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a b s t r a c t

This paper presents a vision framework which enables feature-oriented appearance-based navigation in
large outdoor environments containing other moving objects. The framework is based on a hybrid topo-
logical–geometrical environment representation, constructed from a learning sequence acquired during a
robot motion under human control. At the higher topological layer, the representation contains a graph of
key-images such that incident nodes share many natural landmarks. The lower geometrical layer enables
to predict the projections of the mapped landmarks onto the current image, in order to be able to start (or
resume) their tracking on the fly. The desired navigation functionality is achieved without requiring glo-
bal geometrical consistency of the underlying environment representation. The framework has been
experimentally validated in demanding and cluttered outdoor environments, under different imaging
conditions. The experiments have been performed on many long sequences acquired from moving cars,
as well as in large-scale real-time navigation experiments relying exclusively on a single perspective
vision sensor. The obtained results confirm the viability of the proposed hybrid approach and indicate
interesting directions for future work.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Autonomous navigation is an exciting and actively researched
application field of computer vision. The design of an autonomous
mobile robot requires establishing a close relation between the
perceived environment and the commands sent to the low-level
controller. This relation is often defined with respect to distinct
features which can be extracted from the sensor signal and associ-
ated with landmarks from the real world. In order to make the
association possible, the robot needs to deal with some kind of
an internal representation of the environment. Designing ways to
maintain and use this representation is one of the central themes
in navigation research [1].

In the model-based approach, the representation is geometric
and environment-centered: landmark information is stored explic-
itly, and expressed in coordinates of the common metric frame [2–
5]. During navigation, detected features are associated with land-
marks in order to localize the robot and to introduce new features.
The environment-centric view is intuitively appealing since it
decouples the representation from the employed navigation meth-
od. However, the required accuracy of the involved estimation pro-
cess is not easily achieved in practice, which may result in low
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tolerance to localization and association errors. Additionally, the
scalability may be impaired by the complexity of attaining and
maintaining the global consistency of the model.

In the alternative appearance-based approach, the representa-
tion is topological and sensor-centered: raw sensor readings are
organized in a graph where incident nodes correspond to neigh-
boring locations between which the robot can be controlled easily
[6–10]. The navigation goal is planned by finding a path between
the initial and the desired location, while the robot is controlled
[11,12] to visit intermediate nodes on the path one by one. The
advantages are robust and simple control, as well as outstanding
scalability, real-time mapping, and a potential to deal with inter-
connected environments. On the other hand, the main challenge
is to recognize mapped locations in the presence of local sensing
disturbances due to occlusions, motion blur, specularities, variable
illumination etc.

This paper presents a novel framework for outdoor urban nav-
igation, relying on a single forward-looking perspective vision sen-
sor.1 The framework is based on a hybrid approach [7,17–20],
designed to combine prominent properties of a global topological
and local geometric environment representations. We consider sep-
arate mapping and navigation procedures as an interesting and not
completely solved problem, despite the ongoing work on a unified
solution [5]. Unlike many other recent approaches [7,8,20,10], we
address perspective vision [9,4] (as illustrated in Fig. 1) since it pre-
sents attractive opportunities and challenging open problems. The
1 Parts of this work have been previously presented in [13–16].
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Fig. 1. Appearance-based navigation with a perspective camera: the sketch of a navigation task (a), and the set of first eight images from the environment representation
forming a linear graph (b). Note that the graph has been constructed automatically using the mapping component described in Section 5.1.2.
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appearance of local patches in perspective images is often approxi-
mately constant up to scale [21], which presents an opportunity to
employ a suitably constrained differential tracker. In comparison
with omnidirectional vision, this is of special interest on straight sec-
tions of urban roads where forward features are likely to be less
influenced by motion blur. On the other hand, the principal chal-
lenge in perspective vision based navigation is to successfully handle
sharp urban turns, since the lifetime of the tracked features tends to
be short due to fast inter-frame motion. Addressing this challenge
while retaining good properties of appearance-based navigation is
the central point of this paper.

