
Limited view CT reconstruction and segmentation via constrained
metric labeling

Vikas Singh1, Lopamudra Mukherjee2, Petru M. Dinu3, Jinhui Xu2, and Kenneth R.
Hoffmann4
1Biostatistics & Medical Informatics and Computer Sciences, UW-Madison.
2Computer Science and Engineering, SUNY-Buffalo.
3Toshiba Medical Research Institute USA, Vernon Hills, Illinois.
4Toshiba Stroke Research Center, Dept. of Neurosurgery, SUNY-Buffalo.

Abstract
This paper proposes a new discrete optimization framework for tomographic reconstruction and
segmentation of CT volumes when only a few projection views are available. The problem has
important clinical applications in coronary angiographic imaging. We first show that the limited view
reconstruction and segmentation problem can be formulated as a “constrained” version of the metric
labeling problem. This lays the groundwork for a linear programming framework that brings metric
labeling classification and classical algebraic tomographic reconstruction (ART) together in a unified
model. If the imaged volume is known to be comprised of a finite set of attenuation coefficients (a
realistic assumption), given a regular limited view reconstruction, we view it as a task of voxels
reassignment subject to maximally maintaining consistency with the input reconstruction and the
objective of ART simultaneously. The approach can reliably reconstruct (or segment) volumes with
several multiple contrast objects. We present evaluations using experiments on cone beam computed
tomography.

1 Introduction
Tomographic reconstruction from only a limited number of projection images is an important
problem in medical imaging. For example, in coronary interventions, the vasculature undergoes
simultaneous motion and deformation due to respiration and coronary contraction – thus, a
complete rotational acquisition of a ‘stationary’ object is practically infeasible. As a result,
3D volumetric data in coronary studies is difficult (Note: reconstruction of the vasculature from
two views may be performed by indicating the segments of interest followed by a triangulation
like procedure). On the other hand, when the imaged object is stationary and a complete
rotational set of projection images are available, it is well known that the corresponding
reconstruction task can be precisely formulated as an inverse problem. This problem is very
well studied and many algorithms with proven convergence properties exist, see [1] and
references therein for more information. However, when imaging an object with periodic
motion such as the coronary vasculature, the ‘limited’ number of views are typically the ones
that correspond to the heart in approximately the same phase (e.g., diastole or systole) as the
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imaging system (gantry) rotates around it, see Fig. 1 (b). Here, the computed tomography (CT)
reconstruction problem formulated as a linear system of equations is under-defined. In the
frequency domain, this can be interpreted as certain regions of the Fourier space which are
insufficiently characterized. The key problem in limited view CT reconstruction is to
reconstruct a 3D volume that corresponds to what may have been a complete rotational
acquisition, although the given angular spacing of the projection image set is quite far from
the Nyquist criterion. In addition to coronary vessel reconstruction, there are instances of the
limited view problem in breast imaging [2] (as a result of the maximum radiation dose that can
be given to the breast tissue) as well as in dental radiography [3,4].

We illustrate the problem of artifacts and blurring using an example in Fig. 2 where Fig. 2 (a)
shows a single projection view and Figs. 2 (b) and 2(c) show a 2D slice from a reconstruction
volume obtained from 360 (fully sampled) and 15 images respectively. Note the artifacts (radial
lines from the center to the image boundary) in Fig. 2(c) compared with the ‘clean’
reconstruction in Fig. 2(b). Our primary objective is to recover Fig. 2(b) from Fig. 2(c) reliably
and efficiently. This will enable us to reliably approximate what might have been the volumetric
reconstruction for a complete rotational acquisition (i.e., fully sampled), even when only a
limited number of views of the object are available.

The remainder of this paper is organized as follows. In §1.1, we review related literature on
this problem. We introduce the main ideas of this paper in §2 – first, by looking at limited view
CT reconstruction as a case of metric labeling with additional requirements in §2.1 and then
elaborating on the form our additional requirements take in §2.2. We formally establish some
hardness results for the resultant optimization problem in §2.3. We introduce the optimization
model in §3.1, which is followed by a discussion on how to obtain integral solutions such that
(1) we do not move far away from the global optimum and (2) our additional requirements still
remain satisfied. We present experimental results in §4, and finally highlight some avenues for
future research and conclude in §5. A preliminary version of this paper appeared in [5].

1.1 Previous work
Volumetric reconstruction using only a limited number of projection views has been an active
topic of research because of its relevance and far reaching practical implications. A common
feature of some of the earlier approaches was the extension or modification of standard CT
reconstruction algorithms to the limited view case, this was done by using the iterative
reconstruction-reprojection algorithm recursively while trying to estimate the data in the
missing views [6,7]. This strategy has had limited success; as Anderson pointed out in [8] – no
additional information is introduced during the estimation process and hence the convergence
of these iterative approaches is not well defined. Subsequent efforts have focused on the design
of algorithms specifically for the limited view case using a wide variety of tools – from modified
algebraic reconstruction [2] to Fourier analysis [9]. Several researchers have reported on
satisfactory practical performance of Expectation Maximization (EM) algorithms [10], but
such algorithms usually have difficulty escaping local minima suggesting that we may obtain
sub-optimal results; see the discussion in [11]. Here, we will focus on approaches that are
combinatorial in nature and relevant as background for the subsequent sections.

