional parts)
map - A list of pairs (p, fp) 2 PP · FP

repository - A set of cues
threshold - A threshold for grade

Output:

Lfp - A list of ordered functional parts (in their
decreasing futile values)
SL - A set of lists of ordered hypotheses, where
SL(fp) represents an ordered list of hypotheses for
the functional part fp (in their decreasing P+values)

UP_Algorithm (PP, FCG, map, repository, thresh-

old)

206 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
the sitting person’s body and legs. Such a test is effectively
performed at the ‘‘whole object test’’ phase, after hypothe-
ses for all three parts have been found. The imaged object is
verified as belonging to the class if this test succeeds. If the
test fails, other paths will be attempted. An example of a
verification tree is shown in Fig. 4.

3.5. Cost estimation of the search

In the verification process proposed above, the functional
class graph is traversed, and each traversal corresponds to a
path in the search tree from the root to one of its leaves. If the
input imaged object were indeed an instance of the verified
class, a valid path to a leaf would be found in the tree verifi-
cation. Moving the verification procedure control to a child
of a node of the verification tree means checking an unex-
plored functional part node in the functional class graph,
i.e., verifying one of its hypotheses. Usually, since each func-
tional part has several realization hypotheses, the verifica-
tion tree is exponential in the number of parts to be
verified. Therefore, an efficient traversal of the tree is a major
factor in performance speed-ups. In this section, we propose
a scheme that defines the order in which the functional parts
to be recognized are chosen, as well as the order in which
hypotheses for each part are explored.

We wish to estimate, at each phase of the traversal, just
‘‘how good’’ our current hypothesis path is. We also wish
to define criteria for choosing the next step in our traversal,
in order to minimize the time spent trying to verify a cer-
tain path. We describe a traversal scheme based on proba-
bilities and utility weights, and estimate how much futile
work is expected to be carried out in the analysis of each
functional part.

Using utility estimations in order to decide what action
to be taken has already been used in computer vision in
order to decide which action robots should take for naviga-
tion purposes [43] and controlling multi-agent systems [29].
The closest example to our utility model is [9], which rec-
ommends utility based reasoning for reconstruction of spe-
cific 3D objects (parts) and not classes. We use utility
estimations to guide the recognition process.

In the case where the functional part does exist in the
image, we expect to find it in one of the realization hypoth-
eses. We assume that, on average, one-half of the realiza-
tions have to be explored until the ‘‘correct’’ hypothesis is
found. The total amount of futile work in this case is:
1
2
� W r � nh, where Wr is the expected work for exploring each

realization of the functional part r, and nh is the expected
number of possible realizations in the image for this func-
tional part. If, however, the functional part was not found,
all realizations were explored but none led to a valid verifica-
tion. The total amount of futile work in that case is: Wr*nh.
We conclude that the total mean futile work (considering
both cases and the probability of each case) is therefore:

W futile ¼ Pþ � W r �
1

2
nh þ P� � W r � nh

¼ 1� 1

2
Pþ

� �
W rnh; ð1Þ

where P+ is the probability that the class would be positively
verified assuming the current hypothesis for a sub-object,
and P� = 1� P+. Having defined Wfutile, we define the utility as:

UðfpÞ ¼ 1=W futile: ð2Þ
The validation of functional parts and their hypotheses, de-
scribed in line 5 of Algorithm 1, is detailed in the utility and
probability evaluation algorithm shown in Algorithm 2.

1: Lfp ‹ all the unexplored functional parts
components fp 2 FP, i.e., "fp 2 Lfp,
9= (p, fp) 2 map

2: for all fp 2 Lfp do

3: SL(fp) ‹ ;
4: for all hypotheses h 2 hs(fp) of realization of

fp 2 Lfp do

5: Compute the probability P+ of h (see Eq. (3))
6: if P+ > threshold then

7: SL(fp) ‹ SL(fp) ¨ {h}
8: end if

9: end for

10: sort(SL(fp))(in the P+ decreasing values)
11: end for

12: return (Lfp and SL)

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 207
During the execution of Algorithm 2, we consider all the
functional parts fp that were not treated until the current
stage (line 1 of Algorithm 2). We generate all the hypothe-
ses hs(fp) that can be computed following the design pat-
terns that were implemented (line 4 of Algorithm 2).
Further, we evaluate their utility (line 5 of Algorithm 2)
and sort the hypotheses. Bad hypotheses are discarded (line
7 of Algorithm 2). The sorted list of remaining hypotheses
is returned to the caller at the end.

We now describe in detail how Wr, nh and P+/� are esti-
mated. For nh, an estimate is gradually refined throughout
the verification process: We begin with a primary estimate
based on low-level knowledge acquired by a linear pass on
the found primitive parts. Such low-level knowledge may
pertain to, for example, the number of sticks found in the
image, or the number of plates. The nh estimate is then
refined by considering data found by hypotheses of other
functional parts (provided in the common knowledge
repository as cues). We have experimentally evaluated the
speedup provided by the probability mechanism and show
the results in Section 5.4.

We estimate the expected work Wr for a part by integrat-
ing two factors: the difficulty of exploring the functional part
at hand (considering. the known cues) and the average
depth of a class verification path after this functional part
has been explored (per realization). Usually, Wr is a
function of the cues {ci} for the classification of the part,
and, as noted previously, these cues express constraints
and additional knowledge about the part. Therefore, they
affect the number of valid hypotheses proposed for that
part, and may even affect the actual steps taken in
recognizing it. In other words, the work that will be
expended in exploring the realizations of a part may
depend on what cues are provided to the classification
process. As can be seen in Eq. (1), functional parts with a
lower number of hypotheses are processed first. The lower
nh is, the higher the utility U is, and the estimated
validation time is shorter.

