Tracking the Soccer Ball using Multiple Fixed Cameras
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Abstract. This paper demonstrates innovative techniques for astignthe

trajectory of a soccer ball from multiple fixed canger&ince the ball is nearly al-
ways moving and frequently occluded, its size and shape amgeavaries over
time and between cameras. Knowledge about the socomirdds utilised and
expressed in terms of field, object and motion modeligtnguish the ball from
other movements in the tracking and matching processasy ground plane ve-
locity, longevity, normalized size and colour featuesch of the tracks obtained
from a Kalman filter is assigned with a likelihood maasthat represents the ball.
This measure is further refined by reasoning throughusiceis and back-tracking
in the track history. This can be demonstrated to ingtbe accuracy and conti-
nuity of the results. Finally, a simple 3D trajectorgdeal is presented, and the es-
timated 3D ball positions are fed back to constrain2ibeprocessing for more ef-
ficient and robust detection and tracking. Experimentsillte with quantitative

evaluations from several long sequences are reported.

Index Terms. Motion analysis; domain knowledge modelling; tr&geg modelling; 3D vision;

video signal processsyprts analysis.



1 Introduction

The convergence of computer vision and multimediantaolgies, in particular high-speed cameras and
networking, has led to opportunities to develop appbostifor automatic sports analysis, especially
soccer video analysis, including content-based indexetrieval and visualization [1-3]. Other relevant
applications are those analyses of golf [4], tennis ABherican football [6], hockey [7], baseball [8]
and basketball [9] as well as ping pong and cricket [@t@], Through image and motion analysis, addi-
tional information can be extracted for better compusio® of video and sports contents, such as video
content annotation, summarization, team strateglysieaand verification of referee decisions, asl wel
as further 2D/3D reconstruction and visualization [11-16].

In any ball game like soccer match, the ball is iralgly the focus of attention. Although players can
be successfully detected and tracked on the basidafrcand shape [1, 3, 13, 16], similar methods
cannot be extended to ball detection and trackingdeeral reasons:

» The ball is relatively small and moves fast, andseguently exhibits variable size, and motion-

blurred shape and colour when moving at speed (see exampligure 1);
» ltis a difficult task to track the ball when it isaduded or ‘possessed’ by players;
» There are many false alarms similar to the ball, stsckmall regions near the field lines and re-

gions of players’ bodies.

Although TV broadcast streams are the most commorceswf soccer videos, there is sometimes
also video sequences from fixed cameras availablEVIstreams, the ball is mostly of good resolution
in the image centre. However, due to complex camersements and partial views of the field, it is
hard to obtain accurate camera parameters for onbi@lgositioning. In Gongt al [1], white colour
and circular shape are employed to detect balls inégreaguences. In Yet al [15], candidate balls are
first identified by size range, colour and shape, fanther verified using motion information obtained

from a Kalman filter. In Yowet al [2], ball detection is undertaken by template matchingach of the



reference frames and then the ball is tracked betthese frames. In Sea al [13], template matching
and Kalman filter are used to track balls after mamiglization. In Lianget al [17], colour, size and
shape features are also employed for ball detectitloyéa by graph-based filtering. In Toreg al
[18], an indirect strategy is employed for ball detattly eliminating non-ball objects using colour and
size features, however, it fails in dealing withesasef occlusion or small size of the ball. Since wolo
and shape varies considerably in soccer games (ged)rithese methods seem unlikely to provide
robust solutions.

Using multiple fixed cameras has the advantage tHitraton is easier to establish and that accu-
rate on-field positions can be extracted for visudtimatBebie and Bieri [11] and Matsumatbal [12]
used two and four cameras in their systems for sagamre reconstruction and optimized viewpoint
determination, respectiveldhnoet al[16] adopted eight cameras arranged on both sidée dietd to
attain full view of the game. Although motion-baseacking models are introduced in [11] and [16],
there is no given process to automatically identigy ball before tracking. In Matsumatb al [12] and
D’ Orazioet al [14], template matching and a modified Hough transfarmpresented to detect balls
in soccer videos respectively. Since irregular badlpgls are usually extracted in different velocities,
these two methods are still insufficient. In Chail &eo [19], the ball is detected and tracked by remov-
ing players’ blobs in a so-called accumulated measurefdemtever, it cannot deal with occluded case
and may fail when there are false alarms of whitewr like a ball.

