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Abstract

Recovering multiple point light sources from a sparse s@hatographs in which
objects of unknown texture can move is challenging. Thiscsume both diffuse
and specular reflections appear to slide across surfacesghwisi a well known
physical fact. What is seldom demonstrated, however, isitltain be taken ad-
vantage of to address the light-source recovery problerthigpaper, we therefore
show that, if approximate 3D models of the moving objectsaaeglable or can
be computed from the images, we can solve the problem withgw priori con-
straints on the number of sources, on their color, or on tivéese albedos.

Our approach involves finding local maxima in individual iges, checking them
for consistency across images, retaining the apparentgslar ones, and having
them vote in a Hough-like scheme for potential light soulicections. The precise
directions of the sources and their relative power are thetaimed by optimizing

a standard lighting model. As a byproduct we also obtain anmrege of various

material parameters such as the unlighted texture and dpeptoperties.

We show that the resulting algorithm can operate in presefi@bitrary textures
and an unknown number of light sources of possibly differakhawn colors. We
also estimate its accuracy using ground-truth data.
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1 Introduction

Let us consider the following scenario. We are given a setafgies acquired by
a fixed camera of a scene in which rigid objects may move betveaposures.

Assuming that no additional information is provided, we ece® commercially

available software packages to reconstruct the geometheahoving objects and
to estimate their 3D poses. By contrast, recovering the nuarekdirection of the

possibly multiple light sources and the object texturesai@sa difficult problem.

This is because, for any given surface patch projected iarakimages, none of
the photometric angles are preserved between views. Thigsthat both diffuse
and specular reflections move across the surface.

The above scenario is highly relevant to many real-worldiegfions such as de-
lighting and relighting scene objects or adding new objétas blend correctly in
the scene. For example, in the remastered versions Stdr@Varanovie, new syn-
thetic ships and robots were added to scenes that had beed fiitong time ago
using real props [7]. Since both the original props and lighparameters are prob-
ably long lost, a technique able to recover those paramatgesnatically from the
old images of the moving props could have saved a great déiai@fand money.

In this paper, we present an approach to recovering mulbipiet light sources out
of a sparse set of registered photographs, provided thab@ppate 3D models of
some moving scene objects are available or can be computedagproach in-
volves finding local gray-level maxima in several images dediding whether or
not they represent specularities. The detected specedaate then used to count
how many point light sources are in the scene and estimatdabation. The pre-
cise directions of the sources, their relative power anit ttidor are then obtained
by optimizing a standard lighting model. As a byproduct, s abtain an es-
timate of various material parameters such as the unligteeidre and specular
properties.

It is well known that lighting maxima glide across the sudaxf a moving object
according to the normals, whereas texture maxima tend tetezkd at the same
surface location in many images [17]. However, this has manbexplicitly ex-
ploited to recover multiple light sources without makingpsg assumptions about
object texture by any previously published technique weaar@ e of. The original-
ity of our method is therefore to take advantage of this ptaldact to distinguish
between lighting and texture maxima and to implement a {gghirce detection
scheme that relies upon consistency across images. Alththgcurrent detection
algorithm is not designed to deal with very extended lighirses, itis designed to
handle sources that are not at infinity and are not truly piaght-sources.

As shown in Figs. 1 and 2, the resulting method can operateesepce of arbi-
trary textures and multiple light sources of possibly difet unknown colors. This
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Fig. 1. Recovering the number of sources and their directions in a scénedigy three
different light sources of unknown and different colors. To seg thiés suggest that the
reader view these images in color. (a,b) Two of nine input photographSh@aded view
of the 3D model using the recovered light sources. Note that the spitieslappear at the
correct places. (d) The recovered albedo map is free of spectifacts:

(a) (b) (©) (d)
Fig. 2. Lighting parameters recovery in presence of texture. Thedinsshows the recov-
ery for one light source frorhigh resolution images. The second row shows the recovery
for three light sources frodow resolution images. (a,b) Two out of nine input images. (c)
Using the recovered lighting parameters and the perspective of (b) ysdded view in
which the specularity is very similar to the true one. (d) The recovered alimeg is free
of specular artifacts.

unknown chromaticity completely rules out the use of mesitmased on the dichro-
matic model [9,8,23,25,13,32]. Similarly there are almastshadows and no ob-
viously visible critical boundaries, which would surelyriticap methods [27,12]
that require them. In short, given a set of images containmoging objects, our
method makes it possible to recover the lighting parameteder less restrictive
assumptions than the state-of-the-art methods discusese .a

We require specularities to be present in several regsierages and a 3D model,
which can be relatively rough. For many applications, thisat particularly oner-
ous given the prevalence of video cameras and the robusindssccuracy of cur-
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rent structure-from-motion techniques. Either manualutomated methods could
be used to build the required models in the case of the setajesidepicted by
Figs. 1 and 2 despite some strong lighting effects. Herefattethat our approach
can handle textures is essential since many of these gaomegtonstruction tech-
niques rely on it. To prove the validity and practicality big approach, we will

present results obtained using 3-D models produced usamglatd vision-based
registration and reconstruction techniques.