We estimate P+ (line 5 of Algorithm 2) recursively by
evaluating the probabilities of hypotheses for a sub-ob-
ject throughout the verification process. We assume that
a class R can be verified by determining whether the
imaged object indeed belongs to the class R (we denote
this event by R+ and the complementary one by R�).
We also assume that an object of class R is constructed
from several functional parts, denoted as ri. Let Ri be a
sub-object consisting of the parts r0, . . . , ri. At each
phase of the verification, we have a hypothesis HRi for
a sub-object (constructed out of the hypotheses for sev-
eral functional parts of the object). After a new func-
tional part ri+1 is explored, we add hypothesis hi+1 to
the current hypothesis for the sub-object. We now wish
to obtain a probability estimate for our hypothesis. We
define the event that the hypothesis H for the sub-object
Ri is valid recursively because: V HRiþ1 � fV HRi ; V hiþ1

;
V hiþ1$Hg, where HRiþ1 � H Ri

S
hiþ1. Here, V HRi is the

event that hypothesis H realizes Ri, V hiþ1
is the event

that the part ri+1 realizes the hypothesis hi+1, and
V hiþ1$H is the event that the relationships between Ri

and ri+1 that are required for validation are positively
verified. In other words, a hypothesis H 0 is constructed
from a hypothesis H for a sub-object and a hypothesis
h for another functional part of the object. In that case,
the probability that the hypothesis will be realized is
constructed from the probability that H will be realized,
and the probability that h will be realized. Moreover,
H 0 relies on the relationships between H and h. These
relationships are expressed in probabilistic terms as well.
The probability that the image will indeed be positively
verified when assuming a hypothesis for a sub-object is

Pþ ¼ P ðRþjV H 0 Þ

¼ P ðV H 0 jRþÞP ðRþÞ
P ðV H 0 Þ

¼ P ðV H 0 jRþÞP ðRþÞ
P ðV H 0 jRþÞP ðRþÞ þ PðV H 0 jR�Þð1� P ðRþÞÞ ; ð3Þ

where P(R+) is the a priori probability for an imaged object
to be an instance of the class R, and P(H 0jR±) are
calculated recursively using the following equations:

P ðV H 0Riþ1 jRþÞ ¼ P ðV hiþ1$H jV HRi ; V hri ;RþÞP ðV hriþ1 jV HRi ;RþÞ
� P ðV HRi jRþÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

recursive term

ð4Þ
and

P ðV H 0Riþ1 jR�Þ ¼ P ðV hiþ1$H jV HRi ; V hri ;R�ÞP ðV hriþ1 jV HRi ;R�Þ
� P ðV HRi jR�Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

recursive term

ð5Þ

with the following starting conditions: P(;jR+) = 1,
P(;jR�) = 1.P ðV hiþ1$H jV HRi ; V hri ;R�Þ and P ðV hriþ1 jV HRi ;R�Þ
can be estimated statistically.

Supporter to
Ground hypotheses

hn = 5: hypotheses

n = 5: hypothesesh

n = 2: hypothesesh
n = 2: hypotheseshSupporter to

Ground hypotheses

Ground hypotheses

Supporter to

Supporter to

Ground realizations

Ground realizations

Supporter to

Ground realizations

Supporter to

No supporter to Ground

proposed by the UP_Algorithm
Back Support

hypothesis hypothesis

Back Support

Plate 1

Back Support

Supporter to Ground

Seat

Legend of lines

These branches are not further explored

Input:

Stick 1

Stick 2

Stick 4

Stick 3

Plate 2

Plate 1

Seat hypotheses Back Support hypotheses

Root

Seat realizations
Back Support realizations

Plate 1

Back Support realization

whole_object_test

Low uility expected

These branches are not further explored

These branches are not further explored

Low uility expected

Seat realizations

Seat hypotheses

Plate 2

Fig. 5. Expected work and probability in the verification tree.

208 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
A possible verification tree with hypotheses and proba-
bility considerations is outlined in Fig. 5. In this example,
our scheme tries to find first a seat functional part among
the three components seat, supporter to ground, and back
support. This is the result of the fact that there is a lower
number of plates in the input than the number of sticks.
In this case, the number of possible realizations of seat
and back support is two while the number of realizations
for a ground support is five. The algorithm has to therefore
choose between trying to verify the existence of seat or a
back support. A seat is chosen because after a seat hypoth-
esis is generated and incorporated into the knowledge
repository, verifying a supporter to ground is much
cheaper. After the seat hypothesis realization, the
algorithm chooses to check the existence of a supporter
to ground, and not the back-support, since the Wr is lower
when the seat is already known. In the end, one hypothesis
for the back support is checked and the whole-object-test
validates the result.
4. Matching shape parts to functionalities

Our approach is a bottom-up function-based classifica-
tion scheme which receives as input raw range images
and 3D models. The high-level processing of these images
is based on the lower-level stages, the details of which will
be given in the following sections, along with a discussion
of implementation issues. Because the lowest level of pro-
cessing is that of segmentation, we also present a short
review of the literature on that subject.
4.1. Low-level processing—3D segmentation

The literature of range image segmentation is vast and
comprises works that deal with comparisons among differ-
ent algorithms (see [28,30,42]). Besides segmentation into
parts using geometric characterizations, we are also inter-
ested in recovering primitives [10,23,33,41,57] as well as
in analyzing the interconnections among the parts [19].

We begin the segmentation with two steps that follow
the first part of the UE algorithm [20,28] and yield an over-
segmented image into regions. Next, we build a region con-
nectivity graph in which nodes are mapped to the regions
(that were found in the low level) and edges are mapped
to relationships between regions. The graph is built by clas-
sifying the region-to-region connection as one of discon-
nected, occluded, or connected.

The segmentation analyzes the relationships between
adjacent parts in the raw range image. Assume that in a
raw range image of a chair the seat is realized by a plate
and the ground support is realized by several sticks. The
relationship of connectivity between the seat and the leg
that is the farthest from the capturing device is usually
the hardest and error prone case detection (see
Fig. 15(a)). We consider such a relationship as an occlusion
and the segmentation detects it by analyzing the jumps in

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 209
the distances of the points at edge regions from the captur-
ing devices. In the higher levels of the algorithm hypotheses
that assume that the occluding and occluded parts are actu-
ally connected are tested.