A key feature of tomographic reconstruction is the calculation of line integrals of an unknown
attenuation function (imaged volume) along projection lines originating from an x-ray source.
If the attenuation distribution (to-be-estimated function) is considered to be discrete, each
continuous integral can be substituted by a summation of discrete values (see Fig. 3), the
reconstruction problem then naturally transforms into a discrete optimization problem.
Recognizing this connection, several researchers have proposed mathematical programming
as well as certain greedy frameworks to solve this problem. A noteworthy example is [12]
where Fishburn et al. formulated the problem of determining a subset S given line integrals as
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a linear programming problem. Later, this approach was extended to the image reconstruction
domain by Gritzmann et al. [13] who introduced several objective functions to obtain
“maximal” consistent reconstructions. A recent work [14] used the linear programming
approach of [12] together with the objective function of [13] and added additional
“smoothness” terms in the objective to obtain tomographic reconstruction of 3D volumes. In
a subsequent work, the authors proposed a quadratic objective function [15] and reported
improvements over their approach in [14]. A common limitation of many existing algorithms
is that they are only applicable for binary images or volumes – the implicit assumption is that
the imaged volume only draws from two distinct attenuation coefficients, namely air (i.e.,
background) and one among tissues, contrast agent like iodine or bone as foreground. This
assumption is only occasionally satisfied making the practical applicability of such techniques
rather limited. Here, we remove this restriction; the algorithm allows multiple contrast objects
in the imaged volume, they can all be reconstructed and segmented simultaneously.

The limited view problem has also been encountered in other medical imaging modalities
(outside of CT reconstruction). For example, in the magnetic resonance (MR) imaging
community, a number of recent papers have tackled the problem of dealing with artifacts and
noise (in parallel MR image reconstruction) within an optimization framework. The artifacts
in the reconstruction arise in an effort to reduce the number of acquired data samples (and
consequently the patient scan time). Several interesting approaches based on a least-squares
type framework [16], a formulation amenable to the use of efficient graph-cuts methods
incorporating edge-preserving priors [17], and methods using L1 norm regularization [18] have
been proposed. For more on the background of the problem in MRI and a review of existing
techniques, we refer the reader to [19].

1.2 Brief Introduction to metric labeling
We will briefly digress here to familiarize the reader with metric labeling, an interesting
combinatorial problem introduced independently by Kleinberg and Tardos [20] and Boykov,
Veksler, and Zabih [21]. In this classification framework, the goal is to assign a small set of
representative labels, T, to a larger set of items, P, where |T| ≪ |P|. It is elegant in that it
effectively captures two competing influences – (1) the separation cost conveys the idea that
if two items are alike, it is desirable to classify them together by assigning them the same label;
(2) the assignment cost on the other hand depends only on the individual label assignments we
make for each item. For instance, in an image processing application, it makes sense to assign
a pair of neighboring pixels with similar intensity values to the same cluster (or class). At the
same time, we must prefer assigning a ‘light-blue’ pixel to ‘blue’ (as a representative label)
rather than denoting it by ‘black’. While the problem is NP-hard even when the separation cost
is metric, Kleinberg and Tardos [20] proposed an elegant randomized-rounding-based
approximation algorithm 5. Independently, Boykov, Veksler, and Zabih [21] pointed out the
relationship of graph-cuts to metric labeling and proposed an efficient max-flow-based
algorithm that relies on computing local minima of energy functions repeatedly (polynomial
number of steps) for image segmentation. The models are based on Markov Random Fields
[23], and allow the design of very efficient optimization schemes that lead to provably good
solutions. The limited view CT reconstruction problem benefits from these ideas, as we discuss
in the subsequent sections.

2 Theory and Main Ideas
Our linear programming formulation for the limited view tomographic reconstruction and
segmentation problem builds upon Kleinberg and Tardos’ metric labeling model.

5In [22], Hochbaum showed that polynomial time algorithms were possible for convex assignment cost and linear smoothness cost.
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2.1 Limited view reconstruction as metric labeling
Let us start with the volume obtained from a standard simultaneous algebraic reconstruction
procedure (SART) as a first step, we denote this volume as V where V (i, j, k) or V (p) denotes
the intensity value at voxel p ∈ V whose coordinates are (i, j, k). Recall that V contains severe
streak and blurring artifacts as illustrated in Fig. 2(c). Our primary goal is to recover an artifact
free reconstruction.

A simple visual analysis of the images in Figs. 2(b) and (c) indicates that the distribution of
the intensity values of Fig. 2(b) has only two well concentrated regions, the first centered around
the foreground intensity values (vessel cross section) and background values comprising the
second region – we know that the imaged volume has only two distinct attenuation coefficients.
Generalizing this further, if the imaged volume consists of bone, air, and a contrast agent, we
must see three distinct contrast values in the reconstruction, one for each unique material in
the imaged configuration. The distribution of contrast values in Fig. 2(c), on the other hand, is
far more “spread out” as a result of blurring and streak artifacts. The key observation here is
the following – when imaging the human body, in most cases, one knows in advance the
expected materials (and their physical properties) and consequently the contrast values in the
reconstruction given information about the imaging system. The x-ray attenuation coefficients
of materials that may be imaged are available and the exact subset can be determined based on
the particular anatomy. Therefore. given the characteristics of the imaging system, the specific
contrast values can be calculated. Hence, it makes intuitive sense to view the problem of going
from Fig. 2(c) to (b) as a reassignment task.

The loss of texture information—The discussion above raises one possible concern: that
the fully sampled (360-view) reconstruction has a natural “texture”, which we may not be able
to recover by reassigning the pixels to three (or four) distinct contrast values. This could be
problematic if such texture adds value to the diagnostic process (e.g., if one were analyzing
bone density). However, what is of interest in many applications (such as the present one) is a
geometric reconstruction of the vasculature (e.g., a mesh representation), so it may be used for
quantitative evaluations by a clinician or for other biomechanical experiments. For example,
even when a textured 360-view reconstruction is available, quantitative analysis of the vessel
(e.g., tortuosity calculation, vessel sizing) is performed after “binarizing” [24]. Therefore,
discrete reconstructed volumes are useful and the reassignment formulation turns out to be a
desirable characteristic in this application. We will focus on the reassignment task next.