As for 3D ball positioning, several model-based appraabhge been presented. Bebie, and H. Bieri
[11], model 3D trajectory segments by Hermite spline esirtowever, about one-fifth of the ball posi-
tions need to be set manually before estimation. Itstactoet al [12], epipolar line constraints be-
tween multiple cameras is utilized. In Ohetoal [16], 3D ball trajectory is modelled by considering air
friction and gravity but depends on unsolved initial\Biocity. In Kimet al [20] and Reid and North
[21], reference players and shadows are utilized inetenation of 3D ball positions. These are

unlikely to be robust as the shadow positions depend omlight positions than camera projections.



In this paper, a comprehensive model based method@iqgpposed for ball detection and tracking
from real soccer sequences, in which domain knowledgsoccer games is modelled as the base for
further processing. The main highlights of our metbad be summarized below. Firstly, ball filtering
is performed on the output of Kalman trackers whicbvedl velocity information to be employed in the
classification stage. Also, a tracking plus matchpngcess is utilized in solving occlusions when the
ball is merged with players. Secondly, the expected appea of a moving ball is explicitly modelled
to improve the ball classification process. Thirdlg¢clasion-reasoning and tracking-back is employed
to recover any ball merged with players as well asetnove false alarms. Finally, a 3D trajectory
model is introduced, and the estimated 3D ball positene taken as feedback in 2D processing for
more efficient and robust ball detection and tracking.

The remaining part of this paper is organized asvislldn Section 2, domain knowledge of soccer
games is modelled. Then, Section 3 discusses forafjmetection and tracking, in which a modified
tracking plus matching process is introduced. Detailball filtering with post-processing is presented
in Section 4, and in Section 5, 3D ball trajectory rhagldiscussed along with approaches on 3D ball
positioning and feedback in 2D ball detection and ireckExperimental results and discussions with

guantitative evaluations are given in Section 6, ¥a#id by a brief conclusion in Section 7.

2 Domain Knowledge M odelling of Soccer Games

Domain knowledge including colour, ball shape and pitebmetryis widely adopted in soccer and
other sports video analysis systems [1-3, 12, 14-16, 22]VIbrdadcasting domain, knowledge about
closed captions, audio, slow-motion replays and speo@h enables more specific models explored in
shot detection and semantic indexing of sports vifgp22-25]. Like many other ball games, soccer
contains rich semantic and contextual informationngequently, domain knowledge of soccer can be
used in modelling such scenarios for context-basednvjg6], or closed world tracking [6]. According

to Strat and Fischler [26] and Initille and Bobick [6hntexthere refers to selection of knowledge for



dynamic and multi-object tracking, anclsed-worldmeans a spatial-temporal region of known spe-
cific context. In closed world tracking, context-sfiecieatures have been proved robust and effective
in a complex scene. In this paper, this approach hasapgdied to the soccer domain and the relevant

context knowledge is modelled in several aspectglaodssed as follows.

2.1 Field Modelling

In real soccer games, the play field (or ‘pitch’) daexactly modelled with many corner points of
given locations. This pitch model is useful in cameadibration to obtain bi-directional co-ordinate
transforms between an image plane to the ground pllareur system, Tsai's algorithm for camera
calibration [27] is adopted. In general, tracking iocgw domain is a wide-area surveillance problem;
hence multiple cameras are normally required. In aitvathera system, the 3D position and field-of-
view (FOV) of each camera can be determined befaikitrg, together with boundaries and transition
areas between different views. Consequently, wraté fines within each camera view can be modelled
as a mask image to remove potential false alarmsddwsthese lines. The FOVs of all eight cameras
are shown in Figure 2(a). Figure 2(b) and 2(c) illustaatempty pitch and the field line mask from the
view of camera #1. These field lines are detectedyubim Canny edge detector [28] and further linked

with a morphological ‘closing’ operation.

2.2 Object Modelling

The objects in soccer context include a single ballZBhgersons comprising a referee and his two
assistants, two goalkeepers and 20 players from twosteaamely Teams A and B. For a multi-
camera system, observations of these people can lgorizeéd into these five classes according to
colours of their uniforms. The ball is the sixth catgg@and a seventh category is defined as ‘anything
else’ (windblown litter, flying turf, pitch markingsifiged as motion from camera-shake, people warm-

ing up on touchline, etc.).



Now further details about these objects are provided. BEfl diameterd, is between 0.21@ and
0.226m, implying an area (projected into any direction @w in world co-ordinates) of about

0.04m?. Its colour depends on its condition and requiremints competitions; for the matches re-
corded for these experiments (English Premiershiphitial colour is white. Normal minimum bounds

on the player dimensions are: a height more thaml.@ width of more than 0.2b(with a corre-

sponding minimum projected area of 0.4%). On the basis of these dimensions, the ball can be
clearly distinguished from the players and referees ¢hough they sometimes appear in white, too.
This clarity is not always achieved when using obetmas from the static cameras, as a consequence
of the following factors:

1. The transformation from image dimensions to (e@kld) measurements will have small or big
error for objects on or above the ground plane, unieggeight is known from some other source.