Because regions conform to surfaces of parts or fractions
of surfaces, we represent each part as a collection of
regions. We traverse the connectivity graph and collect
connected regions into individual primitive parts. We com-
pute the region-to-region connections of each new merged
region to all other regions.

We further classify a part into a stick (with allowable
deformation) or a plate (allowing deformations on the
plate). At this level of the problem we choose to regard a
blob not as a primitive shape but as a collection of
deformed plates (to be investigated in the mid-level, see
Section 4.2). We note that a stick is a part with one dimen-
sion that is considerably larger than the others. In a plate,
two dimensions are similar and the third is smaller.

We consider two primitive parts: sticks and plates. For
sticks and plates, we distinguish between proper and
deformed parts.

(1) Sticks – we represent a stick by its two extremities
and one midpoint, thus accounting also for deformed
sticks.

(2) Plates – we represent planar plates using three ver-
tices defining a bounded rectangle that has the
same orientation as the approximated region. For
deformed plates, we employ a nine-point represen-
tation as shown in Fig. 6, where the corners repre-
sent an oriented bounding rectangle, the midpoints
are averages of edge corners, and the center point
is the mass center of the region.To evaluate the
Fig. 6. Deformed plate representation.

Fig. 7. Low-level processing: the segmentation of a raw range image of an airp
the airplane in (a), (c) represents the segmentation of the range image (b), where
wings and the stabilizers are represented by plates.
degree of deformation of a plate and obtain a more
compact and high-level representation for deformed
plates, we match the point cloud of this part to
quadrics (see [21]). Quadrics enable classification
of the primitive parts as a cylindric or elliptic
surfaces.

The input to our classification scheme, and thus to the
lowest-level processing stage, is a raw range image repre-
sented as a point cloud. This point cloud is segmented in
the first processing stage. Fig. 7 illustrates a segmentation
result of an airplane. The airplane’s fuselage is modeled
by a deformed stick while its wings are represented by
plates.

4.2. Mid-level processing

In range images, a plate (deformed or non-deformed)
may be a face of a blob, which is a part in which all the
dimensions are similar. We represent blobs by a collec-
tion of plates (deformed and non-deformed) and the rela-
tionships between them. This allows us to verify
functional constraints more easily in the higher level
and handle a variety of blobs: polyhedral, curved, con-
vex, and concave. In order to describe concave blobs
such as containers, we allocate a curve for the aperture
of the concavity. We search for pairs of deformed plates
having occlusion relationships and locations at which one
plate is convex and the other is concave. After the
boundary of these plates is found, a curve for the possi-
ble aperture within these plates is extracted. We experi-
mented more types of blobs realizations. However, the
most reliable realizations were inferred from sets of
deformed plates. While recovering blobs seems to be a
segmentation task, this problem can be considered as
low-level processing. On the other hand, we employ ele-
ments of perceptual grouping of primitives, towards this
goal, which is a higher level processing task. The most
natural way to characterize blobs recovering tasks is,
therefore, mid-level processing. Fig. 8 shows a blob
reconstruction in a real range image of a couch-like
chair.
lane. (a) Represents a digital image of an air-plane, (b) is a range image of
the blue region shows the fuselage identified as a deformed stick while the

Fig. 8. The classification of a couch-like chair having a blob support-to-
ground.

210 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
4.3. High-level processing

As discussed in Section 3, in order to verify if the decom-
posed shape parts of an image conform to a known class,
functional representations for known classes should be
obtained. This can be done using generic and class-specific
functional parts.
4.3.1. Generic functional parts

We implemented and tested several generic functional
parts: placeable, leg, support-to-ground, handle, container,
central-axis, wing, off-ground support, and stabilizer (in
air).

Let us first consider the placeable. There are certain
parametric constraints on its dimensions, allowable defor-
mation, surface direction, and clearance, i.e., the amount
of space, relative to the placeable, that should be clear of
obstacles. We check several properties for the placeable,
including surface and dimensions, as well as its center
and orientation. Possible realizations of the placeable are
shown in Fig. 9.

The constraints on the ‘‘support-to-ground’’ include the
shape part to be supported, the direction of the ground,
and the allowed range for height. The properties we check
for ‘‘support-to-ground’’ include its height and the sup-
ported parts. The possible realizations for a ‘‘support-to-
ground’’ are shown in Fig. 10. Here, we consider a ‘‘leg’’
as a stick or a collection of several sticks joined together.

Supports-to-ground are classified by identifying the
sticks in the primitive parts collection. Then, possible con-
figurations of sticks forming three/four/one-legged hypoth-
eses are tested with the parametric constraints of height
Fig. 9. Possible placeable realizations.

4-legged 1-legged + base-support(3-legged

Fig. 10. Several possible supp
and stability. The stability constraint is checked by per-
forming two tests. The first test finds the polygon defined
by the connection points of the supporter to the part,
and then checks if the center of the supported part is within
this polygon. (In the case of a one-legged support, this test
actually checks if the leg is connected to the center of the
part.) The second test finds the projection of the part on
the ground, and then checks that a large enough portion
of that projection lies within the polygon defined by the
support-to-ground.

The ‘‘handle’’ is defined as a functional part that enables
a person to grasp the object it is attached to. The paramet-
ric constraints that we consider for a handle are the number
of sides (one or two), the direction of handle, the connected
part, and the graspability dimensions.

The parametric constraints that we consider for a ‘‘con-
tainer’’ functional part are the general dimensions, the
capacity, the orientation, and the aperture curve parame-
ters. In our current implementation, a container may be
realized as a cylindrical part or as a combination of two
deformed plates, one of which is convex and satisfies an
occlusion relation with the other, which is concave.