Our objective will be to reassign the voxels to one among a set of distinct contrast values. This
set of labels (or contrast values) should ideally be given as an input based on the physics of the
imaging system and the imaged anatomy; however, if unavailable, may be estimated from the
input volume6. Assigning each voxel to its closest label greedily is unlikely to work well, so
we must put similar intensity-valued voxels in the same partition (or segment); by the same
argument, pixel pairs that are dissimilar in the input image volume must be assigned to
dissimilar labels. To reflect this logic7, the cost consists of two parts, data assignment cost and
smoothness cost [25,21]:

(1)

6In general, we may perform a simple preprocessing step using k-means clustering (where k is chosen based on the anatomy being
imaged).
7This strategy is standard in segmentation schemes based on Markov Random Fields in vision. We discuss this briefly and then move
to our formulation which allows incorporation of CT specific special constraints.
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The first term i.e., ℰd evaluates the cost of assigning a voxel to a distinct label. The second
term in the objective function, ℰs is useful to preserve neighborhood continuity. These two
terms of the energy functional are effectively captured by the objective function of metric
labeling. The likelihood of a voxel being assigned to a particular label is given by the data term,
where as pairwise relationships among objects are preserved through the smoothness term.

Consider a binary function, h : V → T, mapping voxels to elements in T, where T is the set of
labels; h yields the mapping, X, defined as follows.

(2)

For the sake of presentation, let us assume that X is known. If T(l) is the intensity value of label
l, then if p is assigned to l, the data term is

(3)

Denoting gd(V (p),·) as gd(p, ·), the data energy penalty for p is

(4)

We can extend this for all voxels in V as

(5)

Let us now move to the smoothness term of the energy. If neighboring pixels p and q are
assigned labels f(p) and f(q), the penalty imposed must depend on the extent of similarity of
p and q as well as f(p) and f(q). If p and q are very similar, we assign a high weight w(·) to their
corresponding edge epq ∈ E. This encourages the optimization process to assign them to similar
labels to avoid incurring a penalty of gs(f(p), f(q))·w(epq), where w(epq) is the weight of epq
(similarity of p and q).

Intensity Similarity—Recall that for a pair of intensities p and q the edge weight or similarity

(using RBF kernel) may be given as exp  where σ controls the smoothness. In the
Potts model, it is expressed as K · δ(f(p) ≠ f(q)), where δ(·) is 1 if f(p) ≠ f(q) and K is a either a
constant or the penalty for a discontinuity at (p, q). Similarly, the function, gs(f(p), f(q)) can be
related to the difference between f(p) and f(q) or be a constant value. In this application,
assigning a “bone” voxel to a “tissue” label is as incorrect as another misclassification, say to
“iodine”. Hence, we consider gs(f(p), f(q)) = M, to penalize all misclassifications equally.

We consider the smoothness energy for p and q to be given as

(6)
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We can rewrite (6) using X as

(7)

Also, each voxel must only be assigned to one label,

(8)

Using the ideas in [20], we have the following (preliminary) integer programming problem
where X(p, l) (or xpl) is 1 or 0 depending on whether or not the voxel p is assigned to label l
(similar to h in (2))

(9)

2.2 Line Sum Constraints
While the model above accurately captures the requirement of reassigning voxels to a discrete
set of contrast values subject to data and smoothness terms, it ignores the available projection
view data completely in the assignment process. As a result, the final reassigned volume may
not be consistent with the projection views. Also, if the artifacts are conspicuous enough they
will be classified as one of the foreground labels. To address this difficulty, we must determine
a volume that not only preserves the desired qualities above but also maintains complete
consistency with available projection data. In other words, the reassignment must agree with
the witnesses (projection images of the volume). We address this by introducing ‘line-sum’
constraints, the key principle guiding tomographic reconstruction. Why imposing line-sum as
a witness is preferable to solving for it directly is a question we address at the end of §2.3.

Let V, |V| = n3 denote the unknown volume. Let m = n2k projection lines come out of an x-ray
source, pass through the volume and cast a projection on k image planes. Then, the “line sum”
in tomographic reconstruction is

(10)

where the to-be-determined x is a function of the attenuation coefficients of the imaged
distribution and b is the vector of observed projections, i.e., a pixel on the projection image.
The entry Aij ∈ ℛ+ indicates the distance traveled by line i through voxel j (see Fig. 3), the
contribution of j to the ith integrand. Here, the distribution is continuous. But we seek to assign
the voxels of V to discrete intensity levels, given as T. Using X ∈ ℛ|V|×|T| as a variable matrix
denoting to-be-computed reassignments where X(p,l) ∈ {0, 1} maps voxel p to label l, we can
denote the discretized effective attenuation coefficient as XT where X ∈ ℛ|V|×|T| and T ∈
ℛ|T|×1. For a row in X, the product with the assignment matrix on the right gives the contrast
value the voxel assumes after reassignment. The equivalent form is then
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(11)

Note that after reassignment to discrete values, the projection of the volume may not completely
agree with the given projections. In fact, such a reassignment will most likely not even exist.
Nonetheless, a good solution should be close to the projection images. Let ϵ denote the
allowable variation between the projection line sum and the given pixel value. We can rewrite
(11) as

(12)

where ϵ can either be a user input or be determined by some preprocessing. In summary, we
would like to perform a MRF-type reassignment under the requirement that the final volume
be consistent with the set of witnesses (projection images).