The paper is organized as follows. Related work in the field of
vision-based autonomous navigation is discussed in Section 2. Sec-
tion 3 provides an overview of the proposed navigation framework.
The employed vision techniques and algorithms are presented in
Section 4, with special emphasis on point transfer. Details of the
higher-level procedures used to implement the components of
the proposed framework are described in Section 5. Section 6 pro-
vides the experimental results including large-scale autonomous
navigation of a robotic taxi in a public area. Finally, the discussion
with conclusions is provided in Section 7.

2. Related work

In the context of visual appearance-based navigation, nodes of
the environment graph are related to key-images acquired from
distinctive environment locations. Different types of landmark rep-
resentations have been considered in the literature, from the inte-
gral key-image [6,22] and global image descriptors [7,23,24], to
more conventional point features [25,12,9,10]. The former meth-
ods are conceptually simple, but tend to be less tolerant to local
sensing disturbances. We focus at the latter feature-oriented ap-
proach, where common features are used to navigate between
the previous and the next intermediate key-image [12]. Here the
effects of local disturbances are limited to loosing contact with par-
ticular features which are later safely disregarded by the naviga-
tion layer. However, in order to ensure seamless operation,
contact with the lost features needs to be re-established as soon
as possible. This is especially important with sweeping occlusions
which occur so often in urban scenes (e.g., a pedestrian crossing
the street in front of the car). Thus, predicting approximate loca-
tions of currently invisible features (feature prediction) is essential
for robust feature-oriented navigation. In our work, feature predic-
tion is also employed for introducing new features along the path.

An appearance-based navigation approach with a rudimental
feature prediction technique has been described in [26]. The need
for feature prediction has been alleviated in [9], where new fea-
tures from the next key-image are introduced using wide-baseline
matching. A similar approach has been proposed in the context of
omnidirectional vision [10]. In this closely related work, feature
prediction based on point transfer [27,28] has been employed to re-
cover from tracking failures, but not to introduce new features as
well. However, wide-baseline matching is inherently prone to
association errors caused by ambiguous landmarks. In our ap-
proach, the computationally expensive and not so reliable wide-
baseline matching procedure is invoked only once, at the beginning
of the navigation. Transitions along the environment graph are per-
formed when enough features from the next arc in the environ-
ment graph have already been located in the current image.

A model-based point feature-oriented approach described in [4]
employs a feature prediction scheme relying on a previously ob-
tained global geometric model. The tracked features are used to
update the current estimate of the camera pose, while new fea-
tures are searched near the projections from their 3D reconstruc-
tions. The reported experiments involve successful navigation on
the urban paths of over 100 m, for which the model building phase
lasts around 1 h. In comparison, our approach does not require a
globally consistent representation of the environment. By posing
weaker requirements on the global consistency, we save computa-
tion time, likely obtain better local consistencies, and tolerate bet-
ter difficult situations (such as closing a loop involving a drift with
arbitrary magnitude) and occasional correspondence errors.

Notable advances in feature prediction have been achieved in
model-based SLAM [29,5,30]. In this approach the 3D locations of
all visible features together with the current camera pose are con-
stantly being improved as the navigation proceeds. The location of
previously seen but currently non-tracked features can conse-
quently be predicted by simple projection. Nevertheless, current
implementations have limitations with respect to the total number
of tracked points. Therefore, a prior learning step still seems a rea-
sonable option in realistic navigation tasks. In comparison, our ap-
proach has practically no scaling problems whatsoever:
experiments with 15,000 landmarks have been performed without
any performance degradation.

An account of advantages of hybrid representation in explor-
atory navigation has been presented in [17]. The global consistency
has been addressed in a slightly different manner in [19], where
loop closure has been postponed by using manifold maps (which
are related to topological representation), and eventually enforced
by active data association through robot rendezvous. A related ap-
proach has been employed in [18] in order to obtain photorealistic
walkthroughs starting from a sparse set of stereoscopic images.
However, these approaches do not address details specific to out-
door navigation with a single perspective camera.