The ‘‘central-axis’’ is a functional part that is mainly
realized by a stick, which is eventually deformed. The jus-
tification for introducing such a functional part is that it
can be found in many symmetric objects, for example in
airplanes, umbrellas, screws, and rail wheels. These objects
are characterized by a central part that unifies the function-
alities of all other parts of the analyzed object.

A ‘‘in-the-air-support’’ is a functional part that is real-
ized by two wings having the same surface and size. (Wings
are realized by plates.) In addition, the two wings share the
same normal. A ‘‘stabilizer’’ is a surface that can provide
vertical or horizontal stability. For vertical stability, one
small wing suffices. For horizontal stability, however, two
small wings of similar size are required. Similarity in size
and form are also requirements for horizontal stability.

4.3.2. Functional description of classes

We have implemented classifiers for ten classes: chairs,
mugs, glasses, tables, plates, airplane models, rolling-pins,
umbrellas, hangers, and bags. The exact numbers of objects
used in classification are detailed in Table 1. These com-
mon or widely available objects can be conveniently cap-
tured in 3D. In the following, we describe the functional
decompositions for chairs, tables, mugs, and airplanes,
other classes having similar structures.

We recognize the chair functionality class to be com-
prised of the relationships between a seat, a supporter-to-
ground, and a back-support, which is optional (see
1-legged + base-support(2)1) blob support

ort-to-ground realizations.

Support

OffgroundVertical

Stabilizer

Central

Axis

Horizontal

Stabilizer

(Optional)

Fig. 12. Airplane functional parts.

Table 1
We tested 150 objects

Tested objects Valid classes Non-valid classes

Chairs 15 8
Mugs 12 17
Glasses 7 3
Tables 7 5
Plates 3 0
Airplanes 17 1
Rolling-pins 2 2
Umbrellas 2 2
Hangers 4 1
Bags 3 1

Total 72 40

Besides the objects shown in the table, there are another 38 objects that
can be divided in two groups. The first group consists of 23 objects for
which we did not construct classifiers. The second group consists of 15
objects that were segmented but not classified because the functional part
recognizers were limited in their ability to recognize rare or unusual
realizations of objects. Each object was captured in one orientation, i.e.,
different range images represent different objects.

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 211
Fig. 11). The seat and the back support are each realized by
a placeable, and the seat-to-ground support is realized by a
support-to-ground.

We verify the relationships between the parts to deter-
mine that the seat is perpendicular to the back support;
the ground support provides a stable support for the seat;
the seat is connected to the back support; the ground sup-
port is connected to the seat; and a combination of a seat, a
back support, and a ground support provides seating and
room for the legs.

We consider that a table consists of a desktop and a
ground support. Moreover, we model mugs by a container
and a handle.

Airplanes are realized by a central axis part, an off-
ground support, a vertical stabilizer, and, optionally, a hor-
izontal stabilizer. These functional parts are realized by a
deformed stick, a set of two plates, a single plate, and a
set of two plates respectively. The vertical stabilizer is ver-
ified by measuring the angle between the normals to the
surface of the off-ground support and to the vertical stabi-
lizer. This angle is considered valid when it is close to p

2
. In

addition, we require that the fuselage, which is represented
by the central axis, be connected to all the other functional
parts. For airplanes, we used the decomposition shown in
Fig. 12.
support
back-

support
groundseat

Fig. 11. Chair functional parts.
4.3.3. Implementation of class verification

In addition to the generic functional part definitions and
class-specific functional definitions, a generic class verifica-
tion procedure was implemented, following the concepts
defined in Section 3. The verification procedure evaluates
the quality of the primitive shape parts by constructing
hypotheses and computing the quality of their relationship
to hypotheses for other parts (in other words, how well the
hypotheses conform to the cues). Moreover, the verifica-
tion procedure accounts for the distribution among design
patterns (for example, a four-legged support-to-ground
hypothesis gets a higher grade than a one-legged one). In
addition, a matching grade that represents the degree of
conformance to constraints is computed as well. This
matching grade implementation employs conformance
tests for Gaussian distributions of range constraints. (We
have also tested uniform distributions, with no significant
difference in the results.)

5. Experimental results

We have tested our implementation on a database that
includes 150 range images of real objects, scanned employ-
ing a Cyberware laser-based range scanner. The database
comprises ten classes of objects. Each one of the range
images includes one object, where different range images
represent different objects. In addition, we used several
cluttered images, where the cluttering was built on objects
captured in the single object range images.

The database includes 72 objects that are valid instances
of classes for which we have built classifiers, 48 objects that
are functionally non-valid instances of these known classes
(e.g., an unstable chair or an ungraspable mug), and 23
objects for which we did not implement classifiers (boxes
and hand-tools, for example). We also tested 15 objects
for which there are classifiers; however, we did not imple-
ment the required specialized functional part recognizers
because these particular objects are very rare realizations
of their functional parts (see, for example, Fig. 13).
Throughout the tests, we verified that the low and mid-level
phases, as well as the high-level classification, perform

212 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
correctly. Examples of intensity images of some of the
tested objects are shown in Fig. 14. A summary of the tests
performed on real objects containing our supported func-
tional parts is presented in Table 1.

In functional reasoning schemes, and computer vision
systems in general, the number of parameters to be tuned
is non-negligible. We implemented our scheme so that most
of the parameters belong to the classifiers only and not to
the common generic code. A few objects in each class are
sufficient for determining the parameters required for
robustness.

In the airplanes case, six instances were sufficient to fix
the parameters for classifying all 17 valid airplanes we used
in the experiments. We computed the standard deviations
Fig. 13. A rare realization of the support-to-ground functional part.