2.3 Hardness results
In this section, we show that determining a voxel→label assignment satisfying the line-sum
constraints is hard. Recall that a problem W is NP-hard if ∀ W′ ∈ NP, W′ ≤p W, where ≤p
denotes polynomial time reducibility. If it is also the case that W is in NP, then W is called
NP-complete, where NP denotes the class of non-deterministic polynomial time solvable
problems.

We consider the simplest case where we must determine an assignment for only a single line-
sum constraint. Obviously, the result holds for multiple lines also. For any line i, let the
coefficient row, Ai, be denoted as F = {F1, …, Fm} ∈ ℤ+, note that the integrality condition is
wlog since the coefficients can be scaled. Define a set F̄, |F̄| = |F|·|T| given by the product of
terms in F and T, picking one from each set. It is simple to see that finding an assignment
satisfying the line-sum constraint is a form of the following simplified decision problem.

Problem 1 (Feasibility problem (FPr))—Given n coefficients F̄ = {F̄1, F̄2, … F̄|F̄|} with
F̄i ≥ 0, F̄i ∈ [0, 1], a set T = {T(1), T(2), …, T(c)} for some constant c, and a non-negative
scalar value b, determine the existence of a vector X ∈ Tn such that b - ϵ ≤ F̄X F̄ X ≤ b + ϵ.

The above problem does not ask for an explicit voxel→label assignment, but only the number
of times each term in F̄ can be considered to satisfy the inequality. We state and then establish
the following result.

Theorem 1: The Feasibility problem is NP-complete.

Proof: Consider the following well-known NP-complete problem [26].

Problem 2 (Subset Sum (SS))—Given a set D = {d1, d2, …, dn} where di ≥ 0 and B > 0,
determine whether there is a subset S′, S′ ⊂ S such that Σdi∈s′di = B.

The reduction is: SS ≤p FPr. First, we rewrite SS as follows. Let X be a vector in {1, 0}n. Then,
the SS problem asks for the existence of a X such that DX = B. For every instance of SS, we
can construct an equivalent instance of FPr by setting c = 2 and ϵ = 0. If we can solve FPr (in
polynomial time), we will also have obtained a solution to SS. Hence, FPr is NP-hard. Given
a feasible solution to FPr, it can be easily verified whether the equality b - ϵ ≤ F̄X ≤ b + ϵ is
satisfied. Thus, FPr is in NP. The theorem follows.
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The usefulness of ART solution as an initialization: Before proceeding, let us briefly
investigate why the ART solution is useful as a starting point, i.e., the utility of viewing our
problem as a reassignment task instead of solving for the label assignments for pixels directly.
It is easy to see that determining such label assignments directly would require solving the line-
sum constraints (in a discrete setting). The statement of the theorem above tells us that this is
difficult. Of course, we may still avoid using the ART solution: the alternative is to solve (12)
in a continuous (rather than discrete) setting. But comparing the continuous version of (12)
and (10) shows that we will get results similar to the ART reconstruction of (10). It is
challenging to design a principled rounding strategy for this solution. Using the algebraic
reconstruction as a starting point (i.e., initialization), despite being artifact prone, proves to be
helpful if we exploit the projection data as additional information.

3 Proposed Algorithm
3.1 Model—Combining (9) with the line sum constraints we have the following IP model:

(13)

where T(l) denotes the lth label of T. In the above model, the variables xpl are considered binary,
though these variables can be relaxed to be in [0, 1]; hence the above model can be formulated
as a linear program. The non-linear absolute term in the objective can be addressed with an
additional variable ze, one for each edge. Some additional constraints are needed to complete
the linearization. For completeness, the transformed model follows.

(14)

Theorem 2: The number of constraints in (14) is O (n2k + |V|), the number of variables are O
(|V|). The linear program in (14) can be solved optimally in polynomial time.

3.2 Rounding—In this section, we discuss how to obtain an integral solution, X, from a
fractional one, x*. Let  be an optimal solution to (14),  ∈ [0, 1]. Our interest is in
the following two issues.

Approximation: Not move far away from the optimal solution of (14).
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Feasibility: The rounded solution still respects the line-sum constraints.

The first point refers to the so-called ‘gap’ – the ratio of the rounded integral and fractional
optimized values. The second aspect, i.e., feasibility, in the present problem is challenging.
Observe that in most LPs, any rounded solution is feasible. For example, consider constraints

of the form . Clearly, any 0–1 solution will trivially satisfy this requirement, hence
the focus is primarily placed on provably good approximations. However, the situation here is
more complicated since the line sum constraints have lower and upper bounds; the inequalities
with “≤” are the packing constraints and “≥” denotes covering constraints. Simultaneously
satisfying both while not moving too far away from the optimal value makes this difficult. We
will focus on rounding primarily in the following context.

1. Deterministic: where both the upper and lower bounds of the line-sum constraints are
violated by at most a known factor in the worst case.

2. Randomized: where the upper (lower) bound is satisfied with high probability, the
lower (upper) bound is violated by at most a constant factor.

3.2.1 Rounding for two label case: Let the label set be T, the indices of the two labels be a1
and a2, and T(a1) and T(a2) denote their intensity values. Wlog, assume T(a1) > T(a2) > 0, x*

denotes the optimal LP solution and X is the integral solution.

3.2.1.1 Deterministic rounding: The approach is as follows.

1. If  set Xpa1 = 1 and Xpa2 = 0.

2. If  set Xpa1 = 0 and Xpa2 = 1.

Lemma 1: The deterministic rounding produces an integral solution X s.t.