In the remainder of the paper, we first review some of the negeisentative ap-
proaches to light source recovery that have been propoghdawiiew to under-
standing what the kind of assumptions they make. We thereptéise light source
estimation algorithm and describe the refinement procdesrdsults section shows
the ability of the method to handle multiple light sourceaesry and discuss its
accuracy.

2 Related Work

The numerous difficulties encountered in direct reconsitvoof the lighting envi-
ronment have encouraged researchers to find alternatakeddmot require explic-
itly knowing the lighting parameters and, yet, are suitdbtespecific applications
[5,2]. However, many other applications in fields such asédiReality, Object
Recognition, or Texture Synthesis, can greatly benefit fimsiknowledge.

In particular, specularities have bedeviled Computer Visatgorithms for many
years. Many researchers have attempted either to hanarelihéntroducing cali-
bration objects [29,22,10,3,6] or by controlling the imageguisition process [15,4],
or to eliminate them by treating them as statistical owtl[@#,27]. Others have at-
tempted to actually use them as information sources.

Since the method we present here falls in the latter clas®ris#ly review below
some of the most popular approaches to doing this. In theepsmanve hope to
convince the reader that using inter-image consistenoyvallis to relax many of
the assumptions on texture, light source colors, and ohbjetibn, that state-of-the-
art techniques make.

2.1 Specularities in Single Images

Many algorithms that can reliably detect specularitiesngle images use color im-
agery and are based on the dichromatic model, which repeetenlight reflected
by an object as a sum of a diffuse contribution whose coldnessame as the dif-
fuse material and a specular contribution of whose coldressame as the sources.



The works presented in [9,8,23] separate images of homogesrtielectric objects
into a perfectly diffuse and a purely specular image. Thislkif separation is very
useful as it permits to work independently on the diffuse gppelcular parameters.
In particular knowledge of the specular contribution of tiggating is key to de-
termining the lighting environment, since specularities strongly affected by the
slightest lighting variation. But in general, dichromatiodel based separation al-
gorithms are unable to deal with texture because they refynding the separate
clusters produced by each different albedos in a color sgacehermore they are
only suitable for dielectric materials. The methods présgm [25,13,32] are inter-
esting exceptions, which overcome the texture limitatipnging local information
and produce impressive results from a single image.

However, this class of techniques requires the materiamohticity to be different
from that of the lighting and all sources to be of the samergekcept in very spe-
cific cases where it is possible to segment the contributbdmsdividual sources.
To the best of our knowledge, [32] is the only exception thaat bandle two dif-
ferent colors for the sources, but with the limitation thiaeyt should be known
beforehand. These methods would therefore be difficult fyajp the image of
Fig. 1, in which the teapot is lit by three sources of veryati#int and unknown
colors.
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Fig. 3. Interpreting intensity maxima. (a) The white rectangle encompassasarmnf the
teapot that contains both a specularity that appears as a white dot orkaat#acat the
bottom and a diffuse bright white area in the upper right corner. (b) Seclgp view of the
corresponding 8-bit image window. The gray levels within the speculagtyathbelow 80
while the gray levels in the upper right corner are above 200. (c) Ooritign correctly
labels the specular pixels. It discards the ones in the bright white araasge@ven though
their intensities are high, they are only the tail end of the maximum intensity areadow
which the arrow in (a) points. A texture maximum corresponding to the cehtbedish

is also detected and appears in the lower left corner. (d) By enforcingistency across
images, the texture maximum is discarded, leaving only the specularity.

An alternative to the use of color is to use shadows and atiboundaries. For
example, in [12], specularities are detected as local ma&nd eliminated if their
intensity falls below a global threshold. Critical boun@arare then used to select
the meaningful ones. In practice, as shown in Fig. 3, an apj@te threshold may
not be easy to find. Furthermore, in cases such as the onesatepy Figs. 1 and 2
where there are either no shadows or detecting critical theies is made difficult
by the presence of a complex texture, the performance ofigjoeitam is bound to
decrease.