Another example of a topological–geometrical environment
representation can be found in [7], where the appearance-based in-
door navigation is performed using omnidirectional images. The
indoor environment is heavily structured which enables using dif-
ferent descriptions in different parts of the environment. Along a
corridor, the system only has to track the parallel longitudinal



Fig. 2. The devised framework for feature-oriented appearance-based navigation. The entries which are considered in detail are typeset in bold.

2 Refer to [34,32] for a more involved treating of these issues based on content
ased image retrieval and shortest path algorithms.
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edges, in order to maintain itself far from the walls. Turning around
corners is considered more difficult and is more precisely con-
trolled by tracking features acquired during a previous learning
step. In comparison with our work, the authors do not address
building the hierarchical representation in an automatic fashion
and predicting the positions of currently invisible features.

3. Overview of the proposed navigation framework

The proposed framework for appearance-based navigation is a
long-term research goal at our laboratory [31,13,16,32]. As illus-
trated in Fig. 2, the framework operates in three distinct phases
which are going to be introduced in the following subsections.
But before that, we first briefly state the assumptions and con-
straints used to conceive the framework.

3.1. Assumptions

We consider an autonomous car-like robot within a previ-
ously mapped public urban environment. The robot employs a
perspective camera with fixed and known intrinsic parameters
as the only sensing modality. We assume paved paths with rea-
sonable longitudinal and lateral inclinations. Thus, the appear-
ance of visible landmarks is expected to change mostly with
respect to scale, since the camera has a moderate field of view.
This consequence is employed to achieve reliable tracking of
suitable square patches [33] (or point features) over extended
image sequences.

The presented framework is concerned only with goal-direc-
ted behavior, while obstacle avoidance will be considered in
the future work. Thus, in the navigation experiments we assume
that other moving objects will adopt collision-free trajectories,
while a human supervisor is responsible for handling the emer-
gency stop button. The devised control procedure exhibits a
qualitative path following behavior, since the learned path is
not tracked precisely in general. It is therefore suitable to prefer
the center of the free space during the acquisition of the learning
sequence.

3.2. The mapping phase

The hybrid topological–geometrical environment representa-
tion is created from a given learning sequence acquired during a ro-
bot motion under a human control. Global topological
representation is automatically formed by selecting key-images
from the learning sequence and organizing them within an adja-
cency graph. A distinct local geometrical representation is con-
structed for each neighboring pair of key-images from extracted
point correspondences.

Structure of the hybrid representation is illustrated in Fig. 3.
Key-images Ii correspond to nodes of the environment graph.
The associative maps Xi store 2D coordinates of point features
qij located in Ii, and indexes them by unique feature identifiers.
When a common physical structure is detected in two images Ii1

and Ii2 , the corresponding points in Xi1 and Xi2 are denoted by a
common identifier. For each arc k, the array of identifiers Mk de-
notes the corresponding features in the two incident nodes. Arcs
are further annotated with two-view geometries Wk, constructed
from the correspondences defined by Mk. The elements of Wk in-
clude motion parameters Rk and tk (normalized to the unit dis-
tance), as well as the 3D reconstructions Q kj of the
corresponding features indexed by the respective identifiers.
The two-view geometries Wk are deliberately set to unit scale,
since inconsistent scale sequences may be obtained along the
graph cycles.

In the presented implementation, we consider only linear and
circular graphs (cf. Fig. 3). The same indexing is used both for
nodes and arcs, by employing the convention that arc i connects
nodes i� 1 and i. If the graph is circular, arc 0 connects the last
node n� 1 with the node 0. Thus, the current geometric model
Wiþ1 corresponds to key-images Ii and Iiþ1. Similarly, model Wi cor-
responds to key-images Ii�1 and Ii, while Wiþ2 corresponds to Iiþ1

and Iiþ2. The scale si denotes the relative scale between the geom-
etries Wi and Wiþ1. More details about the concrete procedures
used to implement the described mapping functionality are pro-
vided in Section 5.1.

