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Abstract. This paper demonstrates innovative techniques for estimating the 

trajectory of a soccer ball from multiple fixed cameras. Since the ball is nearly al-

ways moving and frequently occluded, its size and shape appearance varies over 

time and between cameras.  Knowledge about the soccer domain is utilised and 

expressed in terms of field, object and motion models to distinguish the ball from 

other movements in the tracking and matching processes. Using ground plane ve-

locity, longevity, normalized size and colour features, each of the tracks obtained 

from a Kalman filter is assigned with a likelihood measure that represents the ball. 

This measure is further refined by reasoning through occlusions and back-tracking 

in the track history. This can be demonstrated to improve the accuracy and conti-

nuity of the results. Finally, a simple 3D trajectory model is presented, and the es-

timated 3D ball positions are fed back to constrain the 2D processing for more ef-

ficient and robust detection and tracking. Experimental results with quantitative 

evaluations from several long sequences are reported.  

Index Terms: Motion analysis; domain knowledge modelling; trajectory modelling; 3D vision; 

                           video signal processing, sports analysis.   
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1   Introduction 

The convergence of computer vision and multimedia technologies, in particular high-speed cameras and 

networking, has led to opportunities to develop applications for automatic sports analysis, especially 

soccer video analysis, including content-based indexing, retrieval and visualization [1-3]. Other relevant 

applications are those analyses of golf [4], tennis [5], American football [6], hockey [7], baseball [8] 

and basketball [9] as well as ping pong and cricket [10], etc. Through image and motion analysis, addi-

tional information can be extracted for better comprehension of video and sports contents, such as video 

content annotation, summarization, team strategy analysis and verification of referee decisions, as well 

as further 2D/3D reconstruction and visualization [11-16]. 

In any ball game like soccer match, the ball is invariably the focus of attention. Although players can 

be successfully detected and tracked on the basis of colour and shape [1, 3, 13, 16], similar methods 

cannot be extended to ball detection and tracking for several reasons:  

• The ball is relatively small and moves fast, and consequently exhibits variable size, and motion-

blurred shape and colour when moving at speed (see examples in Figure 1); 

• It is a difficult task to track the ball when it is occluded or ‘possessed’ by players;  

• There are many false alarms similar to the ball, such as small regions near the field lines and re-

gions of players’ bodies. 

Although TV broadcast streams are the most common sources of soccer videos, there is sometimes 

also video sequences from fixed cameras available. In TV streams, the ball is mostly of good resolution 

in the image centre. However, due to complex camera movements and partial views of the field, it is 

hard to obtain accurate camera parameters for on-field ball positioning. In Gong et al [1], white colour 

and circular shape are employed to detect balls in image sequences. In Yu et al [15], candidate balls are 

first identified by size range, colour and shape, and further verified using motion information obtained 

from a Kalman filter. In Yow et al [2], ball detection is undertaken by template matching in each of the 
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reference frames and then the ball is tracked between these frames. In Seo et al [13], template matching 

and Kalman filter are used to track balls after manual initialization. In Liang et al [17], colour, size and 

shape features are also employed for ball detection, followed by graph-based filtering. In Tong et al 

[18], an indirect strategy is employed for ball detection by eliminating non-ball objects using colour and 

size features, however, it fails in dealing with cases of occlusion or small size of the ball. Since colour 

and shape varies considerably in soccer games (see Fig. 1), these methods seem unlikely to provide 

robust solutions. 

Using multiple fixed cameras has the advantage that calibration is easier to establish and that accu-

rate on-field positions can be extracted for visualization. Bebie and Bieri [11] and Matsumoto et al [12] 

used two and four cameras in their systems for soccer game reconstruction and optimized viewpoint 

determination, respectively. Ohno et al [16] adopted eight cameras arranged on both sides of the field to 

attain full view of the game. Although motion-based tracking models are introduced in [11] and [16], 

there is no given process to automatically identify the ball before tracking. In Matsumoto et al [12] and 

D’ Orazio et al [14], template matching and a modified Hough transform are presented to detect balls 

in soccer videos respectively. Since irregular ball shapes are usually extracted in different velocities, 

these two methods are still insufficient. In Choi and Seo [19], the ball is detected and tracked by remov-

ing players’ blobs in a so-called accumulated measurement. However, it cannot deal with occluded case 

and may fail when there are false alarms of white colour like a ball.   