(15)

Proof: Since x* is feasible, we have . Hence,  implies . Consider
the (worst) case when the upper bound is violated. This happens when all Xpa1’s are set to 1
(using ); simultaneously, all Xpa2’s are set to 0 (using ). Clearly, the lower bound is

trivially satisfied. Also, . For each p, the contribution to the line sum before
rounding was , after rounding the contribution is AipT(a1). Since

. Since T(a1) = yT(a2) where y > 1 and
N denotes the number of voxels, we have the following.

(16)
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The detailed derivation is available in §6 (Appendix). The violation on the lower bound can
be shown similarly, by considering the (worst) case where the lower bound is violated (when
all p are assigned to the smaller label T(a2)).

3.2.1.2 Randomized rounding: When there is a constant factor violation in the upper bound,

the lower bound (in the worst case) may be violated by a larger ratio of . To improve these
results, in this section, we propose a randomized rounding schema. The main result of this
approach is

• The lower bound is satisfied with high probability.

• The upper bound is violated (in worst case) by at most a factor of 2.

• The obtained integral solution is ‘good’, i.e., close to the optimal solution.

The key in our rounding procedure is a non-linear rounding scheme, a mechanism recently
used to obtain improved approximation ratios for a number of problems [27,28,29,30]. In using
such a scheme, the design of an appropriate non-linear rounding function is important. We first
introduce a few technical results, see [31].

Theorem 3 (Hoeffding): If X1, …, Xn are mutually independent 0/1 random variables, such

that Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, and , then for any λ > 0

(17)

A direct consequence of the Hoeffding Inequality when ψ ≪ n is the Angluin Valiant Inequality
as follows.

Theorem 4 (Angluin Valiant [32]): If X1, …,Xn are mutually independent variables with 0 ≤

Xi ≤ 1, Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi, and , then for any β > 0

(18)

(19)

We now establish a simple result invoking the Angluin Valiant Inequality for use later. Note
that (18) was used to show an upper bound result in [33].

Lemma 2: Let X1, …, Xn be mutually independent 0/1 random variables, with Pr[Xi = 1] = pi

and Pr[Xi = 0] = 1 − pi for all i; let , 0 ≤ wi ≤ 1. If ψlb be the lower bound on
(ψ(X)), then for any β > 0

(20)
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Proof: Let . Let Y1, …, Yn be random variables in [0, 1] such that Yi takes the value
fwiXi with probability 1. Clearly Yi are independent variables with 1 ≥ (Yi) ≥ 0. Therefore,
the random variable ψ(Y) = Y1 + … + Yn is such that (ψ(Y)) = ψlb and ψ(Y) ≤ ψ (X). It follows
that

(21)

3.2.1.3 Rounding Approach: We start with x*. Choose a δ ≥ 1 (the precise value of δ will be
specified later). Let Xp be a random variable, Xp = 1 indicates that the voxel p maps to the
higher-valued label, T(a1), p maps to the lower-valued label T(a2) if Xp = 0. Initially, voxels
do not have a label assignment. We iterate through the following steps until all voxels are
labeled.

1. Pick a label index l ∈ {a1, a2} at random and a real number α ∈ [0, 1].

2. For each voxel p which is not yet assigned, assign it the label T(a1) (making Xp = 1)
if l = a1 and .

3. Else, assign it the label T(a2) (making Xp = 0) if l = a2 .

From the above, it is clear that we have .

3.2.1.4 Constraint Satisfiability: The integral solution Xpa1 can be thought of as an assignment
to a random variable of the same name, which in turn, is the assignment to random variable
Xp. It is easy to see that .

Lemma 3: Let s be a value that satisfies

, then

(22)

where m ≤ n2k is the number of lines.

Proof: The line-sum (AXT) constraints in (15) can be restated (considering only lower bound)
for each line i as

with N entries (voxels) in row i of A. We assume wlog that AijT(l) ∈ [0, 1] (Note: while the
input may not always satisfy this condition, we can enforce this by normalization). Replacing
xja2 by 1 − xja1 for all j ∈ {1, …, N}, we have
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which gives

(23)

This also implies that the fractional solution to the LP (i.e., x*) obeys the previous condition,
since it is a feasible solution to the LP. Therefore, ∀i ∈ {1, …, m}

(24)

First, we compute the expectation of the summation term, for all i

(25)

Now, we must choose an appropriate value of β such that we can bound the probability of

“undesirable events” away from 1. Setting ,

(26)

where (26) follows due to Lemma 2. Therefore, the probability of any AXT lower bound
violation is

(27)

For the upper bound case, the worst case violation is at most 2 by invoking Lemma 1.

3.2.2 Approximation: In order to prove the desired approximation ratio, we emulate the proof
of Kleinberg and Tardos [20] for the Uniform Metric Labeling problem (ULP) that did not
include line-sum constraints. Using the expected value of our random variables as a
modification, we restate the lemmas. We refer the reader to [20] for their proofs. In the
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following, an edge e = (p, q) being ‘separated’ in a rounding iteration implies that p and q were
unassigned before the iteration and one of p and q was assigned to a label during the iteration.

• The probability that an unassigned voxel, p, is assigned a label a1 in a given iteration

is . and that an unassigned voxel, p, is assigned a label a2 is 

• The probability that an unassigned voxel, p, is assigned any label in a given phase

is .

• Over all phases, the probability that an unassigned voxel, p, is assigned label a1 is
 and label a2 is .

• For an edge e = (p, q), the probability that e is ‘separated’ by an iteration is

 for any l ∈ {a1, a2}.

• The probability that p and q have different labels (over all iterations) is 2δze.