2.2 Specularities in Multiple Images

In the case of static scenes filmed using a moving cameraylspities have been
successfully used to recover the light sources [16,31hadhd¢ase, the diffuse light-
ing maxima daotglide across the surface and the problem is comparativsigea
than when objects can move. The detection is based on théh&tdhe intensity
variations between images can only be caused by specegariti

More sophisticated models that explicitly represent s|aities have been pro-
posed. For example, the signal-processing frameworkdoted in [1,19,20] de-
scribes the reflection operator as a convolution and fortesllthe recovery of a
BRDF and lighting distribution as a deconvolution. In additio providing a math-
ematical tool to analyze the well-posedness and conditgaf inverse-rendering
problems, the method can recover complete BRDFs, thus hgneftended light
sources, environmental lighting and specular materiatgad, however, only been
demonstrated in cases where the albedo is either constlambana priori, which
is a severe limitation.

It has recently been shown that specularities produce a fégvifi video sequences
that can be distinguished from that produced by diffusees@d [21]. However, this
has only been demonstrated in a case where the flow can dayelizained, which
is not the case when dealing with sparse sets of images.

3 Method

It is generally accepted that, once the specularities haea lletected, counting
and positioning the light sources is comparatively easyéler, this detection is
often hard and the simple thresholding techniques that tie® oeported in the
literature cannot be expected to work very well in general. &ample, in the
textured scene of Fig. 3 that was lit by multiple light-sasca diffuse area of
high albedo is brighter than a specular one of low albedoubh s case, a simple
threshold cannot be used to extract specular gray-leveimasawhile eliminating
others.

In this work, we overcome this problem and reliably deteetcsparities by explic-
itly using the fact that they glide over moving surfaces imedictable fashion. This
lets us distinguish between non-specular maxima and sppeaués and take advan-
tage of the latter to count the number of light-sources arestonate the lighting
parameters. Although the physical facts about the glidigtgglvior of specularities
are well known, to the best of our knowledge, they have noh lexploited in this
manner before. This is key to detecting low intensity spactigs, such as those of
Fig. 3.
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Fig. 4. Two images of the setup we used to evaluate the accuracy of otittaigdr he three
target objects, a white ball, a teapot, and an Easter egg were placed eelg@dvtable. The
table was moved after the acquisition of each image without disturbing the objette
background, two of the three light sources can be observed. Notehthatare neither
perfect point light source nor particularly distant. When acquiring thpaieanages of
Fig. 1, we used red and blue filters to alter the color of the sources.

Given these lighting parameters estimates, we refine tleettbns of the sources
and their relative powers by fitting the Ward [28] lighting debto gray levels at all
locations in all images where the projected 3D model givesarmal vectors. In
addition, this yields values for the albedos and the specoakefficients. We chose
the Ward model because it is one of the simplest models théikeuthe Phong
model [18], is based on physical measures. An alternativddvoave been to use
an even more accurate model, such as the Torrance-Spare\{26j However,
such models have a much larger number of parameters, mdiangrnore difficult
to instantiate with the imagery at our disposal.

The theory behind the method presented here is that of pgimt $ources. This
implies that the ambiguity between lighting distributiondamaterial roughness
is not solved. However, our specularity detector is desigeehandle small area
light sources such as those depicted by Fig. 4, which arbergiierfect point light

sources nor at infinity. Note that we do not make assumptibositahe presence
or absence of texture and do not require any foreknowledgleeo&lbedos. Since
our method is based on grayscale images, it is insensititleetéact that the light

sources may be of different and unknown colors, which sedgadirt from most

color-based techniques that place restrictive assungtiarthe color of the light-

ing. However, as will be discussed at the end of the sectiencam also use color
images to estimate the chromaticity of the light sources.

3.1 Detecting, Counting, and Localizing Multiple Light Sces

One important property of our approach is that in practicenlg require 3D mod-
els of limited precision, such as those that can be derive the images them-
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Fig. 5. Specularity detection workflow. (a) The input image is converteddgsgale. (b)
The maxima are detected and neighboring ones are merged. (c) The magigravan by
including neighboring pixels of lower intensity to form regions. (d) Only thgions that
are brighter than their neighbors are retained. (e) Enforcing consjséemoss images lets
us discard non-specular regions. (f) The remaining specular regid@$n an accumulator
yielding maxima that corresponds to the number and direction of the lightesurc

selves. Since the precise specular locations are verytisersven to the smallest
shape or registration inaccuracies, we seek to detect tlo¢msrsingle points but
as specular areas in which individual points can vote for terg@l light source
direction. This is designed to ensure that the point withdbeect normal will
be included in the detected area and that points with alnarséct normals will
also vote, thus providing additional support for the regdimlirections. This also
provides robustness in the presence of high-frequencyrextecause it ensures
that an extended increase of intensity has been detectaddtbe specular area,
which is characteristic of lighting maxima. These consadiens led us to develop
the three-step algorithm depicted by Fig. 5. It involves:

(1) Detecting locally maximal-intensity areas in graysdahages (Fig. 5(b,c,d)).