As for 3D ball positioning, several model-based approaches have been presented. Bebie, and H. Bieri 

[11], model 3D trajectory segments by Hermite spline curves. However, about one-fifth of the ball posi-

tions need to be set manually before estimation. In Matsumoto et al [12], epipolar line constraints be-

tween multiple cameras is utilized. In Ohno et al [16], 3D ball trajectory is modelled by considering air 

friction and gravity but depends on unsolved initial 3D velocity. In Kim et al [20] and Reid and North 

[21], reference players and shadows are utilized in the estimation of 3D ball positions. These are 

unlikely to be robust as the shadow positions depend more on light positions than camera projections.  
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In this paper, a comprehensive model based methodology is proposed for ball detection and tracking 

from real soccer sequences, in which domain knowledge of soccer games is modelled as the base for 

further processing. The main highlights of our method can be summarized below. Firstly, ball filtering 

is performed on the output of Kalman trackers which allows velocity information to be employed in the 

classification stage. Also, a tracking plus matching process is utilized in solving occlusions when the 

ball is merged with players. Secondly, the expected appearance of a moving ball is explicitly modelled 

to improve the ball classification process. Thirdly, occlusion-reasoning and tracking-back is employed 

to recover any ball merged with players as well as to remove false alarms. Finally, a 3D trajectory 

model is introduced, and the estimated 3D ball positions are taken as feedback in 2D processing for 

more efficient and robust ball detection and tracking.   

The remaining part of this paper is organized as follows. In Section 2, domain knowledge of soccer 

games is modelled. Then, Section 3 discusses foreground detection and tracking, in which a modified 

tracking plus matching process is introduced. Details on ball filtering with post-processing is presented 

in Section 4, and in Section 5, 3D ball trajectory model is discussed along with approaches on 3D ball 

positioning and feedback in 2D ball detection and tracking. Experimental results and discussions with 

quantitative evaluations are given in Section 6, followed by a brief conclusion in Section 7.  

2   Domain Knowledge Modelling of Soccer Games 

Domain knowledge including colour, ball shape and pitch geometry is widely adopted in soccer and 

other sports video analysis systems [1-3, 12, 14-16, 22]. In TV broadcasting domain, knowledge about 

closed captions, audio, slow-motion replays and special zoom enables more specific models explored in 

shot detection and semantic indexing of sports videos [3, 22-25]. Like many other ball games, soccer 

contains rich semantic and contextual information. Consequently, domain knowledge of soccer can be 

used in modelling such scenarios for context-based vision [26], or closed world tracking [6]. According 

to Strat and Fischler [26] and Initille and Bobick [6], context here refers to selection of knowledge for 
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dynamic and multi-object tracking, and a closed-world means a spatial-temporal region of known spe-

cific context. In closed world tracking, context-specific features have been proved robust and effective 

in a complex scene. In this paper, this approach has been applied to the soccer domain and the relevant 

context knowledge is modelled in several aspects and discussed as follows.     

2.1   Field Modelling  

In real soccer games, the play field (or ‘pitch’) can be exactly modelled with many corner points of 

given locations. This pitch model is useful in camera calibration to obtain bi-directional co-ordinate 

transforms between an image plane to the ground plane. In our system, Tsai’s algorithm for camera 

calibration [27] is adopted. In general, tracking in soccer domain is a wide-area surveillance problem; 

hence multiple cameras are normally required. In a multi-camera system, the 3D position and field-of-

view (FOV) of each camera can be determined before tracking, together with boundaries and transition 

areas between different views. Consequently, white field lines within each camera view can be modelled 

as a mask image to remove potential false alarms caused by these lines. The FOVs of all eight cameras 

are shown in Figure 2(a). Figure 2(b) and 2(c) illustrate an empty pitch and the field line mask from the 

view of camera #1. These field lines are detected using the Canny edge detector [28] and further linked 

with a morphological ‘closing’ operation.  

2.2   Object Modelling  

The objects in soccer context include a single ball and 25 persons comprising a referee and his two 

assistants, two goalkeepers and 20 players from two teams, namely Teams A and B. For a multi-

camera system, observations of these people can be categorized into these five classes according to 

colours of their uniforms. The ball is the sixth category, and a seventh category is defined as ‘anything 

else’ (windblown litter, flying turf, pitch markings judged as motion from camera-shake, people warm-

ing up on touchline, etc.).  
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Now further details about these objects are provided. The ball diameter 0d  is between 0.216m  and 

0.226m , implying an area (projected into any direction of view in world co-ordinates) of about 

0.04 2m . Its colour depends on its condition and requirements from competitions; for the matches re-

corded for these experiments (English Premiership) its initial colour is white. Normal minimum bounds 

on the player dimensions are: a height more than 1.7m ; a width of more than 0.25m(with a corre-

sponding minimum projected area of 0.45 2m ). On the basis of these dimensions, the ball can be 

clearly distinguished from the players and referees even though they sometimes appear in white, too. 