Theorem 5: If OPT is the optimal LP solution to (14)–(15) and Wexp is the solution obtained
from the randomized rounding procedure, then with high probability

(28)

By Markov’s Inequality, the probability that the obtained solution is larger that 2δ times the
optimal is

(29)

Finally, we summarize the results of our randomized rounding approach.

Corollary 2: Let X be the 0/1 integral solution obtained by rounding a fractional solution
x*. The probability that X does not satisfy

is at most , where δ is as in Lemma 3.

3.2.3 Arbitrary Label case—The results in the above sections relied on n independent 0/1
random variables whose expected value was obtained as a function of the LP solution, x*. For
the two label case, for a voxel p, we have  for label
indices a1, a2, where f(·) is an appropriate function (in the previous case, f(·) was ).
However, for the arbitrary label case, this conversion no longer works since Xp takes one among
|T| values with some probability. While probabilistic rounding similar to the two-label case
works in practice as we discuss in §4, we do not derive concentration bounds (equivalent to
the two-label case) in this paper.
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4 Experimental Results
The implementation of the algorithm was done in C++ using CImg [34] and CPLEX (as a linear
program solver) and was run on a 1.7GHz computer with 2GB RAM. In this section, we present
performance evaluations of the algorithm on simulations, phantom data, as well as animal
acquisitions. We will provide a few examples from each experimental category.

Our primary objective was to analyze if streak artifacts and blurring, the distinguishing
characteristics of limited view reconstruction, can be sufficiently mitigated. Our second
objective was to determine how a “denoised” image compares with one obtained via
reconstruction with complete 360-view (i.e., fully sampled) information.

4.1 Head Phantom simulations
We used a modified Shepp-Logan head phantom image for the first set of 2D simulations. The
distribution was projected onto 360 views (1° apart). The projections were then used for a
simultaneous ART reconstruction to serve as ground-truth data (see Fig. 4). We emulated the
limited view case by picking k = {10, 15, 20} equally spaced projections from the complete
rotational set. Again, a reconstruction was performed for each case. We can see in Fig. 5 (top
row), as the number of views (k) decreases, the quality of the reconstructed image progressively
becomes worse and the effect of streak and blurring artifacts becomes more pronounced. The
task of our algorithm was then to recover the original image – given the reconstruction V, the
limited projection views corresponding to V (i.e., line-sum constraints in §2.2), and the number
of labels desired (|T|) in the final solution.

As a preprocessing step, we used a k-means clustering algorithm on the set of intensity values
in V to find |T| = 3 disjoint clusters and their corresponding centers. The centers served as the
labels in T. The grid-graph for V had 128 × 128 vertices, we used four-neighborhood adjacency
to introduce edges between neighboring pixels. The edge weights were assigned using the RBF
kernel. Having initialized the required parameters, the algorithm set up the linear program
matrix, solved the model and obtained a solution vector (i.e., x*). Then, we probabilistically
round the values to 0 or 1 to obtain an integral solution. We observed that in all cases the
fractional solution was good (see Fig. 6), we will discuss this in more detail shortly. The results
(V′) are shown in Fig. 5 (bottom row) for limited view cases corresponding to k = {10, 15, 20}.
In all three cases, the algorithm is able to suppress the streak artifacts and recognize the regions
of interest from the background. Observe that in the limited view reconstruction corresponding
to k = 10 (top-row), the black ellipses are hardly noticeable due to blurring, our algorithm is
still able to distinguish it from the background (bottom-row). As can be expected, when we
move from k = 10 to k = 20, we notice fewer outliers in the background and the quality of the
images determined by our algorithm improve.

Using the fully sampled (360-view) reconstruction, we calculated the number of mislabeled
pixels, this was done by manually segmenting the ground truth and establishing cluster-to-
cluster correspondence between V and V′. The misclassification for k = {10, 15, 20} was {9%,
7%, 5%}, with the majority of such pixels lying on the object boundary. We saw similar error
values when repeating the experiments for other sets of projection data. The running time of
the algorithm was ~ 30 seconds. Finally, as we mentioned above, the quality of the solutions
was very good w.r.t. the integrality gap. In Fig. 6, we show the distribution of the entries of
x*, the values are highly concentrated towards 0 and 1 (only 0.6% of the entries of x* are in
[0.1, 0.9]), note that the y-axis is on a logarithmic scale. This indicates that the loss in optimality
due to rounding was quite small in practice.

We also repeated the head phantom experiments with 4 labels and 20 projection views. For
this purpose, the bright big ellipse in the interior was assigned a different contrast value
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compared to its smaller circles. The original image is shown in Figure 7 (a), the solution from
our algorithm is shown in 7 (b). The solution is only slightly worse than the 3 label case with
a misclassification rate of 7%. We also ran an implementation of the graph-cuts frame work
[21], the same label values used in our algorithm were used as input to the graph-cuts
implementation. Since the graph cut formulation does not naturally allow side constraints (i.e.,
line-sum constraints), the eventual segmentation is based primarily on the input. As a result,
some of the artifacts are segmented as valid foreground regions, see Fig. 7 (c). The
misclassification error was 17%. In our experiments, we tried increasing the smoothness values
gradually but that did not significantly reduce the artifacts, instead merged the smaller circles.
In summary, the line-sum constraints are useful for enforcing consistency with the projection
data during reconstruction/segmentation.