Fig. 14. Intensity images o
of all the parameters in an increasing sequence of three,
four, five, and six airplanes. These measures provided
boundaries for parameters. With each set of boundaries,
we experimented the classification results over all the air-
planes in the database. There was no need into enlarge
the training set to more than six planes. In this context,
one of the important parameters was the angle between
the central axis and the normals of the off-ground supports.
We have found that an error of 1% around p

2
is character-

istic to our models. In the following sections we present
several running examples of the algorithm.
5.1. Classification of valid instances

Fig. 15(a) demonstrates the classification of a standard
valid chair that has three functional parts (a seat, a back
support, and a support-to-ground). The correct hypothesis
combination passed the verification stage and the image
was classified as a chair. Verification of the chair image
as mug and glass failed because no container was found.
Verification of the chair image as table failed because no
f some tested objects.

Fig. 15. The first triplet, (a) represents a standard valid chair with a back
support. The second triplet, (b) shows the classification of a valid three-
legged chair.

Fig. 17. A F117 plane.

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 213
correct tabletop was found (improper clearance or
dimensions).

Moreover, Fig. 15(a) is an example of reasoning in terms
of occlusion. The farthest leg, the one that is segmented in
yellow, is connected with the seat by an occlusion relation-
ship. This relationship is inferred at segmentation and pro-
vided to the input to the reasoning stages as a cue for the
knowledge repository mechanism. At the recognition stage,
a hypothesis assuming that the leg is connected to the plate
is tested and verified.

Fig. 15(b) demonstrates the classification of a stool,
which is a three-legged chair without a back support.
Unlike a standard chair, the seat is heart-shaped and is
realized by a deformed plate. The low-level phase segment-
ed the image correctly into one deformed plate and three
sticks conforming to the legs. The first functional part to
be elaborated was chosen to be the support-to-ground.
This part was chosen for its higher utility estimate, which
derives from the fact that the part consists of one simple
hypothesis of a combination of the three legs. This is in
contrast to the previous example, where the first explored
part was the seat. In that example, the choice of which part
to explore first was based on the fact that the segmentation
provided many sticks, which led, in turn, to a large number
of possible configurations as supports-to-ground. After a
hypothesis for support-to-ground was found, the seat part
was explored and a valid hypothesis found. The image was
classified as a valid chair.

The classification of a blob as a support-to-ground in a
couch-like chair is demonstrated in Fig. 8. The mid-level
Fig. 16. The first triplet, (a) shows a classification of a valid cylindrical mug w
and over-segmented mug.
processing stage segmented the image into several plates
conforming to the chair itself and a collection of plates
and sticks (deformed and non-deformed). This was due
to over-segmentation and clutter. The high-level phase
chose to start with the seat (for reasons of utility) and
found several valid hypotheses, followed by a valid blob
support-to-ground for one only. The image was correctly
verified as a valid chair.

Fig. 16(a) demonstrates the classification of a standard
valid mug with a cylindrical container. The classification
of a valid non-cylindrical mug with an over-segmented
decomposition into parts is demonstrated in Fig. 16(b).

The segmentation of an airplane is shown in Fig. 7. The
vertical stabilizer is usually implemented by a plate. In the
scene, several plate candidates are recovered by the seg-
mentation stage. Therefore, several whole-object-tests ver-
ifying their orthogonality to the horizontal stabilizer are
required until the vertical stabilizer can be correctly classi-
fied. This demonstrates the importance of the whole-object-
test for the correct classification of the object and its parts.
Note that using certain design patterns prevent us for rec-
ognizing other exotic designs. For example, an F117 (see
Fig. 17), as it does not have vertical and horizontal stabiliz-
ers, will not be recognized by our current scheme.

5.2. Classification of non-valid class instances

The classification of a non-valid chair is demonstrated,
in Fig. 18, on a chair missing one of its legs. Among sup-
port-to-ground hypotheses, none was found to provide a
stable support for the seat.
hile the second one (b) represents a classification of a valid non-cylindrical

Fig. 19. A classification of a coffee mug having an obstacle in its handle.

Fig. 18. A classification of a non-valid chair, missing one of its legs.

214 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
In Fig. 19, we demonstrate the classification of a mug
that is not valid because it has an ungraspable handle.
Although the high-level phase found a valid container
and then found several hypotheses for handles, all were
ruled out. The ‘‘real’’ handle had correct grasping dimen-
sions but did not have grasping clearance. Therefore, the
verification of mug failed.
5.3. Classification in a cluttered environment

Fig. 20 demonstrates the correct classification of a valid
three-legged chair in a neighborhood consisting of other
‘‘non-class’’ objects (pencils and a piece of chalk). The
low-level stage segmented the image into a plate conform-
ing to the chair seat and a collection of sticks (deformed
and non-deformed) conforming to the legs and to the other
objects. The high-level phase chose to start with the seat
(for reasons of utility, and in contrast to the previous
example, where the existence of many sticks suggested a
large number of support-to-ground realizations to
explore). This phase found several valid hypotheses, then
found a valid support-to-ground consisting of the three
legs. The clutter of the other objects did not affect the func-
tional validity of the ‘‘real’’ chair, which was correctly
verified.

Besides accuracy in classification, schemes for classifica-
tion in cluttered environments have to cope with time
requirements feasibility. We provide the time measure-
Fig. 20. A correct classification of a valid chair in a cluttered
environment.
ments required by a classification in cluttered environments
experiment in Section 5.4.
5.4. Utility and probability considerations

Using the examples shown above, one can see how prob-
ability and utility affected the classification process. We
want to emphasize the importance of two things: the order
in which the functional parts were chosen and the order in
which the realization hypotheses were explored. For each
functional part, the hypotheses that were most probable
were explored first.

Consider, for example, the class of chairs. There, the
algorithm has to decide whether to recognize first the sup-
port-to-ground or the seat. In the chair in Fig. 15(a), the
first part to be elaborated was the seat (because. over-seg-
mentation of the sticks in the scene resulted in many sup-
port-to-ground hypotheses). In the chair in Fig. 15(b),
however, the first part to be realized was the support-to-
ground because the small number of leg combinations
being considered led to greater utility.