This clarity is not always achieved when using observations from the static cameras, as a consequence 

of the following factors: 

1. The transformation from image dimensions to real (world) measurements will have small or big 

error for objects on or above the ground plane, unless its height is known from some other source.  

2. The rapidly moving ball is subject to motion blur that increases its subtended image area and dis-

torts its otherwise circular appearance. 

3. Objects corresponding to regions of players or their uniforms (such as white socks) may be ob-

served to have similar dimensions to the ball if they are separated from the other regions of the player 

(due to occlusion, image boundary condition, or imperfect segmentation) 

4. The ball is frequently occluded from view by players.  

Figure 3 shows example observations of the ball, players and player parts, field-line false alarms that 

have been flagged by the motion detection process.  Details on how to use the contextual knowledge 

above and classify these objects are discussed in Sections 3 and 4.  

2.3   Motion Modelling  

As the focus of the game, the ball usually moves faster than players, which indicates the importance 

of motion features for ball detection and tracking. In fact, the motion of the ball undergoes various 

phases when it is in play. For the ball that is in-play, an important distinction is between periods in 
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which a player has the ball or is attempting to have the ball under control; and periods in which it is 

moving freely between players. These states can be termed possessed and moving-free respectively. 

When the ball is possessed it is frequently occluded by players.  The moving-free ball can be sub-

classified into flying and rolling phases, which in turn require tracking in 3D and 2D space. The ball 

that is out-of-play is less relevant to tracking. However, an important contextual cue is the use of re-

placement balls to accelerate the process of re-introducing the ball into play. This is an allowable dis-

continuity in the trajectory of ‘the ball’ (though outside the scope of this paper).   

3   Detection and Tracking of Moving Objects 

In this Section the method is described for tracking the moving objects in each of the multiple image 

planes. Image differencing is used to detect the objects, followed by Kalman-filter based tracking. For 

robustness, a two-stage adaptive background model is applied. In the first stage, a per-pixel Gaussian 

Mixture Model [29], ( ))()()( ,, l
k

l
k

l
k ωσ� ,  is used to estimate an initial background, where )(l

k
� , )( l

kσ  and 

)( l
kω  are the mean, root of the trace of covariance matrix, and weight of the l-th Gaussian distribution 

at frame k. In the second stage, this initial background image is continuously updated using a faster 

running average algorithm for efficiency [30]: 

kkHkHkkLkLk FF ])1([])1([ 11 −− −++−+= �I�I� αααα                               (1) 

where 10 <<<<< HL αα , and kF  refers to the foreground binary mask. This method helps to 

slowly update the background image even in foreground regions. 

Given the input image kI , the foreground binary mask kF  can be decided by comparing 

|||| 1−− kk �I  against a threshold. From the foreground masks, we can obtain a series of foreground 

regions representing candidate objects after a connected component analysis and thresholding by size. 

Each foreground region is represented by its centroid, bounding box and area. For each detected object, 

measurements from both image plane and ground plane are obtained in pixels and meters, respectively. 
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The former includes the bounding box of the foreground region and its centroid, and the latter contains 

its width, height and area determined from the foot of the foreground region, which prevents estimation 

errors accumulating in a hierarchy of Kalman filters. Besides, all detected small objects (less than 

0.1 2m ) are abandoned provided that their bounding boxes are overlapped with the field-line mask.  

3.1   Tracking in Image Plane 

An image-plane Kalman tracker is used to filter noisy measurements and split merged objects, in 

which the state Ix  and measurement Iz  are given by: 

T
22110000 ][ crcrcrcrI ∆∆∆∆= ��x                  (2) 

 T
221100 ][ crcrcrI =z                    (3) 

where ),( 00 cr  is the centroid, ),( 00 cr ��  is the velocity, ),( 11 cr  and ),( 22 cr  are the top-left and bot-

tom-right corners of the bounding box, respectively ( 21 rr <  and 21 cc < ); ),( 11 cr ∆∆  and ),( 22 cr ∆∆  

are the relative positions of ),( 00 cr  to ),( 11 cr  and ),( 22 cr .  

The state transition and measurement equations in the Kalman filter are: 

)()()(

)()()1(
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                                (4) 

where Iw  and Iv  are the image plane process noise and measurement noise; IA  and IH  are the corre-

sponding state transition matrix and measurement matrix defined in (4), with T∆  denoting the time 

interval between two successive frames (for image formation). Besides, 2I  and 2O  represent 22×  

identity and zero metrics.  
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The Mahalanobis distance is used to associate each observation to (at most) one tracked object, and 

the distance between the i th observation iO  and the j th tracked object '
jO  is given in Eqn 6, where �  is 

the covariance matrix.  