(2) Using consistency across images to classify these naaasweither texture or
lighting ones (Fig. 5(e)).

(3) Having the lighting maxima vote into a Hough-style acclexor to estimate
the number of light sources and their directions (Fig. 5(f))

Each of these step are described in more detail below.

3.1.1 Detecting Local Maxima and Estimating their Local Sanp

For this step we use grayscale images—obtained by congetta color images
if necessary—that we smooth using a Gaussian mask of variafcto filter out
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Fig. 6. Maxima filtering in the case of a 1D image. (a) There are two maxima (ld M)

of approximately equal intensity. Our approach to growing areas ofstippound them
results in two separate regions (R1,R2), which are retained as potemstiailapties. The
in between region, depicted as a continuous line, is discarded. (b) Timsitytef maxi-

mum M1 is larger than that of M2. Retaining all pixels whose difference in gitgmvith

the corresponding maximum is below a predefined value results in two atjecgons.
Since they are adjacent, R2 the region corresponding to the smallest inteagitpum is
discarded.

some of the noise. We then select all the pixels of greategoalentensity than
their eight-connected neighbors. In general, this resulteveral neighboring lo-
cal maxima of equal intensity. Among these, we select onaratam and discard
the others, which still leaves a very large number of locakima, as shown in
Fig. 5(b).

To estimate the local support of these maxima, we sequintahsider them,
starting with the brightest ones. We grow areas around thgimdbuding all the
neighboring pixels whose difference in intensity with tlegresponding maximum
remains below a predefined value. This means that weadose a global inten-
sity threshold to select potentially specular pixels.aast, we use a local threshold
that adapts to the gray level of the maxima. In practice, therghm is not very
sensitive to the value we use as a cutoff. This is due to thdaHat specular pixels
are generally of significantly higher intensity than neighibg diffuse ones since
specular reflection is both additive and of high energy. Télees must simply be
high enough to allow some intensity variation due to the dydey texture during
the area growing, while being small enough to prevent thergtisn of neighbor-
ing regions clearly presenting different intensities. Intlae examples presented
in this paper, we deal with 8-bit images and the threshol@tigcs25. During this
area growing process, weaker maxima may be absorbed irds aoeresponding
to stronger ones. They are then removed from the list of maxorbe considered
further. Fig. 6 illustrates this process in the case of a 1Bgen

This results in a set of regions such as those depicted bysFy. Among these
regions, we only retain those that correspond to peaks behnigitensity than those
of their neighbors, such as those of Fig. 5(d).

The remaining maxima are the ones that will be used as ingheteoting scheme



described in the following subsection. Note that diffusexima can also be de-
tected by our method. However, they will be subsequentlyadded by the voting
scheme because they do not follow the same consistencyasitee specular ones.
At this stage, the fact that materials may have isotropicrosaropic specular
properties does not matter. The same remark applies taqlessus metallic ob-
jects. These distinctions will only play a role for paramegeovery of the lighting
model, as discussed in Section 3.2.

The main limitation of the approach presented here is thatdibtance between
light sources we can resolve is bound to increase with seinfaeghness, which
tends to generate broader specularity peaks to the pointewthey may end up
merging.

3.1.2 Checking for Consistency across Images

After having processed the individual images in order to fimakimal intensity
areas, it becomes possible to classify these areas as teith@ne or lighting max-
ima. Here, we assume that the sources are far enough fronodaahto produce
separated specularities on the object. The required disto@tween the sources is
dependent on the surface roughness of the material, thatouewof the object and
the image resolution. For instance with a highly-shiny,qptamar object, we can
deal with sources separated by a few centimeters.

The consistency check is based on two important obsensatkinst, for a mov-
ing object lighting maxima are traveling along the objeaffate, according to its
normals. Second, texture maxima tend to be detected at the sarface location
in several images. We exploit this as follows. The 3D model e camera regis-
tration parameters are first used to establish correspoeddetween the maximal
areas in the images and their mesh locations. This allowsrgpate surface nor-
mal and line of sight for each pixel of these areas. If a marmmagion, instead
of moving with respect to the mesh, stays at the same meshdoaven though
the object rotates, the algorithm labels it a texture maxml may happen that
a real specularity coincides with a texture maximum andesdfore discarded by
the algorithm. However, if the source that creates it preduather specularities
on other images, this will only have a very limited impact.the particular case
of a translating planar object, the approach will keep onkimgr as long as the
lines of sight from the camera to the object patches are nseabf being parallel
throughout the sequence.