2. The rapidly moving ball is subject to motion blur timreases its subtended image area and dis-
torts its otherwise circular appearance.

3. Objects corresponding to regions of players or thifiorms (such as white socks) may be ob-
served to have similar dimensions to the ball if/thee separated from the other regions of the player
(due to occlusion, image boundary condition, or impédegmentation)

4. The ball is frequently occluded from view by players.

Figure 3 shows example observations of the ball, playetplayer parts, field-line false alarms that
have been flagged by the motion detection processil®en how to use the contextual knowledge

above and classify these objects are discussed iini@e8tand 4.

2.3 Motion Modelling

As the focus of the game, the ball usually moves fdakgar players, which indicates the importance
of motion features for ball detection and tracking.fact, the motion of the ball undergoes various

phases when it is in play. For the ball that is in-ply important distinction is between periods in



which a player has the ball or is attempting to héreebtall under control; and periods in which it is
moving freely between players. These states can bedgossessednd moving-freerespectively.
When the ball ipossessedt is frequently occluded by players. Thwving-freeball can be sub-
classified into flying and rolling phases, whichturn require tracking in 3D and 2D space. The ball
that is out-of-play is less relevant to tracking. lger, an important contextual cue is the use of re-
placement balls to accelerate the process of re-inthogl the ball into play. This is an allowable dis-

continuity in the trajectory of ‘the ball’ (though oiats the scope of this paper).

3 Detection and Tracking of M oving Objects

In this Section the method is described for trackimg moving objects in each of the multiple image
planes. Image differencing is used to detect the tshjéalowed by Kalman-filter based tracking. For

robustness, a two-stage adaptive background model i®aplriithe first stage, a per-pixel Gaussian
Mixture Model [29], (n’, 0", ), is used to estimate an initial background, whefs, o’ and
«f" are the mean, root of the trace of covarianceixyand weight of thé-th Gaussian distribution

at framek. In the second stage, this initial background imiageontinuously updated using a faster

running average algorithm for efficiency [30]:

p =lal, + A-a)r R +Hagl, + Q-a)r R 1)
where0<a, <<a,, <<1, and F, refers to the foreground binary mask. This methogshéo
slowly update the background image even in foregrougidine.

Given the input imagd, , the foreground binary mask, can be decided by comparing
I, —m,_, || against a threshold. From the foreground maskscameobtain a series of foreground

regions representing candidate objects after a ctatheomponent analysis and thresholding by size.
Each foreground region is represented by its centbaidnding box and area. For each detected object,

measurements from both image plane and ground plarub&gieed in pixels and meters, respectively.



The former includes the bounding box of the foregrougéneand its centroid, and the latter contains
its width, height and area determined from the fddhe foreground region, which prevents estimation

errors accumulating in a hierarchy of Kalman filteBesides, all detected small objects (less than

0.1n7) are abandoned provided that their bounding boxes ar&apped with the field-line mask.

3.1 Trackingin Image Plane

An image-plane Kalman tracker is used to filter noisgasurements and split merged objects, in

which the statex, and measuremer, are given by:

X, =[ry Gy ty € Ar, Ac, Ar, Ac,] )
z,=[r, ¢ 1L ¢ I, G ®3)
where (r,,C,) is the centroid(r,,¢,) is the velocity,(r;,c,) and(r,,c,) are the top-left and bot-
tom-right corners of the bounding box, respectively<r, andc, <c,); (Ar,,Ac,) and(Ar,,Ac,)
are the relative positions ¢f,,c,) to (r;,c,) and(r,,c,).

The state transition and measurement equations Iatnean filter are:

X,(k+1)=A,X,(k)+W,(k) 4
2, (k)= H %, (K) +V, (K) @

wherew, andv, are the image plane process noise and measuremegatApiand H, are the corre-

sponding state transition matrix and measurement xndéfined in (4), withAT denoting the time

interval between two successive frames (for imagendtion). Besides|, and O, represent2x2

identity and zero metrics.

I, ATO, O, O, L 0. 0. 0
o | 0. 0O 2 Y2 Y2 Y
A =| ° . H =1, O, I, O, ®)
o, O, I, O, L 6. 0.
o, 0, O, I, 2 U2 Uz Iy



The Mahalanobis distance is used to associate eaehvatien to (at most) one tracked object, and

the distance between tH'éobservatiorOi and thg" tracked objecO'j is given in Egqn 6, wher& is

the covariance matrix.
5ij2 =0, - Olj)TZ_l(Oi - Olj) (6)
During the tracking process, several states areatkefim identify different cases. These states are:
new normal merged missingandterminated and are further explained as follows. For each egjsti
tracked object, if it has corresponding observatiotcheal, we set it imormal state. Otherwise, it is
marked asmissingand updated by predicted state estimation. If an obpstbeemissingfor more
than M frames, it iserminated All unmatched observations are identifiednasvobjects in tracking.