)()( '1T'2
jijiij OO

�
OO −−= −δ                                 (6) 

During the tracking process, several states are defined to identify different cases. These states are:  

new, normal, merged, missing and terminated, and are further explained as follows. For each existing 

tracked object, if it has corresponding observation matched, we set it in normal state. Otherwise, it is 

marked as missing and updated by predicted state estimation. If an object has been missing for more 

than M  frames, it is terminated. All unmatched observations are identified as new objects in tracking. 

If different objects share common regions in their bounding boxes, they are merged. Moreover, the age 

of a track is number of the frames that an object has been tracked, and the age of a new object is 1.  

 3.2   Tracking Correction 

The tracking method described above is an effective and robust method for dealing with partial oc-

clusions when the bounding box of two objects are overlapped in part, and further details on the proce-

dure for splitting two merged objects can be found in [31]. However, if the bounding box of one 

(smaller) object, such as the ball, is completely contained by another (larger) object’s bounding box, 

then there is no valid observation for the ball, and the estimated state will be updated on prediction only. 

This will frequently lead to tracking failure. Since this kind of full occlusion happens quite often be-

tween the ball and players, it is necessary to solve this problem for robust tracking of the ball. 

In the proposed scheme, an improved tracking plus matching process is introduced whenever a small 

object (of area less than 0.32m ) is found being merged with another (larger) object of area more than 

0.4 2m . These two thresholds are defined according to the model in Section 2.2, allowing for an inaccu-

rate measurement of ball size when it elevated from the ground plane. Then, a template of the small 

object is extracted before it is merged, which is used to find an optimal matching in the merged block. 
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Let 1−kr  and kg  be the template image and the merged block in frame 1−k  and k , respectively, 

then their distance ),( jiE ∆∆  is defined as follows, where the optimal matching of  ),( 00 ji ∆∆  is de-

termined as the  minimum distance over all match candidates.  

 

)),((minarg),(

)),(),((),(
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jiEji
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i j
kk
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∆∆

−��
    (7) 

Though traditional template matching is a (computationally expensive) exhaustive search, the pro-

posal is more efficient because i∆  and j∆  are constrained to a limited range on the basis of the track-

ing prediction. If we denote )','( ji ∆∆  as the predicted offset of the object being occluded, then i∆  and 

j∆  are required changing within 2/'' ii ∆±∆  and 2/'' jj ∆±∆ , respectively. Figure 4 shows results of 

foreground detection and motion correction in four continuous frames when a flying ball is merged with 

players. The original method [31] of partial observations correctly follows player IDs #7 and #8 

through their mutual occlusion. However, the trajectory of the ball with object ID #10 is wrongly esti-

mated and becomes discontinuous. When the correction process is applied, the whole trajectory of the 

ball is accurately estimated. In addition, some new techniques like Bayesian network inference and mul-

tiple hypothesis tracking may be utilized for further robustness [34, 35].  

4   Identification of the Ball Trajectory  

The method described in the previous Section will generate tracks from each camera view correspond-

ing to the movement the ball, players (and player fragments), and other clutter such as windblown litter. 

In this Section, techniques are described that use visual features and motion information to estimate a 

measure of relative likelihood that any given track represents the motion of the ball. The domain knowl-

edge introduced in Section 2 provides spatial-temporal constraints that can be used to track forward 

and back through the sequence of trajectories to maintain the identification through cluttered sequences 

of play.   
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4.1   Forward Filtering  

After the tracking process, in each frame every tracked object io  is assigned with a tracked state, in-

cluding position, size, age and an estimated velocity in the image plane. Measurements of size and ve-

locity are further expressed in ‘ground plane’ co-ordinates, using the homography provided by cali-

brated cameras and assuming that all objects lie on the ground plane. 

In the proposed identification process, size, colour, velocity and longevity features are used to dis-

criminate the ball from other objects in a two-part estimate ),( kD io of the likelihood that, at frame k, 

object io  represents the ball. The first part, ()1D , only uses size and colour features of the object; 

while the second part,  ()2D  uses motion features. The final estimate ()D  is a weighted combination 

of the results from ()1D  and ()2D .  

),()1(),(),( 21 kDkDkD iii ooo ηη −+=                               (8) 

where ]1,0[()(), 21 ∈DD , and ]1,0[∈η  is a weight and we simply used 2/1=η . 