3.1.3 \Voting for Candidate Light-Source Directions

Specularities are located at places where an object surtdtves like a mirror so
that the viewer sees a reflection of the light source. In practhe mirror angle
does not exactly match the specular peak angle, but it isrgiyeery close [26].
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Fig. 7. Voting scheme. (a) For each pixel that belongs to a maximal areayinmeage,
the lighting directionL is computed using the line of sight and the normalV. (b) The
direction L estimated for each pixel represents a vote in a 2D accumulator.
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Fig. 8. Extended sources detection. (a,b) Two input images of a helmetdigltéwo
extended light sources, one being more so than the other. The arrowsopaard the main
specularities. (c) The accumulator obtained after applying the method tb61$8cl. The
widest peak corresponds to the most extended source. In our tscreame, the brightest
pixel of this peak will represent the source.

Therefore, given a potentially specular pixel, we comphéereflected line of sight
mirrored off the 3D model, as shown in Fig. 7(a). Recall that ithage registra-
tion parameters are known. It is therefore straightforwtardxpress a vector in a
coordinate system common to each of the input images. Irtipeaeve write the
mirrored line’s orientation in terms of ite)(¢) spherical coordinates, which we use
to increment a 2D orientation accumulator such as the onagofSf). In prac-
tice, we perform this operation for all pixels belonging teximum intensity areas
that have passed the consistency test of Section 3.1.2.drhbigation of having
multiple viewpoint information and allowing specular as¢a vote for a cone of di-
rections results in robustness to geometrical and regstrarrors. It also provides
some robustness to non-strictly punctual sources. Thdtirmsaumber of peaks in
the accumulator gives us the number of sources and we takedagon of each
one to be the initial estimate of the corresponding lightses orientation. In the
case of the teapot, this procedure produces the threediptiaks that can be seen
in Fig. 5(f), which coincides with the three light sourcegsdo lit the scene.

If a somewhat extended light source was present in the sttemalgorithm would
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detect the related specularities and retain them for votksgshown in Fig. 8, an
extended peak would be present in the accumulator. Howerbr,one direction,
corresponding to the highest numbers of vote inside th@negvould be retained
to represent the source.

3.2 Light Source Refinement and Parameter Estimation

Once the number of sources and their directions have beewaest, these di-
rections can be refined and the material properties estihiateninimizing the
difference between the actual image gray-level interssdied those predicted by
the lighting model. Thus, we minimize

A 2
nbLights

>V (Izj—{amﬂ TR [pdﬁspew}}) , @

ij !

wheres is the image numbey;, is the index of a 3D point on the surfadg; is the
visibility function —equal to 1 if the projection pointis visible in the image and
zero otherwise—/;; is the gray level of poinf in image:, amb the ambient term,
pa; the diffuse albedo of point, N;; the normal angh, the power of the point light
sourcel;. Thespec;;; specular term is defined as

s 1 — tan? H;i - Ni;
= exp( an ( Jjl J)
7% \J(Nij - Bij)(Nij - L)

)

spec;i =
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wherep;, is the specular albede,the specular exponent aiifi;; the halfway vec-
tor between the light vectat; and the viewing directioriv;;. We initialize these
parameters as follows.

It is well known that simultaneously recovering the diffasel specular parameters
as well as the source position is difficult, even when usinigjlatihg model with
relatively few parameters [28], instead of the full BRDF. Wemome this problem
as follows. The initial albedo values are estimated by rdp@veraging the gray
levels of the individual surface points in the various im&agkhe initial power of the
sources is set with respect to the relative ratio of the dpemtensity they create.
To ensure that the information provided by the specularisgaken into account,
we set the specular parametgrsando to initial values that are sufficiently large to
produce strong specularities. We then minimize a first timeeobjective function of
Eq. 1, while keeping, ando fixed, which yields improved values for all the non-
specular parameters. We then releasando and minimize again. The specular
parameters can therefore change. However, since we usartteevalue fop, and

o across the whole object, we are effectively assuming teapecular properties
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are initially unknown but constant. This assumption is ogable considering most
specular object and it greatly constraints the optimizatio

Loss of accuracy may occur if important sources did not pcecany specularities
on the observed images. Our optimization scheme will useerhlighting to com-
pensate for the missing sources, thus degrading the essrofthe parameters of
the actually detected sources. Because sources directibmated in section 3.1.3
are reasonably accurate, we can mitigate this problem bgduating a penalty
term that prevents the source directions from moving by ntioae a few degrees
from their initial positions. This penalty term also actsaggularization term that
stabilizes the computation.