If different objects share common regions in theiurming boxes, they araerged Moreover, theage

of a track is number of the frames that an objectleas tracked, and tlageof anewobject is 1.

3.2 Tracking Correction

The tracking method described above is an effectigerabust method for dealing with partial oc-
clusions when the bounding box of two objects are overthjpppart, and further details on the proce-
dure for splitting two merged objects can be found in.[8lowever, if the bounding box of one
(smaller) object, such as the ball, is completely éoaethby another (larger) object’'s bounding box,
then there is no valid observation for the ball, tradestimated state will be updated on prediction only.
This will frequently lead to tracking failure. Sintgis kind of full occlusion happens quite often be-
tween the ball and players, it is necessary to sblggroblem for robust tracking of the ball.

In the proposed scheme, an improved tracking plus matghbcess is introduced whenever a small

object (of area less than 0uB) is found being merged with another (larger) objécirea more than

0.4m*. These two thresholds are defined according tonibdel in Section 2.2, allowing for an inaccu-
rate measurement of ball size when it elevated ftoengtound plane. Then, a template of the small

object is extracted before it is merged, which is wedthd an optimal matching in the merged block.



Let r,_, and g, be the template image and the merged block in frarieandk, respectively,

then their distanc&(Ai,4j) is defined as follows, where the optimal matchifg (&i,,4j,) is de-

termined as the minimum distance over all matcllidares.

E2(01,00) = Y3 (G + A1, +4) =1y, 1))

(Ao, Ao) = argmin(E(AI, A)))

()

Though traditional template matching is a (computatiprexpensive) exhaustive search, the pro-

posal is more efficient becaude and4)j are constrained to a limited range on the basibeofrack-
ing prediction. If we denot€Ai’,Aj') as the predicted offset of the object being occluttesh Ai and
Aj are required changing withifdi'tAi'/2 and Aj'tAj'/2, respectively. Figure 4 shows results of

foreground detection and motion correction in fourtitmious frames when a flying ball is merged with
players. The original method [31] of partial observatiaorrectly follows player IDs #7 and #8
through their mutual occlusion. However, the trajectarthe ball with object ID #10 is wrongly esti-
mated and becomes discontinuous. When the correctimess is applied, the whole trajectory of the
ball is accurately estimated. In addition, some remhirtiques like Bayesian network inference and mul-

tiple hypothesis tracking may be utilized for furthdoustness [34, 35].

4 ldentification of the Ball Trajectory

The method described in the previous Section will iggeeracks from each camera view correspond-
ing to the movement the ball, players (and playemfiergs), and other clutter such as windblown litter.
In this Section, techniques are described that useMeatures and motion information to estimate a
measure of relative likelihood that any given tragfresents the motion of the ball. The domain knowl-
edge introduced in Section 2 provides spatial-tempamadtcaints that can be used to track forward
and back through the sequence of trajectories to amittie identification through cluttered sequences

of play.



4.1 Forward Filtering

After the tracking process, in each frame everykedmbjecto, is assigned with a tracked state, in-

cluding position, size, age and an estimated velagcithe image plane. Measurements of size and ve-
locity are further expressed in ‘ground plane’ co-ordisausing the homography provided by cali-
brated cameras and assuming that all objects lieeogrtiund plane.

In the proposed identification procesize colour, velocityandlongevityfeatures are used to dis-

criminate the ball from other objects in a two-patineste D(0,, k) of the likelihood that, at framie
object 0, represents the ball. The first paB, (), only uses size and colour features of the object;

while the second partD, () uses motion features. The final estim&§) is a weighted combination

of the results fronD,() and D, ().