3.3. The task preparation phase

The task preparation phase is performed after the navigation
task has been presented to the navigation system. In general, it
consists of determining topological locations of the initial and de-
sired robot positions, visual path planning, and bootstrapping the
navigation phase [32]. However, the focus of this work is on map-
ping and real-time navigation issues so that the required topolog-
ical locations are simply provided by the user. Furthermore, here
we only consider linear and circular topological representations
which obviates the need for path planning.2

The navigation phase is bootstrapped by locating mapped fea-
tures within the image acquired from the initial robot location.
In order to achieve that, the initial image needs to be related to
the local frame Wiþ1 at the initial topological location. Conse-
quently, the two-view geometries towards the two incident key-
images Ii and Iiþ1 are recovered by wide-baseline matching. This al-
lows to predict the positions of the mapped features within the ini-
tial image using the procedure described in Section 5.2.1 and
consequently start the navigation.

3.4. The navigation phase

The navigation phase involves a visual servoing processing
loop [35], in which point features from images acquired in
real-time and their correspondences from the key-images are
used to control the robot. Thus, two distinct kinds of localization
are required: (i) explicit topological localization, and (ii) implicit
fine-level localization through the locations of the tracked fea-
tures. The topological location corresponds to the actual arc of
the environment graph which determines the two key-images
used in visual servoing (cf. Fig. 4). Ideally, the actual arc should
b



Fig. 4. The relation of the current image It with respect to the hybrid environment
representation (cf. Fig. 3 for notation). The points reconstructed within the actual
arc iþ 1 (five-pointed stars) are used for visual servoing (cf. Section 6.3). The points
reconstructed in the neighboring arcs i and iþ 1 enable smooth topological
transitions (cf. Section 5.2.2). All correspondences between the current image and
the neighboring two key-images are used to estimate the two-view geometries Wt:i

and Wt:iþ1 which are used in feature prediction (cf. Section 5.2.1).

3 Executables for the three key-point extraction algorithms are accessible from
Difference of Gaussians: http://www.cs.ubc.ca/~lowe/keypoints/ Multiscale Harris
http://lear.inrialpes.fr/people/dorko/downloads.html MSER: http://www.robots.ox.a-
c.uk/~vgg/research/affine/detectors.html.

Fig. 3. The hybrid representation of a linear environment (the same indexing is used both for nodes and arcs): environment graph with key-images Ii , feature maps Xi , scale
factors si , and two-view geometries Wi . Match arrays Mi are also shown.
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denote the key-images having most content in common with the
current image. This is usually well defined in practice since the
motion of a robotic car is constrained by the traffic infrastruc-
ture. Maintaining an accurate topological location is important
because that determines which landmarks are considered for
tracking in the current image, and eventually employed to con-
trol the robot.

When a new image is acquired, previously visible features are
tracked (cf. Section 4.2), while their positions are used to per-
form other tasks within the processing loop (cf. Fig. 2). As the
robot navigates, it eventually gets close to the next key-image
along the desired path. The topological location is then smoothly
changed towards the next arc and the associated geometric sub-
world (cf. Section 5.2.2). The smooth transitions are possible
since we track not only the features from the actual arc, but also
the features from the neighboring two arcs (cf. Fig. 4). During
the motion, the tracking of some features fails due to contact
with the image border or local sensing disturbances. Feature
prediction allows to deal with this problem and resume the fea-
ture tracking on the fly while minimizing the chances for corre-
spondence errors (cf. Section 5.2.1). Finally, the vectors between
the actual positions of the tracked points and their correspon-
dences in the next key-image are employed to control the mo-
tion of the vehicle using an adequate visual servoing [35]
procedure (cf. Section 6.3).

The devised hierarchical environment representation strives to
keep the best from topological and geometric approaches. The
global topological layer ensures scalability, fast mapping, and ro-
bust control. The local geometric models support feature predic-
tion which facilitates dealing with large inter-frame motions
and local disturbances in the input image stream. We strive to
obtain the best predictions possible, and therefore favor local over
global consistency by relaxing the requirement for a globally con-
sistent environment model. The procedures dealing with real-
time localization issues are described in more detail in Section
5.2.