For two reasons, the size of the moving ball may be over-estimated. Firstly, there is a motion blur 

effect caused by finite shutter speed. Second, if the moving ball is above the ground plane then the 

transformation to world-coordinates will over-estimate the size since it assumes the ball lies on the 

ground plane. To accommodate the first effect, the expected size of the ball can be adapted to be a 

function of the velocity. Writing the image-plane velocity at frame k as ))(),(( kvkv yx , the expected 

width w  and height h  in frame k  are  

')()(

')()(

0

0

Tkvdkh

Tkvdkw

y

x

∆+=
∆+=

                                (9) 

where md 22.00 =  is defined in Section 2.2 as the diameter of a stationary ball, and 'T∆  is the tempo-

ral aperture. This expression is re-arranged to define the corrected measurements )(ˆ kw  and )(ˆ kh  as 

')()( Tkvkw x ∆−  and ')()( Tkvkh y ∆−  respectively. Then,  1D  is defined as 
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where cη  refers to a percentage of white pixels in the bounding box. Eqn. 10 is presented as a hypo-

thetical distribution of the likelihood that track io  represents the ball, given its width and height, and 

colour properties. Alternatively, the parameters for this or another form of distribution could be esti-

mated from the data, given sufficient training samples.  

The second part of the overall expression uses the object’s absolute velocity iv  and longevity in  

as below to incorporate the observation that false alarms tend to be short-lived, and the ball tends to be 

rapidly moving. For this estimate of likelihood, the dependency on longevity in  is approximated by an 

exponential distribution:  

       )1()( 0

max
2

Tni
i

ie
v

D −−=
v

o     (11) 

where maxv  is the maximum absolute velocity of all the objects at frame k (including the ball and non-

ball objects), and 0T  is a constant. Typically the moving ball moves more quickly than players and is 

often the fastest moving object.  

According to the tracked evidences, Figure 5 shows filtered results of the ball trajectory in about 30 

seconds of video sequence from camera #4. In Fig 5, time t (or frame number k) moves from left to 

right, and the horizontal image co-ordinates of the object centroids, c0, is plotted up the y-axis, while the 

vertical image co-ordinate is omitted from this diagram. Trajectories in red, green, and light grey are 

from highly likely ball (with a likelihood greater than 0.75), possible ball (with a likelihood between 

0.35 and 0.75), and non-ball objects (players or false alarms), respectively. From Fig 5 we can see that 

the filtered results of the ball suffer discontinuous trajectories and quite a few false alarms, and the 

latter can be found as multiple possible ball candidates at a certain frame. These problems are mainly 

caused by occlusions and false alarms, and solutions to solve these two drawbacks are discussed below.  
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4.2   Occlusion Reasoning and Tracking-back 

As discussed in Section 2, there are false alarms like field line noise and body parts of players which 

may appear like a ball. When the frequently occluded ball cannot be tracked successfully, its trajectory 

becomes discontinuous and even incorrect due to these false alarms. In such a context, tracking-back is 

a complementary process to cope with ambiguity introduced in forward filtering, especially for the 

cases when the ball is occluded and then comes out again. In this process, the Kalman state information 

such as ‘possessed’ and ‘moving-free’ can be used to infer the likely path through periods of extended 

occlusions.  

Firstly, occlusion reasoning and tracking-back is employed to determine whether the ball is still mov-

ing or being possessed when it is merged with other objects like player(s) during tracking. Consider a 

tracked ball iB , which at frame k is started to be occluded by a player jP . At this instant of time, there 

is no distinct observation for iB  and it is unknown whether it has entered into a possessed state, or else 

there was no interception, and the ball will continue the trajectory. Thus the state of iB  at frame k can 

be either moving-free or possessed. If, after 0k  frames or less, a new ball candidate is detected near jP , 

then we infer that the ball has never changed from its original (moving-free) state and thus its trajectory 

is estimated by linear interpolation between the two positions when it is just before and after occlusion 

with jP . Otherwise, it should be defined as possessed by jP  from frame k and afterwards and the path 

of jP  is then utilized as an estimate of the trajectory of iB .  

Secondly, tracking-back is applied when each new ball candidate iB   is found not instantiated on the 

image boundary. It is assumed there is at least one player jP  that is responsible for the change of state 

from possessed to ‘moving-free’ – and the absence of ball observations when in the former state. Thus 

a new ball should always emerge from a player who possessed it; otherwise it is considered to be a false 

alarm. This jP  is simply decided as a player who is closest to iB  , and the path of jP  is then taken as 

estimated trajectory of  iB  during occlusion (in possession). Moreover, if a candidate ball has longevity 
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less than a given threshold, for example 4 frames, it is also considered as a short-lived false alarm 

(caused by imperfect foreground detection, as discussed in Section 2.2).  

Apparently, the above tracking-back procedure requires at least 0k  frames of ‘hindsight’ to classify 

the state based on subsequent observations. Therefore, a buffer of more than 0k  frames is introduced to 

store the tracking results and states before making a final estimate of the play state and ball trajectory. 

It is interesting to note that the ball trajectory obtained here is 2D results which corresponding to pro-

jected 3D trajectory on the ground plane, and how to use these 2D results to determine 3D trajectory of 

the ball is discussed in Section 5.   