To achieve robustness to image noise, we minimize the esipresf Eq. 1 using
a RANSAC type approach. We draw random samples of surfacespoiperform
the computation and only retain those yielding parametetdorrectly describe
the whole data set. These parameters are then used to fédteutlers out and to
perform a new minimization that takes all the inliers into@ent. The minimization
itself is performed in several stages. We first refine theuddfalbedos and the
locations of the sources before also adjusting the speailt@edo plus roughness
and the light-source power parameters.

Color images are processed as described above, using ageyscsion of these
images. The results are then used as an initialization tionga the energy func-
tion of Eq. 1 for each channel independently. In presenceaéctric materials,
estimating the power of each sources by averaging the ihyesfshe specularities
they create allows for a good estimation of the sources cBlar metallic mate-
rials, comparing the respective specular intensities ohedannel also provides
the relative difference of power between the sources andearsed to initialize
the parametep, of Eq. 1, although the real sources chromaticity is not jikel
be recovered. We then re-estimate the power of each soureacim channel by
optimizing Eq. 1 only with respect to the parameters. Finally, we start over the
optimization of the lighting parameters with fixegs. This process is repeated
until convergence is reached and yields an unlighted texthap and precise light-
ing parameters for each channel. Note that it remains ateéndeation about the
absolute color of the albedo, since we cannot recover thawbscolor of the illu-
minant without a process similar to the white balancing oheeas.

The proposed optimization approach assumes strict pgint $ources, which im-
plies that specularities produced by extended light ssuce@not be explained. A
more sophisticated approach should be able to take adwapfatie specularity
detection step to identify this kind of sources and includean in the photometric
optimization. Such an approach will be investigated in feitwork.
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4 Results

To demonstrate the performance of our algorithm, we usesttigtinct objects,
each of them with very different properties:

e The shiny teapot of Fig. 1 we have used to illustrate its wovkfl
e The highly textured Easter egg of Fig. 2.
e A human face for which both a precise 3D model and a rougheammavailable.

In all these examples, we used the same parameter settingsonly thing that
changes is the 3D model and calibration matrices we feed teysiem. Differ-

ent acquisition methods for these inputs are tested and mermrate that useful
results can be obtained from vision based reconstructetgteic data.

We conclude this section by showing that the lighting modelracover can be
used to convincingly add virtual objects into the scenéginethem, and have them
cast plausible shadows. In other words, our approach issugtgible for practical

Augmented Reality applications.

(@) (b) (©)

Fig. 9. New view and corresponding synthetic images. (a) A new view afltfext that has
not been used for recovery. (b) Synthetic view with specularities at thecoptaces on
the side and spout of the teapot which suggest an accurate lightingergcfm) Synthetic
view using both lighting and albedo parameters.

4.1 Shiny and Partially Textured Teapot

In this example the 3D model has been acquired with a rangenscand the
images manually registered using a commercial software r@sults of Fig. 1 were
obtained using nine images whose specularities are naotylarly easy to exploit
because they tend to fall on textured areas. They were @&chuging the set-up of
Fig. 4 by moving the table on which the teapot sits betweemsxes. Note that
the light sources are not true point light sources and argéigosd between 1.0 and
2.0 meters from the object, as opposed to being at infinity. Mawguiring these
images, we used red and blue filters to make their color éiffefrom each other,
and to create a situation in which the use of dichromatie@tadgorithms would
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be inappropriate. In short, this example involves many efdlficulties that tend
to create problems for state-of-the-art techniques.

As shown in Fig. 1(c), the algorithm correctly estimatesrtbenber and orientation
of the light sources, which allows us to synthesize imageh thie right shading
and correct location of the specularities. To emphasizegbint, Fig. 9(a) shows a
tenth image that wasot used during the computation and demonstrate our ability
to produce the corresponding synthetic image, shown witteodure in Fig. 9(b)

and with it in Fig. 9(c). Note that the specularities synibed on the spout and on
the side of the teapot all fall exactly at the right placessTindicates a very precise
recovery since specularities are notoriously sensititbeéexact source positions.

Light | Error after| Error after Fitting Light | Error after| Error after Fitting
source| detection fitting improvement| | source| detection fitting improvement
1 1.82 1.43 0.39 1 4.27 4.54 -0.27
2 1.18 0.72 0.46 2 2.73 0.18 2.55
3 2.64 2.50 0.14 3 5.33 2.06 3.27
(a) (b)
Table 1

Accuracy of the estimated light source directions in the teapot case. {iay the full
model of Fig. 1(c). (b) Using the partial model of Fig. 10(a). For eachtlgpurce, we
compare the estimates to those obtained using a white sphere, first aftetitigesetheme
of Section 3.1.3 and then after the refinement step of Section 3.2. The revbgive are
differences between directions expressed in degrees.