In order to prove the efficiency of our utility functions
we considered the classification of the chair in Fig. 21.
We segment the raw range image of the object and clut-
tered it with deformed sticks. Each time a deformed stick
was added we measured the time required by the classifica-
tion. We summarize the times in Table 2. The measure-
ments indicate that the time required for classifications
increases linearly with the number of added primitives.

All the images of airplanes in our experiments contain
one deformed stick and several plates. The fuselage is ana-
lyzed first, followed by the vertical stabilizer and the off-
ground support. This is because classification of the fuse-
lage requires a deformed stick, while a vertical stabilizer
or an off-ground support requires one or two wings realized
as plates. Therefore, the first functional part to be analyzed
is the fuselage, followed by the vertical stabilizer and the
off-ground support.

In order to demonstrate the importance of the utility-
and probability-driven approach, we compared, for the
Table 2
Times measured in a cluttered image of the chair in Fig. 21

Original object Cluttering sticks added

1 2 3 4 5

Time in seconds 0.061 0.065 0.07 0.076 0.08 0.084

Fig. 21. An image of a chair that was used in a cluttered environment.

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 215
airplane class, the time required by our classification
scheme when the probabilistic mechanism described in Sec-
tion 3.5 was turned on and off. When the mechanism is
turned off, an arbitrary functional part is chosen by the
UP_Algorithm. Turning the mechanism on led to a 25%
speedup in classification time in average. We did not,
however, consider the time required for the probabilistic
mechanism itself. This time is considered to be negligible.

In average, the time required for classification of each
object is half a second. The less time demanding classifica-
tion was observed when the input consisted of cups and air-
planes. In these cases, the time required by the cups and
airplanes classifiers is a tenth of a second. The highest clas-
sification time was registered when the input consisted of
chairs. The chair classifier required up to one second for
a positive classification. All the classifiers that provided
negative classifications required less than 1

100
seconds. We

measured these classification times on a Pentium 4 proces-
sor, 1.7 GHz, equipped with 256 Megabytes of memory.

We also tried an interleaved implementation. We asked
if the analyzed object is one of five classes: chair, glass,
mug, bed, or plate. Each of the five classifiers works as
usual; however, only one of them receives processing time
at a certain moment. The classifiers compete to gain pro-
cessing time at the moment of proposing functional parts
and hypotheses to be recognized. The classifier that pro-
poses hypotheses for a functional part with the highest
P+ (see Section 3.5) receives processing time. The scheme
runs until one of the classifiers reports a valid classification
or all the classifiers stop their processing.

We also measured the time required by all the classifiers
together and divided it by two. This was done because, not
knowing the best order for the classifiers, we wanted to try
all possible combinations. Therefore, on average, half the
time that would be required for running all the possible
combinations is required for finding the correct one.

In this experiment, we used chairs, that is objects which
can be recognized, i.e., for which we have built a classifier.
Note that the objects in our database are relatively simple.
We expect the search times to be even faster when the prob-
ability mechanism applied to complex objects, rather than
the relatively simpler ones we used in our experiments.
Moreover, a higher number of classes to be verified will
also improve the run time ratio.

5.5. The role of verification in functional reasoning

The final validation checks the interrelationships that
can, naturally, only be checked in the final stages of com-
putation, when all the functional parts have been recog-
nized, or, at least, hypothesized. Consider the case of
airplanes. The central axis, or the fuselage, is connected
to all other functional parts. When the classification does
not begin with hypothesizing the fuselage, the test of con-
nectivity between the central axis and all other parts of
the airplane should naturally be delayed until all the
functional parts have been hypothesized.
We performed several experiments that prove the effi-
ciency and reliability of the final verification stage. For
example, we tested airplanes to see if the normal of the
off-ground support is perpendicular to that of the vertical
stabilizer. All seventeen valid airplanes were correctly clas-
sified and their vertical stabilizer recognized. When we
omitted this stage, all the airplanes were still classified,
but small wings from the horizontal stabilizer were incor-
rectly recognized as vertical stabilizers.

Moreover, the verification stage has the added advan-
tage of improving classification certitude. As part of our
tests we modified correct objects, that were formerly recog-
nized by our scheme, into invalid objects (for example we
add an object on the seatable surface). We submitted them
again to classification. In these tests, the final detection of
the modification took place in whole-object-test stage.

6. Conclusions

In this paper we address the problem of object classifica-
tion from raw range images. A new implementation for a
functional based classification scheme is presented. Our
approach addresses low and high-levels aspects of the prob-
lem by combining structural and functional approaches,
each aspect being treated in a separate phase. In the low-
level phase, a shape part decomposition process segments
the raw input image into a collection of primitive shape
parts, and properties of parts and relationships between
them are calculated, to be later analyzed in a functional con-
text. In the high-level phase, a probability and utility-guided
verification process verifies whether the decomposed parts
of the image conforms to the description of one of the
known classes. A functional model for class description
by functional parts is also proposed, demonstrating how
various classes are represented by only a few generic func-
tional parts. A mapping of functional parts to configura-
tions of primitive shape parts is presented as well, using
functional part recognizers and common design patterns.

The algorithm has been implemented and tested on 150
range images of real objects. Differently shaped objects are
decomposed into parts and classified, thus proving the fea-
sibility of our approach and its robustness to over-segmen-
tation and cluttered scenes.

The main contributions of this work are a new search
criteria, implemented by means of a probability mecha-
nism, and a verification stage that can be performed in
the last stages of computation only, when all the hypothe-
ses about functional parts are known. We report that the
recognition process speeds up when the probability mecha-
nism is turned on. We expect this speedup to increase even
further when the probability mechanism used in the recog-
nition of complex objects, rather than the relatively simple
objects used in our experiments. Moreover, it was experi-
mentally proven that the verification stage led to more
accurate classification.