Figure 6 plots improved ball trajectory after occlusion reasoning and tracking-back, in which the bot-

tom image is the final result after tracking-back; hence there is a considerable improvement in the accu-

racy of detection and continuity of trajectories. Comparing the final ball trajectory in Fig 6 with Fig 5 

clearly demonstrates that this post-processing has effectively recovered the ball positions even when it 

is occluded (being possessed with players). At the same time, false alarms of short lived objects are 

dramatically reduced.   

5   Determining 3D Ball Trajectory 

To estimate 3D ball trajectory, fusion of tracked results from multiple cameras are required. Tech-

niques for tracking players from multi-cameras are discussed in [30], and as for the ball, a 3D trajec-

tory model with details on how to decide 3D ball positions is presented below. 

5.1   Determining 3D Ball Positions 

If a point in a 3D co-ordinate system b , lying somewhere above the ground plane, is observed from 

two cameras 1c  and 2c  with projected positions 1b  and 2b  on the ground plane, then we can estimate 

b  from 1b , 2b , 1c  and  2c . Let 1l  and 2l  be two lines from 1c  to 1b  and 2c  to 2b  respectively. In 

the noise-free case they will intersect at b and this point can be recovered geometrically. However, 1l  
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and 2l  usually have no intersection point due to errors caused by camera calibration and various 

sources of measurement noise. We can instead consider the shortest line joining 1l  and 2l  - it is rea-

sonable to place the estimate of b  somewhere on this line. The simplest strategy, given below, is to set 

the estimate as the mid-point of this line, although a different strategy may be optimal if noise proper-

ties or relative distances are taken into account.   

Two points 1p  and 2p  are defined on lines 1l  and 2l , respectively, and we require the line from 1p  

to 2p  be a common perpendicular of 1l  and 2l . Then b  should be on the line between 1p  and 2p . If 

we denote 1p , 2p , 1c  and 2c  as the co-ordinate vector of the points 1p , 2p , 1c  and 2c , then 1p  and 

2p  can be determined by [33]:  

0)()( =−×− mmmm pccb       (12) 

0)()( =−⋅− mmmm ppcb      (13) 

where m ranges over the two line indices {1,2}. Equation (12) constraints mb , mp  and mc  to all lie on 

the same line of ml , and equation (13) defines the line between 1p  and 2p  to be perpendicular to 1l  

and 2l .  

Assuming the two cameras have same measurement covariance, then 3D ball position b  is simply 

estimated as the middle point of 1p  and 2p . Moreover, if the ball is observed in more than two cam-

eras, we will first find the estimated 3D ball position of each pair of different views, and the final ball 

position b  is estimated as the average of these estimated points. Strategies on how to locate 3D ball 

positions from single view can also be found in [33]. 

5.2   Estimating 3D Ball Trajectory 

With only two estimated 3D ball positions, r  and s , the 3D ball trajectory is obtained as follows. 

Let ))(),(),(( tztytx  denote the 3D position of the ball at time t , and ),,( rrr zyx  and ),,( sss zyx  

denote 3D co-ordinates of r  and s . We also denote  rt  and st  as the corresponding time moments, 
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respectively. Disregarding the air friction, we can reasonably assume that the horizontal and vertical 

velocities are constant during the period from rt  to st . Then, we simply have  
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If the ball is moving on the ground, i.e. either rolling or being possessed, we have 0)( =tz . Other-

wise, a flying ball will generate a parabola trajectory satisfying Eqn. 15, where g  is the gravity accel-

eration.  
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It is worth noting that in both Eqns. 14 and 15, the 3D ball trajectory is simply determined without 

any velocity information. If more than two ball positions have been located, the trajectory parameters 

are over-determined and a least-squares estimate can be used.  

5.3   Feedback for 2D Ball Detection and Tracking 

With estimated 3D ball positions, the 2D ball detection process can be further improved. Firstly, 

these 3D ground coordinates of the ball are mapped to image plane and provide an estimate of new 

positions of the ball, again using our calibrated camera model. Then, several optimal camera views are 

selected in which the ball is predicted of high visibility, and this is determined if the ball is found close 

enough to the corresponding camera. Meanwhile, the ball is only detected from these optimal views 

within a small range around the estimated new position.  

Moreover, an adaptive frame dropping is also applied for efficiency. For these optimal views with 

the ball contained, detection and tracking is completed frame by frame, i.e. without frame dropping. 

Otherwise, foreground detection and tracking is only employed in every dη  frames. The reason is that 

players may move fast or slowly when they are near or away from the ball, hence the adaptive frame 
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dropping scheme. If the 3D ball position is invalid, then the ball is detected from all camera views with-

out frame dropping. 