D(0;,k) =77D,(0;,k) + 1-77) D, (0;,k) (8)
where D,(),D,() U [01], and7 J[01] is a weight and we simply used=1/2.
For two reasons, the size of the moving ball mayJe-estimated. Firstly, there is a motion blur
effect caused by finite shutter speed. Second, if thing ball is above the ground plane then the

transformation to world-coordinates will over-esit® the size since it assumes the ball lies on the

ground plane. To accommodate the first effect, the aggesize of the ball can be adapted to be a

function of the velocity. Writing the image-plane agty at framek as (v, (k),v, (k)), the expected

width w and heighth in framek are

w(k) =d, +v, (K)AT'

h(k) = d, +v, (K)AT' ®)

whered, = 022m is defined in Section 2.2 as the diameter of acstaty ball, andAT"' is the tempo-

ral aperture. This expression is re-arranged to défieecorrected measuremerigk) andh(k) as

w(k) =v, (K)AT" and h(k) —v, (K)AT" respectively. Then,D, is defined as

10



0 if Wk)=2d,3h(k)=2d, 07, <03

D,(0,,K) = (1_ IW(K) - d, %_ |h(k) -~ d, |
dO

(10)

J otherwise
0

where/], refers to a percentage of white pixels in the boundimg Eqn. 10 is presented as a hypo-
thetical distribution of the likelihood that track represents the ball, given its width and height, and

colour properties. Alternatively, the parameters fag tr another form of distribution could be esti-

mated from the data, given sufficient training samsple

The second part of the overall expression uses thet'sbdasolute velocitjvi| and longevityn,

as below to incorporate the observation that falseraléaend to be short-lived, and the ball tends to be

rapidly moving. For this estimate of likelihood, ttlependency on longevity is approximated by an

exponential distribution:

D,(0)=-—(@- e_n‘TO) (11)

v
Vm

ax

wherev, .. is the maximum absolute velocity of all the object&ramek (including the ball and non-

ball objects), and, is a constant. Typically the moving ball moves myuékly than players and is

often the fastest moving object.

According to the tracked evidences, Figure 5 sholkesdd results of the ball trajectory in about 30
seconds of video sequence from camera #4. In Fig B,tt{or frame numbek) moves from left to
right, and the horizontal image co-ordinadéshe object centroidg, is plotted up thg-axis, while the
vertical image co-ordinate is omitted from thisgilam. Trajectories in red, green, and light grey ar
from highly likely ball (with a likelihood greatehan 0.75), possible ball (with a likelihood between
0.35 and 0.75), and non-ball objects (players or false s)arespectively. From Fig 5 we can see that
the filtered results of the ball suffer discontinuowgertories and quite a few false alarms, and the
latter can be found as multiple possible ball candidatescartain frame. These problems are mainly

caused by occlusions and false alarms, and solutis@we these two drawbacks are discussed below.

11



4.2 Occlusion Reasoning and Tracking-back

As discussed in Section 2, there are false alarradidild line noise and body parts of players which
may appear like a ball. When the frequently occludeddaalhot be tracked successfully, its trajectory
becomes discontinuous and even incorrect due to thlssedlarms. In such a context, tracking-back is
a complementary process to cope with ambiguity introdircefdrward filtering, especially for the
cases when the ball is occluded and then comes ot &ghis process, the Kalman state information
such aspossessedand moving-freécan be used to infer the likely path through periodextended
occlusions.

Firstly, occlusion reasoning and tracking-back is eygud to determine whether the ball is still mov-

ing or being possessed when it is merged with othjrcts like player(s) during tracking. Consider a

tracked ball,, which at framek is started to be occludéy a playerP, . At this instant of time, there
is no distinct observation fag and it is unknown whether it has entered into a gus=] state, or else
there was no interception, and the ball will contitheetrajectory. Thus the state Bf at framek can
be either moving-free or possessed. If, akgrframes or less, aewball candidate is detected e,

then we infer that the ball has never changed fterariginal (moving-free) state and thus its trajegt

is estimated by linear interpolation between the twaitjpms when it is just before and after occlusion

with P, . Otherwise, it should be defined pessessed bf, from framek and afterwards and the path
of P, is then utilized as an estimate of the trajectér{Ba

Secondly, tracking-back is applied when eaetvball candidateB, is found not instantiated on the
image boundary. It is assumed there is at least ogerpha that is responsible for the change of state

from possessed to ‘moving-free’ — and the absencellbblxservations when in the former state. Thus

a new ball should always emerge from a player who psedat; otherwise it is considered to be a false

alarm. ThisP, is simply decided as a player who is closesBtq and the path oP, is then taken as
estimated trajectory ofB, during occlusion (in possession). Moreover, if a aatd ball has longevity

12



less than a given threshold, for example 4 framess, dlso considered as<hort-lived false alarm

(caused by imperfect foreground detection, as disclissgection 2.2).

Apparently, the above tracking-back procedure requirésaatk, frames of ‘hindsight’ to classify

the state based on subsequent observations. Therefriieraof more thark, frames is introduced to

store the tracking results and states before makifiabestimate of the play state and ball trajectory
It is interesting to note that the ball trajectobtained here is 2D results which corresponding to pro-
jected 3D trajectory on the ground plane, and how ¢athisse 2D results to determine 3D trajectory of
the ball is discussed in Section 5.