4.2 Vessel Phantom reconstruction
Our second set of evaluations focused on limited-view reconstructions of an aluminum vessel
phantom. The acquisition was performed on a Toshiba Infinix imaging system at 90 kVp with
a 9″ field of view, see Fig. 8. A copper filter was used to avoid additional beam hardening
artifacts. A simultaneous ART reconstruction of the phantom was performed using the
complete rotational acquisition to serve as ground-truth data. The resolution was 642 × 64. To
emulate the limited view case, we picked k = 20 equally spaced projections and performed a
reconstruction. Similar to §4.1, we calculated the label values, T, using k-means clustering,
and then determined the spatial and grouping cues which were assigned as the edge weights
and the data terms in the model. Note that since |T| = 2, we have a special constrained case of
two-way graph cut (and not multi-way cut); two-way graph cuts (without line-sum constraints)
can be solved optimally in polynomial time.

We illustrate the results for the vessel reconstruction in Fig. 9. The first column (a) show 2D
slices corresponding to a complete rotational reconstruction. The second column (b) show the
same 2D slice for the limited view case, we can clearly see that the image exhibits streak and
blurring artifacts. What makes the task challenging is that in several regions the objects of
interest have similar contrast as the ‘structured’ artifacts. Column (c) shows the solution
obtained by our algorithm, the streak and blurring artifacts have been eliminated and regions
of interest have been identified. We repeated such experiments for many different sets of
projection images but that did not have an effect on the solution quality.

In Fig. 10, we show the volume visualization results from two views for the 360-view
reconstruction and V′20 determined by our algorithm. The illustrations show that the two
reconstructions are comparable though the full-view reconstruction has “cleaner” boundaries.
To evaluate the accuracy of our limited view reconstruction, we calculated the misclassification
error between V′ and the 360-view reconstruction after manual cropping and threshold
segmentation. These results are encouraging – the percentage of misclassified voxels were less
than 1% (i.e., background pixels labeled as foreground as well as foreground pixels labeled as
background), the vessel regions correspond to ~ 1% of the volume. Since the input images
were blurred, the errors were primarily in the first category. The running time of the algorithm
was ~ 3 minutes.

4.3 Aneurysm Phantom
Our evaluations in this section focus on reconstruction of an aneurysm phantom8 from a limited
number of views. Several of the image acquisition parameters and preprocessing were similar
to what was discussed in §4.2 in addition to injecting iodine as a contrast material. Some of
the images from the sequence are shown in Fig. 11.

8An aneurysm is a bulge of the vessel walls due to disease. The analysis of vessel/aneurysm topologies is important in stroke research.
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We illustrate our results for 20-view reconstruction in Fig. 12. Again, the first column (a) show
two 2D slices corresponding to a complete rotational reconstruction. The second column (b)
show the same 2D slice for the limited view case which is severely affected by artifacts. The
reader will notice that the blurring artifacts here are slightly worse than those shown in §4.2.
Column (c) shows the solution obtained by our algorithm, the streak and blurring artifacts have
been eliminated and we are able to reliably determine the regions of interest, that agrees well
with the complete reconstruction. The three sets of slices, one in each row, correspond to the
choice of slicing plane (sagital, axial, and coronal). The running time of the technique was ~
4 minutes. The resolution was 642 × 64. We also note that choosing different sets of projection
images had minimal impact on the results overall.

In Fig. 13, we show the volume visualization results from two views for the 360-view
reconstruction and V′20 determined by our algorithm. Similar to §4.2, the two reconstructions
are comparable though the full-view reconstruction looks better qualitatively. The
misclassification error between V′ and the 360-view reconstruction was less than 2%, mostly
around the boundaries and the thinner (2 – 3 voxels) vessels. Because of blurring, the
misclassifications around the boundaries (background labeled as foreground) comprised most
of the errors, these may decrease upon a careful choice of edge-weights. However, extremely
thin vessels will still be difficult as they were almost completely blurred out in the 20-view
reconstruction.

4.4 Rabbit Head images
The images in this section are taken from an animal study, the volume comprised of air, soft-
tissue and bone, the three distinct contrast materials corresponding to these materials were
calculated. We omit the discussion of other clinical aspects of the image acquisition. A
reconstruction corresponding to 20 views was used as an input to our algorithm. The resolution
was 642 × 64. We first illustrate the results using representative 2D slices. In Figure 14, we
show three slices (sagital, coronal, and axial) from the full reconstruction, limited view
reconstruction, and our algorithm. As in the previous results, the limited view reconstruction
has artifacts that are addressed by our technique. The results match well with those from a full
reconstruction.

An informative visualization of a three-contrast volume is difficult to show, hence, we show
some images of the visualization in two contrast mode in Fig. 15 (a)–(b), and three-contrast
mode in Fig. 15 (c)–(d) (where the third contrast i.e., soft-tissue, is set to be ~80% transparent).
We see that the results for a complete reconstruction in Fig. 15 (b), (d) are comparable to the
one obtained from our algorithm Fig. 15 (a), (c). We do not report on misclassification errors
in this case because we were unable to obtain ground-truth data. As in the experiments reported
in the previous sections, we noticed that choosing different sets of projection images had little
impact on the results overall.

4.5 Dog Head images
The images in this section correspond to another animal study. Similar to the rabbit acquisition,
the volume comprised of air, soft-tissue and bone, the three distinct contrast materials
corresponding to these materials were calculated. A reconstruction corresponding to 30 views
was used as an input to our algorithm. The resolution was 642 × 64.

We show the limited view reconstruction of the head section using the projection images. Fig.
16 (a)–(b), and three-contrast mode in Fig. 16 (c)–(d) (where the third contrast i.e., soft-tissue,
is set to be ~80% transparent). Similar to §4.4, we see that the results for a complete
reconstruction in Fig. 16 (b), (d) are comparable to the one obtained from our algorithm Fig.
16 (a), (c).
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Finally, we note that for all these data-sets the loss due to rounding was quite small. In general,
the distribution of entries in the solution vector for all datasets was similar to the plot shown
in Fig. 6. A large percentage of entries were concentrated around 0 or 1 with fewer than 1%
of the entries in x* having values in the [0.1, 0.9] range. A summary of misclassification errors
is provided below.