6   Results and Discussions 

The proposed model has been tested in an 8-camera system on long sequences captured from real 

soccer games. In each sequence, we have 4800 frames (192 seconds) in miniDV format (25 frames per 

second, 576720×  resolution, 4:2:0 colour depth with DCT compression for 25 Mb stream). To quanti-

tatively evaluate the proposed method, two groups of manual ground truth data are defined. The first 

includes image-plane bounding box of the ball and its centroid, and the second is ground plane ball 

positions. In total there are 220 ground plane positions and 826 bounding boxes defined. Ball positions 

in other frames are then linearly interpolated by using this manual ground truths. Quantitative evalua-

tion on 2D and 3D trajectory analysis is presented below.   

6.1   Evaluating 2D Performance 

Firstly, 2D performance is evaluated by a measure of detection rate R , which is defined in each 

frame by comparing the bounding box of detected (tracked) ball knb ,  with that of the ground truth kng ,  

from sequence n  at frame #k . Then, the common area of these two bounding boxes is extracted and 

divided by the area of detected blob. Let )(⋅Area  specify the corresponding bounding box, and this 

detected rate R  is then defined as 
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To obtain an overall figure )( ,knbR  is averaged over frames of all ground truth objects. When there 

is no buffering and tracking-back, the overall detection rate is only 57.6%. As for ball observations that 

are isolated from or merged with the players, namely isolated or merged balls, the corresponding detec-

tion rates are 78.5% and 24.4%. When tracking-back is introduced, this overall recover rate becomes 



 17 

78.4%, 81.1%, 81.4% and 81.6% when the buffer size is set as 25, 50, 75 and 100 frames, respectively. 

As for isolated balls, their average detection rates are 84.1%, 84.9%, 85.1% and 85.2%. While for 

merged ball samples, the corresponding detection rates are 63.7%, 68.5%, 68.7% and 69.0%. Further-

more, more than 90% of correctly detected balls are found within a six pixels deviation between the 

centroid points of the two bounding boxes. These experiments suggest that the 'tracking-back' technique 

is useful in recovering ball samples when they appear merged with players, and for isolated ball sam-

ples, its contribution is very limited. On balance, it seems that 50 frames of buffering is a good trade-

off between correct tracking rates and the need for short latencies in a live stream.  

Figure 7 illustrates ball detection and tracking results in the sequence #1 from frame #897 to frame 

#1011, and only part of the frame images are displayed. Initially, the ball (ID #1) is detected in (a) as a 

new appearing object with likelihood 0.75 when it is kicked off by the player (ID #9). Then, it is in 

normal moving-free state with likelihood 0.90 in (b). In (c), the ball moves out of this camera view. It 

returns to the view in (d) and is then possessed by a new player #14, though it cannot be detected until 

it leaves the player in (e). In (e) and (f), the ball of ID #16 is identified again as new appearing and 

normal moving-free, with likelihood of 0.75 and 0.95, respectively. In (g), the ball of likelihood 0.99 is 

merged with player #9 and possessed. Next, a new ball of ID #11 is detected in (h) with likelihood 0.60, 

and finally in (j) it is found in normal moving-free status of likelihood 0.85 before it flies out of view 

again. These tracking IDs are dynamically assigned to each new object which has appeared in the whole 

frame, and these results are obtained without tracking-back. From Fig 7 we can see that the proposed 

approach is very effective in detecting the ball in cases where a conventional approach is not so suc-

cessful, e.g. if it is merged with players.   

6.2   Evaluating 3D Performance 

For 3D ball tracking from multiple cameras, the distance (error) between the estimated and ground-

truth ball positions in ground plane is measured. We denote )(xNd  as the number of detected balls 
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within the distance of x  to the ground truth, and express the maximum distance allowed as mdex . 

Therefore, )( mded xN  means the total number of valid 3D ball positions recovered. Meanwhile, denote 

the maximum calibration error between the eight cameras in the system as mcex  . In the experimental 

dataset, this is estimated to be 2.5 meters. The maximum recorded error mcemde xx 2= .  

Let 0N  be the total number of frames with common timestamp tracked in the eight sequences, ex-

cept those in which the ball is out of play. An overall recovery rate dV  can be defined as follows. 

       0/)( NxNV mdedd =      (17) 

To measure the accuracy in 3D tracking, we define an accuracy rate dA  as follows. 

       )(/)()( mdeddd xNxNxA =      (18) 

which refers to a percentage of recovered ball positions which have errors less than x  in the total num-

ber of valid 3D ball positions. Also, we take )( mced xA  as a reasonable measurement of 3D tracking 

accuracy, as it corresponds to a percentage of ball positions which have an error less than mcex .  