E_3

(@) (b) () (d)

Fig. 10. Using only a partial 3D model of the teapot, instead of the completgayferont

and side views of the partial 3D model. It does not have much curvatuténaiudes
only a small range of normals. (b) Projected model into one of the teapot anatpéch

covers only a very reduced portion of the teapot’s surface. (c) &haigw of the partial
3D model using the recovered light sources. Note that the specularitiespgtiéar at the
correct places. (d) The recovered albedo map is free of spectifact.

To quantify the accuracy of our estimates, we placed a wipiter® on the same
table as the teapot. It behaves almost like a mirror, makingry easy to precisely
locate the specularities it produces. We used them to aetyiestimate the loca-
tions of the light sources using a 3D spherical model, wrsokery easy to register
to the actual sphere, thus making these estimates highigvable. We therefore
treat them as a baseline against which we compare resuétmetdtusing other ob-
jects. In Table 1 (a), we give the error in the recovery of therdations for each
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one of the three light sources, first after the voting schefrfeeation 3.1.3 and,
second, after the refinement step of Section 3.2. This yieldss ranging from
0.72 to 2.50 degrees. Note that light source number 2 is teerecovered most
accurately, presumably because it produces more spdmsdahat fall on parts of
the images where the angle between the normal and the lightesalirection is
small.

To test the applicability of our approach to 3D surfaces tmdy exhibit a narrow
cone of normals either because the object is relativelygslanbecause it has only
been partially reconstructed, we ran again our algorithnthersame nine images
but using only the uncomplete and very limited 3D teapot rhadd-ig. 10. In
Table 1(b), we again compare the results to those obtairiag tie white sphere.
Even though far fewer image pixels can be exploited, therdlgo still returns a
plausible result but, unsurprisingly, becomes less ateunaaverage.

Note that the improvement obtained by the refinement stegcticé 3.2 is much

more significant in this case than it was when using the fulliehoT his makes per-
fect sense: since fewer pixels are available, it is all theenmaportant to exploit the

information they can provide as fully as possible. What camssomewhat more
surprising is that, even though the accuracy degrades \aigeably for source

number 1, it actually improves slightly for sources numb@n®@ 3. The accuracy
loss can be attributed to the fact that fewer of the spedidarcaused by source
number 1 are processed. By contrast, the improvement stemstfre fact that

the partial model we use happens to incorporate the moabtelnormals of the

reconstructed model.

In any event, this case is interesting because it clearlystibat we can derive
useful results by only building a 3D model of a relatively $iraad textured part of
the object, which is easy to do using structure-from-motexhniques. The only
limitation, as the loss of accuracy for the source numberdgssis, is that the
models projections must cover a sufficient number of speitielsof each source.

4.2 Highly Textured Industrially Painted Egg

Fig. 2 depicts a small industrially-painted Easter eggcivimicludes both a medium-
sized area of constant albedo and highly textured areasiatidor automatic cali-
bration. In the upper row, the egg is lit by a single direcsilsource and the images
are high-resolution ones. The images in the lower row wegeiaed by putting the
egg on the same table as the teapot and are therefore algotlielthree same
sources. They are of much lower resolution because we needede the teapot,
the white sphere, and the egg, all in the same image. In be#scaur algorithm
correctly identifies the specular highlights and recovieesappropriate number of
light sources. This lets us synthesize the de-lighted mstof the last column of
Fig. 2, from which the highlights have been completely atiated. Of course, the
top one is of higher quality than the bottom one, but this oefiects the difference
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in resolution between the input images.

Light | Error after| Error after Fitting
source| detection | fitting improvement
1 1.65 1.44 0.21
2 0.62 0.46 0.16
3 0.60 0.58 0.02

Table 2
Accuracy of the estimated light source directions in the Easter egg caseuhfbers we
give are differences between directions computed in the same mannesa®stfiable. 1

As in Section 4.1, in the three light-sources case, we coetba@ estimates against
those obtained using the white sphere. Table 2 summarieee#ults, which are
even more accurate than those obtained with the teapototh s¥hether using the
spherical ball, the Easter egg, the full or the partial t¢ape obtain results that are
all consistent with one another, which gives strong suppottireliability of our
method. Furthermore, even if the absolute precision oféhevery may degrade if
the 3D model is not accurate or complete enough, the resudtrtieeless remains
consistent with the input data. This allows artifact-freettire recovery, as shown
in Figs. 1 and 2, and correct new view synthesis, as showrgindi

4.3 Human Face

Fig. 11 depicts results obtained using images of a human ¥ageh was lit by a

single directional source. This example complements therdivo because skin,
although potentially specular, tends be rougher and toym®dbroader intensity
peaks than the industrial objects we have been showing séudahermore, it is

more difficult to produce a metrically accurate 3D model.