Figure 6 plots improved ball trajectory after occlusieasoning and tracking-back, in which the bot-
tom image is the final result after tracking-backydethere is a considerable improvement in the accu-
racy of detection and continuity of trajectories.n@paring the final ball trajectory in Fig 6 with Fig 5
clearly demonstrates that this post-processing Hastig€ly recovered the ball positions even when it
is occluded (being possessed with players). At the $mnee false alarms of short lived objects are

dramatically reduced.

5 Determining 3D Ball Trajectory
To estimate 3D ball trajectory, fusion of tracked rsstdlom multiple cameras are required. Tech-
niques for tracking players from multi-cameras areudised in [30], and as for the ball, a 3D trajec-

tory model with details on how to decide 3D ball gosit is presented below.

5.1 Determining 3D Ball Positions

If a point in a 3D co-ordinate systdm lying somewhere above the ground plane, is obseroea f

two camera<c; andcC, with projected position®, andb, on the ground plane, then we can estimate
b fromb,, b,, ¢, and c,. Letl, andl, be two lines fromc, to b, andc, to b, respectively. In

the noise-free case they will intersectbednd this point can be recovered geometrically. Horydye

13



and |, usually have no intersection point due to errors caliyedamera calibration and various
sources of measurement noise. We can instead cotisélshortest line joining, andl, - it is rea-

sonable to place the estimatelbfsomewhere on this line. The simplest strategy,ngbelow, is to set
the estimate as the mid-point of this line, althoagdtifferent strategy may be optimal if noise proper-

ties or relative distances are taken into account.

Two points p, and p, are defined on linel andl,, respectively, and we require the line frqm
to p, be a common perpendicular lgfandl,. Thenb should be on the line betwegn and p,. If
we denotep,, pP,, C, andc, as the co-ordinate vector of the poirgs, p,, ¢, andc,, thenp, and
p, can be determined by [33]:

(0, —¢n)x(Cy—Pn) =0 (12)

(b,-c,)dp,-p,) =0 (13)

wherem ranges over the two line indices {1,2}. Equation (1@)straintsb,, p,, andc,, to all lie on
the same line of ,, and equation (13) defines the line betwgkrand p, to be perpendicular th

andl,.
Assuming the two cameras have same measurementamarihen 3D ball positian is simply
estimated as the middle point pf and p,. Moreover, if the ball is observed in more than teon-

eras, we will first find the estimated 3D ball positiof each pair of different views, and the final ball
positionb is estimated as the average of these estimatetsp&itrategies on how to locate 3D ball

positions from single view can also be found in [33].

5.2 Estimating 3D Ball Trajectory

With only two estimated 3D ball positions, and s, the 3D ball trajectory is obtained as follows.

Let (X(t), y(t), z(t)) denote the 3D position of the ball at timeand(X,,Y,,z ) and(X,, Y, Z)

denote 3D co-ordinates of ands. We also denotet, andt, as the corresponding time moments,

14



respectively. Disregarding the air friction, we gaasonably assume that the horizontal and vertical

velocities are constant during the period frgmio t_. Then, we simply have

X(t) = X+ 1‘ —tx, t-t)
S _I' (14)
YO =y, + 2 -)

S r

If the ball is moving on the ground, i.e. eitheringllor being possessed, we ha(g) = 0. Other-
wise, a flying ball will generate a parabola trajegteatisfying Eqn. 15, wherg is the gravity accel-

eration.

S r

— _g _ _ Zs B Zr Zrts B Zstr
Z(t) - 2 (t tr )(t ts) +{ t )t +{ ts _tr ) (15)

It is worth noting that in both Eqns. 14 and 15, the 3Dthajectory is simply determined without

any velocity information. If more than two ball pésits have been located, the trajectory parameters

are over-determined and a least-squares estimatecoased.

5.3 Feedback for 2D Ball Detection and Tracking

With estimated 3D ball positions, the 2D ball detectioacess can be further improved. Firstly,
these 3D ground coordinates of the ball are mappeddgeirplane and provide an estimate of new
positions of the ball, again using our calibrated camawdel. Then, several optimal camera views are
selected in which the ball is predicted of high vigtipiand this is determined if the ball is foundsdo
enough to the corresponding camera. Meanwhile, tHeisbahly detected from these optimal views
within a small range around the estimated new paositio

Moreover, an adaptive frame dropping is also appliecefiiciency. For these optimal views with

the ball contained, detection and tracking is coragdldtame by frame, i.e. without frame dropping.

Otherwise, foreground detection and tracking is @mhployed in everyy, frames. The reason is that

players may move fast or slowly when they are neaaway from the ball, hence the adaptive frame
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dropping scheme. If the 3D ball position is invalid nttiee ball is detected from all camera views with-

out frame dropping.