When there is no buffering in ball filtering, we have %8.33=dV  and %1.94)( =mced xA , which 

means very limited ball positions are recovered in high accuracy. When a buffer of 25 frames is used, 

we have %0.72=dV  and %91)( =mced xA . When the buffer size increases to 50 and 75 frames, re-

spectively, the corresponding recovery rate and accurate rate are %2.84=dV  and %2.89)( =mced xA , 

and %6.84=dV  and %5.88)( =mced xA . Also, it suggests that 50 frames of latency is a good trade-

off between an overall recovery rate and a high accuracy.  

Figure 8 illustrates tracking results from multiple cameras at frame #820, in which both the trajecto-

ries of the ball and players are shown.  A ground plane visualisation of the game is plotted in the middle 

and surrounded with results from the eight separate camera views. The projected 3D ball trajectory is 

represented in magenta, whilst the associated 2D trajectories are in grey. The ball trajectory filtered 

from single cameras can be found from views of cameras #3, #2 and #6.   
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6.3   Evaluating Performance on Adaptive Frame Dropping 

According to our adaptive frame dropping strategy, 3D ball positions are used as feedback in 2D 

processing for ball detection and tracking. As for the eight sequences in total, up to three optimal views 

are determined by the estimated 3D ball positions, and frame dropping occurs in the other five or more 

camera views.  

In our system, foreground detection, image plane tracking, ball filtering and 3D positioning occupy 

95.5%, 2.5%, 1% and 1% of the entire computational load needed, respectively. In dropped frames, 

foreground detection is omitted, and the tracking process only uses prediction for estimation, thus the 

overall efficiency has been well improved. When dη  is set as 2, 3 and 4, the computational load is re-

duced by 49%, 68% and 78%. At the same time, the tracking accuracy is found to degrade between 

1.2% and 2.6%. Therefore a lower frame rate of around 6 frames per second can still provide accurate 

tracking performance.    

7   Conclusions 

We have proposed a novel method for soccer ball detection and tracking from real video sequences. 

The domain knowledge is an important component in the process model. A local matching process is 

proved effective in compensating the Kalman tracker to deal with merged balls. Motion information and 

modelling the expected appearance of a moving ball have significantly improved the detection accuracy. 

Moreover, the application of occlusion-reasoning and tracking-back results in significant improvements 

of the tracking accuracy and continuity of the ball trajectory. The effectiveness of the tracking-back 

approach is dependent on the size of the buffering. By comparing results for different buffer sizes an 

appropriate trade-off between the accuracy and latency is also suggested. In our 3D trajectory model, 

the ball motion can be estimated with only two 3D ball positions without any velocity information. Fi-

nally, feedbacks from 3D ball positioning to 2D detection and tracking seems more efficient. Future 
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work includes the investigation of more complex modelling of game events for content-based under-

standing of soccer.  
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List of Figure Captions: 

 

Fig. 1. Ball samples in different size, shape and colours from same image sequences: Top and bottom 

rows are from two different camera views, respectively. The last sample in each row is the ball passing 

through field lines. 

 

Fig. 2. FOVs of eight cameras in our system (a), and example images of an object-free pitch (b) with 

its associated field line mask (c) from camera #1. 
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Fig. 3.  Enlarged images of potential objects in different colour boxes with the ball (in white), players 

(in blue), field line noise (in red) and body parts of players (in yellow). 

 

Fig. 4. Tracking correction results in four consecutive frames (from left to right) when the moving ball 

of ID 10 is merged with a player (ID 8) in the sequence from camera #1: The top row is detected fore-

ground, the middle and the bottom rows are results without and with tracking correction, respectively.  

 

Fig. 5. Examples of about thirty seconds of tracking data and filtered ball from camera #4, in which 

time t moves from left to right, and the horizontal image co-ordinates of the object centroids, c0, is plot-

ted up the y-axis. Red, green and light grey trajectories refer to highly likely ball, possible ball and non-

ball objects.  

Fig. 6. Refined results of ball trajectory after occlusion reasoning (top) and also tracking-back (bottom). 

In the top image, red, green and blue trajectories refer to highly likely ball, possible ball and in-

possession ball, respectively. In the bottom image, red and light grey trajectories correspond to ball and 

non-ball objects, and short-lived false alarms are removed. 

 

Fig. 7. Ball detection (tracking) results from sequence #1 at frame #897, #904, #918, #953, #967, #980, 

# 1005 and #1011 (from a to j), with likelihood and tracking status shown above the corresponding 

bounding boxes.  

 
 

Fig. 8: Multiview and single-view tracking results at frame #820. The surrounding images (from top-

left to top-right) correspond to cameras C4, C3, C8, C2, C1, C7, C6 and C5.  

 

 

 