5 Conclusions and Future Work
In this paper, we have proposed an optimization framework based on a constrained version of
metric labeling to provide reliable CT reconstruction and segmentation from only a limited
number of projection views. The algorithm allows simultaneous reconstruction and
segmentation of multiple contrast values and brings ideas from algebraic reconstruction
together with combinatorial optimization approaches for energy minimization in a unified
model. We report on promising numerical results on simulations, as well as phantom images
and animal studies. The algorithm is easy to implement and runs in 3–4 minutes on 642 × 64
volume and ~30 secs for 2D images. An interesting direction of future research will be to see
if purely combinatorial algorithms can be designed for the problem. While recent work has
explored the question of which form of energy functions in vision can be minimized in a graph-
cuts framework [35,36], it will be very useful if such frameworks can also be extended to tackle
additional constraints that arise from “side knowledge”. The application of randomized
rounding for energy minimization in vision is also a relatively unexplored area, which should
be investigated in future work.
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6 Appendix

6.1 Derivation of (16)

(30)
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(31)

(32)

(33)

(34)

where the first inequality is valid because .
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Fig. 1.
(a) A complete rotational (i.e., fully sampled) acquisition of a vessel phantom. (b) In a
respiratory cycle, the ‘limited views’ correspond to the vessel structure in the same respiratory
phase (position and shape) when the patient is breathing normally during acquisition. Typically
the imaging system rotates around the vasculature during acquisition, and the same phase
images are determined using cardiac gating (e.g., with ECG).
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Fig. 2.
(a) A single projection image of a vessel phantom, phantoms are physical devices that may
have properties similar to a specific human anatomy and are used in radiation related procedures
to evaluate performance. (b) A 2D cross sectional slice (perpendicular to the view direction
and the horizontal green line in (a)) of the reconstruction volume using 360 views at 1°
separation. (c) The same 2D cross sectional slice as in (b) but the reconstruction was performed
using 15 views only.
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Fig. 3.
The case for a single projection line, the unknown distribution is x = [xi] and aij denotes the
coefficients (distance traveled by line i through voxel j). The relationship is then given by
a35x35 + a29x29 + a23x23 + a24x24 + a18x18 + a12x12 = bi.
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Fig. 4.
Shepp-Logan reconstruction using 360 views.
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Fig. 5.
The top row corresponds to limited view reconstructions (V10, V15 and V20) for k = {10, 15,
20} views respectively. The second row corresponds to the solutions (V′10, V′15 and V′20)
obtained from our algorithm.
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Fig. 6.
A histogram of the values of x* for k = 20, y-axis is logarithmic scale.
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Fig. 7.
Results for (a) original image after reconstruction for k = 20, (b) segmentation/reconstruction
using our algorithm and (c) segmentation without line-sum constraints (i.e., Graph Cuts).
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Fig. 8.
Rotational image sequence of vessel phantom.
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Fig. 9.
Two 2D slices for a full rotational reconstruction in column (a), corresponding 2D slices taken
from a limited view reconstruction with k = 20 in (b), the results from our algorithm for the
2D slices in (c). The slices in this figure correspond to a plane orthogonal to the imaging plane
in (d), the slice intersects it at the horizontal green line shown in (d). This is true for slices
shown in other figures also.
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Fig. 10.
Volume visualization of vessel phantom reconstruction, (a) and (c) correspond to V′20 from
two different views, (b) and (d) correspond to the 360-view reconstruction.
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Fig. 11.
Rotational image sequence of an aneurysm phantom.
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Fig. 12.
Sagital, Coronal, and axial slices of the vessel aneurysm volume. Slices corresponding to the
complete reconstruction in column one, the limited view (20 view) reconstruction in column
two, and for our reassignment algorithm with line–sum constraints in column three.
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Fig. 13.
Volume visualization of aneurysm reconstruction, (a) and (c) correspond to V′20 from two
different views, (b) and (d) correspond to the 360-view reconstruction of the vessel aneurysm.
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Fig. 14.
Sagital, coronal, and axial slices of the rabbit head volume. Slices corresponding to the
complete reconstruction in column (a), the limited view (20 view) reconstruction in column
(b), and for our reassignment algorithm with line-sum constraints in column (c).
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Fig. 15.
Volume visualization of rabbit head reconstruction, (a) and (c) correspond to V′20, (b) and (d)
correspond to the 360-view reconstruction of the rabbit skull reconstruction. Note that (a)–(b)
correspond to only two contrast values (bone and air) whereas in (c)–(d), the third contrast
value (soft-tissue) is set to be ~ 80% transparent.
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Fig. 16.
Volume visualization of dog head reconstruction, (a) and (c) correspond to V′30, (b) and (d)
correspond to the 360-view reconstruction of the dog head reconstruction. Note that (a)–(b)
correspond to only two contrast values (bone and air) whereas in (c)–(d) we can also see the
soft-tissue (partly transparent).

Singh et al. Page 35

Comput Vis Image Underst. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Singh et al. Page 36

Table 1
Summarization of the misclassification errors on each data set

Data Set views (k) contrast values misclassification

head phantom 10 3 9%

head phantom 15 3 7%

head phantom 20 3 5%

head phantom 20 4 7%

vessel phantom 20 2 1%

aneurysm phantom 20 2 2%
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