6 Results and Discussions

The proposed model has been tested in an 8-cameramsystiong sequences captured from real
soccer games. In each sequence, we have 4800 frames ¢dAa@s3en miniDV format (25 frames per
second,720x576 resolution, 4:2:0 colour depth with DCT compression foiMtbstream). To quanti-
tatively evaluate the proposed method, two groups ofualaground truth data are defined. The first
includes image-plane bounding box of the ball and itsraielptand the second is ground plane ball
positions. In total there are 220 ground plane positiods826 bounding boxes defined. Ball positions
in other frames are then linearly interpolated by gigiis manual ground truths. Quantitative evalua-

tion on 2D and 3D trajectory analysis is presentedibelo

6.1 Evaluating 2D Performance

Firstly, 2D performance is evaluated by a measure acteh rateR, which is defined in each
frame by comparing the bounding box of detected (tradkaill)o, . with that of the ground trutlg,,
from sequencen at frame # . Then, the common area of these two bounding boxestriacted and
divided by the area of detected blob. LA&tea([) specify the corresponding bounding box, and this

detected rateR is then defined as

Area(b, )N Area(g,, )
Area(b, )

R(b,) = (16)
To obtain an overall figur&(b,,) is averaged over frames of all ground truth objastsen there

is no buffering and tracking-back, the overall detectiate is only 57.6%. As for ball observations that
are isolated from or merged with the players, narsellated or merged balls, the corresponding detec-

tion rates are 78.5% and 24.4%. When tracking-back isdinted, this overall recover rate becomes
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78.4%, 81.1%, 81.4% and 81.6% when the buffer size is set as Z% &0¢d 100 frames, respectively.

As for isolated balls, their average detection rates 84.1%, 84.9%, 85.1% and 85.2%. While for

merged ball samples, the corresponding detection aate63.7%, 68.5%, 68.7% and 69.0%. Further-
more, more than 90% of correctly detected balls anadavithin a six pixels deviation between the

centroid points of the two bounding boxes. These expetingeiggest that the ‘tracking-back' technique
is useful in recovering ball samples when they appeagedawith players, and for isolated ball sam-

ples, its contribution is very limited. On balanceséems that 50 frames of buffering is a good trade-
off between correct tracking rates and the needHort latencies in a live stream.

Figure 7 illustrates ball detection and tracking resultthe sequence #1 from frame #897 to frame
#1011, and only part of the frame images are displayillin the ball (ID #1) is detected in (a) as a
new appearing object with likelihood 0.75 when it is kiclaftl by the player (ID #9). Then, it is in
normal moving-free state with likelihood 0.90 in (b). In (8)e ball moves out of this camera view. It
returns to the view in (d) and is then possessedrmwneplayer #14, though it cannot be detected until
it leaves the player in (e). In (e) and (f), the lwdllD #16 is identified again asew appearing and
normal moving-free, with likelihood of 0.75 and 0.95, respetyivin (g), the ball of likelihood 0.99 is
mergedwith player #9 and possessed. Next, a new ball of ID #dl&tected in (h) with likelihood 0.60,
and finally in (j) it is found imormal moving-free status of likelihood 0.85 before it fliag of view
again. These tracking IDs are dynamically assigoezich new object which has appeared in the whole
frame, and these results are obtained without tradiialy. From Fig 7 we can see that the proposed
approach is very effective in detecting the ball inesawhere a conventional approach is not so suc-

cessful, e.g. if it is merged with players.

6.2 Evaluating 3D Performance

For 3D ball tracking from multiple cameras, the dista(error) between the estimated and ground-

truth ball positions in ground plane is measured. WetdeNg(X) as the number of detected balls
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within the distance ok to the ground truth, and express the maximum distatoeeal asX. ..
Therefore,N, (X,4) means the total number of valid 3D ball positions resed. Meanwhile, denote
the maximum calibration error between the eight camieréise system ag_ . . In the experimental

dataset, this is estimated to be 2.5 meters. The maxmexorded erroix,,, = 2X

mce*

Let N, be the total number of frames with common timestampked in the eight sequences, ex-

cept those in which the ball is out of play. An overaflovery raté/, can be defined as follows.

Vy = Ny (X009 / Ng (17)

To measure the accuracy in 3D tracking, we definecauracy rateA, as follows.

Ay (%) = Ny ()7 Ny (Xge) (18)

which refers to a percentage of recovered ball positichich have errors less thanin the total num-

ber of valid 3D ball positions. Also, we tal% (X,..) as a reasonable measurement of 3D tracking
accuracy, as it corresponds to a percentage of batigmsswhich have an error less thap,..