We used input meshes at two different resolutions to perfmuncomputation and
check its sensitivity to the quality of the model. One is ahhigsolution laser scan
and the second is a much lower-resolution generic face ntbhdtehas been fitted
to the images using a structure from motion technique. Nad¢ the algorithm

identifies the same areas as being specular even thoughape shthe two 3D

models differs substantially. In particular, the chin ahd theekbone of the low-
resolution model of Fig. 11(g) are very inaccurate. Newadss, the algorithm is
robust enough to accommodate these errors.

In Fig. 12(b), we blacked out the background pixels of the fatage of Fig. 12(a),
which wasnot used to recover the lighting parameters and albedos. In12i(g),
we show an image of the face synthesized using these lighte®and albedos
and seen from the same viewpoint. Note that both in the rehkgnthetic views,
half of the face is in shadow and that the specularities andasiy located.
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() (f) (9) (h)

Fig. 11. Insensitivity to the quality of the model. (a,b) Two out of nine input iesadc)

The high-resolution scan. (d) A much lower resolution model computed asstigucture
from motion technique. (e) The arrows point towards the main speculafifiespecular

areas detected using the 3D scan overlaid in white. (g) Shaded view,thsipgrameters
recovered with the high resolution 3D scan. Note that the synthetic spiieslappear at
the right places. (h) Shaded view, using the parameters recovered wilbwvtiresolution

model, to be compared to (g). Note that the specularities still appear at thelaghs.

) (b) (€)

Fig. 12. Synthesizing a new view of the face. (a) An image thatnesised to recover
the lighting parameters. (b) The same image in which the background pixedsbieawn

blacked-out. (c) An image synthesized using the recovered light sbanmkalbedos. Note
that the same parts of the face are in shadow in the both the real and symtfagjes and
that the specularities are similarly located.

4.4 Augmented Reality

Figs. 13 and 14 demonstrate the effectiveness of our apprimacAugmented
Reality purposes. We fixed the Easter egg of Section 4.2 onftapboex whose
orientation with respect to the camera our system autoaiticomputes by first
extracting the textured pattern in its center [11], compuythe corresponding ho-
mography, and estimating the extrinsic camera parametans it [24,30]. Since
the position of the egg with respect to the box does not chdhgealso gives us its
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Fig. 13. Adding and relighting a virtual object in a real scene. First lisg@nts three of
the ten images that were used to recover the number of light sources aratiggation.
Second line shows corresponding augmented images where a virtuidisaaued on the
box and lighted using the recovered light sources. Note that it prodeaéstic highlights
and cast shadows.

Fig. 14. The synthetic rabbit has been added to the other images of thewitthealt re-
computing the light sources. The result remains realistic and we providetresponding
video as supplementary material.

orientation and lets us retrieve the number of the lightsesiand their position. To
this end, we used ten images from the video sequences, thrdeoh are depicted
by the first line of Fig. 13. As shown in the bottom line, we chart add a virtual
rabbit using the estimated pose and relight it using thevesea light sources.

Furthermore, since we can automatically estimate the ipasdf the box in all
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frames [11], it becomes easy to add the rabbit into the othages of the video
without recomputing the light sources. This produces sstith images such as
those of Fig. 14 and a complete augmented video that we gr@sdsupplemen-
tary material. Note that the shiny virtual rabbit generdigghlights at the right
places and casts realistic shadows on the real object. €havior is critical for a
convincing illusion as can be seen in our synthetic video.

5 Conclusion

We have shown that, given a set of images and a 3D model of angn@bject,
which may be neither very precise nor complete, we can atzyreecover the
number and direction of multiple light sources of poteyidifferent colors, even
when the object is highly textured.

This is achieved by explicitly using the fact that spectilesi glide over moving
surfaces in a predictable fashion, which is an original appih even though the ba-
sic underlying physical facts are well known. This lets (&idguish specular areas
from those surrounding other kinds of image intensity maxifs a result, we can
accurately recover lighting parameters and produce ut@dgtexture maps by re-
moving specular artifacts, even in situations where ottagesof-the-art techniques
are not applicable.

In future work, to further increase robustness, we will explways to track the
maximum intensity areas in video sequences to exploitspaimporal constraints.
We will also incorporate shadows that we currently ignor® iaur estimation
framework.
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