Future research includes the definition of some additional
generic functional parts, thus enabling the classification

216 G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217
of many more classes, and the generalization of the shape-
to-function mapping by implementing more realizations of
the existing functional parts. Applying statistical analysis
to classification results of a large number of input images
will lead to more efficient probability design. That is, the
estimations of the amount of work required by the verifica-
tion process will be more accurate and the order of verify-
ing hypotheses will enable shorter processing time. The
introduction of new classes can be generalized by adding
learning algorithms to the classification process. We expect
to learn various realizations in a granular way. This means
that functional parts that have the same geometry and are
shared between different classes do not have to be learned
separately with each new class.

References

[1] SOAR, http://sitemaker.umich.edu/soar, 2006.
[2] G. Adorni, M. DiManzo, F. Giunchiglia, L. Massone, A conceptual

approach to artificial vision, in: The Fourth Conference on Robot
Vision and Sensory Controls, 1984, pp. 231–260.

[3] R. St. Amant, A.B. Wood, Tool use for autonomous agents, in:
Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2005, pp. 184–189.

[4] R. Bajcsy, F. Solina, Three dimensional object representation
revisited, in: Proceedings of the IEEE International Conference on
Computer Vision, 1987, pp. 231–240.

[5] R. Bergevin, M.D. Levine, Generic object recognition: building and
matching coarse descriptions from line drawing, IEEE Transactions
on Pattern Analysis and Machine Intelligence 15 (1) (1993) 19–36.

[6] E. Bicici, R. St. Amant, Reasoning About the Functionality of Tools
and Physical Artifacts. Technical Report 22, NC State University,
2003.

[7] I. Biederman, Recognition by components: a theory of human image
understanding, Psychological Review 94 (2) (1987) 115–147.

[8] L. Bogoni, R. Bajcsy, Interactive recognition and representation of
functionality, Computer Vision and Image Understanding 62 (2)
(1995) 194–214.

[9] R.C. Bolles, P. Horaud, 3dpo: A three-dimensional part oriented
system, The International Journal of Robotics Research 5 (3) (1996)
3–26.

[10] S.K. Bose, K.K. Biswas, S.K. Gupta, An integrated approach for
range image segmentation and representation, Artificial Intelligence
in Engineering 1 (1996) 243–252.

[11] M. Brand, Physics-based visual understanding, Computer Vision and
Image Understanding 65 (2) (1997) 192–205.

[12] R.A. Brooks, Symbolic reasoning among 3-D models and 2-D
images, Artificial Intelligence 17 (1981) 285–348.

[13] R.A. Brooks, Model-based three-dimensional interpretations of two-
dimensional images, IEEE Transactions on Pattern Analysis and
Machine Intelligence 5 (2) (1983) 140–149.

[14] R.A. Brooks, R. Greiner, T.O. Binford, The acronym model-based
vision system, in: Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 105–113, 1979.

[15] E. Davis, The naive physics perplex, AI Magazine 19 (4) (1998) 51–79.
[16] M. DiManzo, E. Trucco, F. Giunchiglia, F. Ricci, Understanding

functional reasoning, International Journal of Intelligent Systems 4
(1989) 431–457.

[17] C. Dorai, A.K. Jain, Cosmos – a representation scheme for 3d free-
form objects, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (10) (1997) 1115–1130.

[18] T.J. Fan, G. Medioni, R. Nevatia, Description of surfaces from range
data using curvature properties, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 86–
91, 1986.
[19] T.-J. Fan, G. Medioni, R. Nevatia, Recognizing 3-D objects using
surface descriptions, IEEE Transactions on Pattern Analysis and
Machine Intelligence 11 (11) (1989) 1140–1157.

[20] A. Fitzgibbon, D. Eggert, R.B. Fisher, High-level cad model
acquisition from range images, Computer-Aided Design 29 (4)
(1997) 321–330.

[21] A. Fitzgibbon, M. Pilu, R.B. Fisher, Direct least square fitting of
ellipses, IEEE Transactions on Pattern Analysis and Machine
Intelligence 21 (5) (1999) 476–480.

[22] K. Green, D. Eggert, L. Stark, K. Bowyer, Generic recognition of
articulated objects through reasoning about potential function,
Computer Vision and Image Understanding 62 (2) (1995) 177–193.

[23] E. Hameiri, I. Shimshoni, Estimating the principal curvatures and the
darboux frame from real 3-d range data, IEEE Transactions on
Systems, Man, and Cybernetics, Part B 33 (4) (2004) 626–637.

[24] F. Han, S.-C. Zhu, Bottom-up/top-down image parsing by attribute
graph grammar, in: IEEE International Conference on Computer
Vision, pp. 1778–1785, 2005.

[25] M. Hebert, T. Kanade, I. Kweon, 3-D vision techniques for
autonomous vehicles, Analysis and Interpretation of Range Images
(1990) 273–337.

[26] J. Hodges, Functional and physical object characteristics and object
recognition in improvisation, Computer Vision and Image Under-
standing 62 (2) (1995) 147–163.

[27] R. Hoffman, A.K. Jain, Evidence-based recognition of 3-D objects,
IEEE Transactions on Pattern Analysis and Machine Intelligence 10
(6) (1988) 783–802.

[28] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B.
Goldgof, K. Bowyer, D.W. Eggert, A. Fitzgibbon, R.B. Fischer, An
experimental comparison of range image segmentation algorithms,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18
(7) (1996) 673–689.

[29] F.V. Jensen, H.I. Christensen, J. Nielsen, Bayesian methods for
interpretation and control in multiagent vision systems, in: Kevin W.
Bowyer (Ed.) SPIE – The International Society for Optical Engi-
neering, Applications on Artificial Intelligence X: Machine Vision and
Robotics, vol. 1708, March 1992, pp. 536–548.