When there is no buffering in ball filtering, we havig=33.8% and A, (X,,..) =94.1%, which

mce.
means very limited ball positions are recovered gh l@ccuracy. When a buffer of 25 frames is used,

we haveV, =72.0% and A, (X,.) =91%. When the buffer size increases to 50 and 75 frames, re-

spectively, the corresponding recovery rate and ateuate are/, =84.2% and A, (X,..) =89.2%,

mce.

andV, =84.6% and A, (X,..) =885%. Also, it suggests that 50 frames of latency is aldoade-

off between an overall recovery rate and a high aaogur

Figure 8 illustrates tracking results from multiple caaseat frame #820, in which both the trajecto-
ries of the ball and players are shown. A ground plealisation of the game is plotted in the middle
and surrounded with results from the eight separatersamiews. The projected 3D ball trajectory is
represented in magenta, whilst the associated 2Bctogies are in grey. The ball trajectory filtered

from single cameras can be found from views of casnéBa #2 and #6.
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6.3 Evaluating Performance on Adaptive Frame Dropping

According to our adaptive frame dropping strategy, 3D giasitions are used as feedback in 2D
processing for ball detection and tracking. As far ¢éight sequences in total, up to three optimal views
are determined by the estimated 3D ball positions framde dropping occurs in the other five or more
camera views.

In our system, foreground detection, image plane imggcloall filtering and 3D positioning occupy
95.5%, 2.5%, 1% and 1% of the entire computational loadedegdspectively. In dropped frames,

foreground detection is omitted, and the trackingcese only uses prediction for estimation, thus the

overall efficiency has been well improved. Whgnis set as 2, 3 and 4, the computational load is re-

duced by 49%, 68% and 78%. At the same time, the trackingracy is found to degrade between
1.2% and 2.6%. Therefore a lower frame rate of aroumerfiels per second can still provide accurate

tracking performance.

7 Conclusions

We have proposed a novel method for soccer ball dweteghd tracking from real video sequences.
The domain knowledge is an important component irnptibeess model. A local matching process is
proved effective in compensating the Kalman tracketeal with merged balls. Motion information and
modelling the expected appearance of a moving ball $igadicantly improved the detection accuracy.
Moreover, the application of occlusion-reasoning aadking-back results in significant improvements
of the tracking accuracy and continuity of the baljdctory. The effectiveness of the tracking-back
approach is dependent on the size of the buffering.cByparing results for different buffer sizes an
appropriate trade-off between the accuracy and latenaisd suggested. In our 3D trajectory model,
the ball motion can be estimated with only two 3D paliitions without any velocity information. Fi-

nally, feedbacks from 3D ball positioning to 2D detettand tracking seems more efficient. Future
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work includes the investigation of more complex maagliof game events for content-based under-

standing of soccer.
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List of Figure Captions:

Fig. 1. Ball samples in different size, shape and colounsy fsame image sequences: Top and bottom
rows are from two different camera views, respeltivehe last sample in each row is the ball passing

through field lines.

Fig. 2. FOVs of eight cameras in our system (a), and exaimages of an object-free pitch (b) with

its associated field line mask (c) from camera #1.
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Fig. 3. Enlarged images of potential objects in differasiber boxes with the ball (in white), players

(in blue), field line noise (in red) and body partplayers (in yellow).

Fig. 4. Tracking correction results in four consecutive feartfrom left to right) when the moving ball
of ID 10 is merged with a player (ID 8) in the sequéinom camera #1: The top row is detected fore-

ground, the middle and the bottom rows are resultsowitand with tracking correction, respectively.

Fig. 5. Examples of about thirty seconds of tracking dataféteded ball from camera #4, in which
timet moves from left to right, and the horizontal imageordinate®f the object centroidsy, is plot-
ted up they-axis. Red, green and light grey trajectories redduighly likely ball, possible ball and non-

ball objects.

Fig. 6. Refined results of ball trajectory after occlusioas@ning (top) and also tracking-back (bottom).
In the top image, red, green and blue trajectoriesr rief highly likely ball, possible ball and in-
possession ball, respectively. In the bottom imageanedight grey trajectories correspond to ball and

non-ball objects, and short-lived false alarms ammked.

Fig. 7. Ball detection (tracking) results from sequence #iaabe #897, #904, #918, #953, #967, #980,
# 1005 and #1011 (from a to j), with likelihood and tracldétajus shown above the corresponding

bounding boxes.

Fig. 8: Multiview and single-view tracking results at fram#®20. The surrounding images (from top-

left to top-right) correspond to cameras C4, C3, C8,a12,C7, C6 and C5.
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