[30] X. Jiang, K. Bowyer, Y. Morioka, S. Hiura, K. Sato, S. Inokuchi, M.
Bock, C. Guerra, R.E. Loke, J.M.H. du Buf, Some further results of
experimental comparison of range image segmentation algorithms, in:
Proceedings of the International Conference on Pattern Recognition,
vol. 4, pp. 877–881, 2000.

[31] Y. Keselman, S. Dickinson, Generic model abstraction from exam-
ples, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27 (7) (2005) 1141–1156.

[32] D.J. Kriegman, T.O. Binford, T. Sumanaweera, Generic models for
robot navigation, In Image Understanding Workshop, 1988, pp. 453–
460.

[33] A. Leonardis, A. Jaklic̆, F. Solina, Superquadrics for segmenting and
modeling range data, IEEE Transactions on Pattern Analysis and
Machine Intelligence 19 (11) (1997) 1289–1295.

[34] W.-J. Li, T. Lee, Object recognition and articulated object learning by
accumulative hopfield matching, Pattern Recognition 35 (2002) 1933–
1948.

[35] D. Marr, H.K. Nishihara, Representation and recognition of the
spatial organization of three dimensional structure, in: Proceedings of
the Royal Society of London B, 1978, pp. 269–294.

[36] M. Minsky, Commonsense-based interfaces, Communication of the
ACM 43 (8) (2000) 67–73.

[37] L. Morgenstern, Mid-sized axiomatizations of commonsense prob-
lems: A case study in egg cracking, Studia Logica 67 (2001) 333–384.

[38] A.P. Pentland, Recognition by parts, in: Proceedings of the IEEE
International Conference on Computer Vision, 1987, pp. 612–620.

[39] A.P. Pentland, Automatic extraction of deformable part models,
International Journal of Computer Vision 4 (2) (1990) 107–126.

[40] P. Peursum, S. Venkatesh, G.A.W. West, H.H. Bui, Using interaction
signatures to find and label chairs and floors, IEEE Pervasive
Computing 3 (4) (2004) 58–65.

http://sitemaker.umich.edu/soar

G.F.E. Rivlin et al. / Computer Vision and Image Understanding 105 (2007) 200–217 217
[41] M. Pilu, R.B. Fisher, Recognition of geons by parametric deformable
contour models. In European Conference on Computer Vision, 1996,
pp. 71–82.

[42] M.W. Powell, K.W. Bowyer, X. Jiang, H. Bunke, Comparing curved-
surface range image segmenters, in: Proceedings of the IEEE
International Conference on Computer Vision, 1998, pp. 286–291.

[43] R. Rimey, C. Brown, Task-Oriented Vision with Multiple Bayes Nets.
Active Vision, The MIT Press, Cambridge, Massachusetts, 1992.

[44] E. Rivlin, S.J. Dickinson, A. Rosenfeld, Recognition by functional
parts, Computer Vision and Image Understanding 62 (2) (1995) 164–
176.

[45] E. Rosch, Cognition and Categorization, in: E. Rosch, B. Lloyd
(Eds.), Erlbaum, Hillsdale, NJ, 1978.

[46] L. Stark, K. Bowyer, Generic object recognition using form and
functionMachine Perception and Artificial Intelligence, vol. 10,
World Scientific, 1996.

[47] L. Stark, K.W. Bowyer, Indexing function-based categories for
generic recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1992, pp. 795–797.

[48] L. Stark, K.W. Bowyer, Function-based generic recognition for
multiple object categories, Computer Vision, Graphics, and Image
Processing 59 (1) (1994) 1–21.

[49] L. Stark, A.W. Hoover, D.B. Goldgof, K.W. Bowyer, Function-
based recognition from incomplete knowledge of shape, in: Proceed-
ings of the IEEE Workshop on Qualitative Vision, 1993, pp. 11–22.
[50] M. Sutton, L. Stark, K. Bowyer, Function from visual analysis
and physical interaction: a methodology for recognition of generic
classes of objects, Image and Vision Computing 16 (1998) 745–
763.

[51] M.A. Sutton, L. Stark, K.W. Bowyer, Gruff-3: Generalizing the
domain of a function-based recognition system, Pattern Recognition
27 (12) (1994) 1743–1766.

[52] M.A. Sutton, L. Stark, K. Hughes, Exploiting context in function-
based reasoning. Sensor Based Intelligent Robots: International-
Workshop, October 2000.

[53] L.M. Vaina, M.C. Jaulent, Object structure and action requirements:
A compatibility model for functional recognition, International
Journal of Intelligent Systems 6 (1991) 313–336.

[54] B.C. Vemuri, J.K. Aggarwal, Representation and recognition of
objects from dense range maps, IEEE Transactions On Circuits and
Systems 34 (11) (1987) 1351–1363.

[55] P.H. Winston, T.O. Binford, B. Katz, M. Lowry, Learning physical
descriptions from functional descriptions, in: Proceedings of the
National Conference on Artificial Intelligence, 1983, pp. 433–439.

[56] K. Woods, D. Cook, L. Hall, K. Bowyer, L. Stark, Learning
membership functions in a function-based object recognition system,
Journal of Artificial Intelligence Research 3 (1995) 177–222.

[57] K. Wu, M.D. Levine, Recovering parametric geons from multiview
range data, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 21–23 June 1994, pp. 159–166.

	Efficient search and verification for function based classification from real range images
	Introduction
	Related work
	Generic classification by functional parts
	Representation by functional parts
	Relating class description to shape
	Design patterns
	Functional verification
	Cost estimation of the search

	Matching shape parts to functionalities
	Low-level processing-3D segmentation
	Mid-level processing
	High-level processing
	Generic functional parts
	Functional description of classes
	Implementation of class verification

	Experimental results
	Classification of valid instances
	Classification of non-valid class instances
	Classification in a cluttered environment
	Utility and probability considerations
	The role of verification in functional reasoning

	Conclusions
	References