4. Vision techniques and algorithms

This section presents the lower-level building blocks of the
proposed framework. The presented techniques and algorithms
are wide-baseline matching, point feature tracking, camera cal-
ibration, point transfer, and evaluation of a two-view
geometry.
4.1. Wide-baseline matching of point features

In wide-baseline matching the correspondences are found with-
out any assumptions about the relative pose of the two input
images. An important capability of the matching algorithm is
therefore to recognize the two image patches projected from the
same landmark even when they are related by a complex transfor-
mation including scale, rotation, and affine or photometric warps.
In the considered application, images are taken from a moving
car which implies that the predominant appearance distortion is
along the scale axis.

The implemented procedure is based on L2 matching of SIFT
descriptors [36]. The key-points for calculating the descriptors
are extracted using the maxima of the difference of Gaussians
[36], multi-scale Harris corners [37], and maximally stable extre-
mal regions (MSER) [38]. We employed suitably wrapped binary
implementations of the three key-point extraction algorithms
kindly provided by the respective authors.3 Three sets of correspon-
dences are obtained by matching descriptors calculated at key-
points provided by the three extraction algorithms. The correspon-
dences are fused by allowing only one key-point in the radius of a
few pixels. Combining the three algorithms is advantageous, since
they extract different kinds of features and therefore often comple-
ment each other.

The employed algorithm for estimating the epipolar geometry
(cf. Section 4.4) proved quite sensitive to the accuracy of the corre-
spondences. The matching procedure is therefore configured in or-
der to minimize inaccuracies. The ambiguities in urban scenes are
addressed by the simple rule, to keep only those features for which
the distance in the second-best match is less than 60% of the dis-
tance in the best match [36].
4.2. Point feature tracking

Two main approaches for conceiving a point feature tracker are
iterative first-order differential approximation [33,39], and match-
:
:
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Fig. 5. The point transfer problem: given projections of some 3D point Q onto two
images I1 and I2, we wish to find its projection in a new view I3. The decomposed
solution of that problem is: (i) image correspondences are used to recover the two-
view geometry ðI1,I2Þ; (ii) the two projections q1 and q2 are used to triangulate the
3D point Q; (iii) the two-view geometry ðI1,I3Þ is recovered and put into the frame of
the geometry ðI1,I2Þ; (iv) the desired point q3 is obtained by projecting Q onto
camera 3.

176 S. Šegvić et al. / Computer Vision and Image Understanding 113 (2009) 172–187
ing of light-weight point features using a proximity gate [40]. In
both approaches, a straightforward solution based on integrating
the inter-frame motion is viable only for short-term operation,
due to incontrollable growth of the accumulated drift. It is there-
fore necessary either to adapt the higher-level task to work only
with short feature tracks [40], if applicable, or to devise a monitor-
ing scheme for correcting the drift [33]. Drift correction is particu-
larly suitable in our context, since the short-lived features are less
adequate for appearance-based navigation.

The drift is usually corrected by aligning (or warping) the cur-
rent appearance of the feature with a previously stored template
image or reference. The desired alignment is performed by mini-
mizing the norm of the error image, which is obtained by subtract-
ing the current feature from the reference [41]. Shi and Tomasi [33]
have proposed a 2D affine warp, which can account for deforma-
tions of planar features in most situations of practical importance.
An extension of their work has been proposed in [39], where the
warp additionally compensated for affine photometric deforma-
tions of the gray level value in the image.

Our best results have been achieved by a custom multi-scale
differential tracker [21] derived from the implementation main-
tained by Stan Birchfield at the Clemson university.4 The employed
warp consists of translation, isotropic scaling, and affine contrast
compensation. The tracker typically manages to handle disparities
of more than 10 pixels. More implementation details have been pro-
vided in [21].

4.3. Camera calibration

In real-time robotic applications of computer vision, the pro-
cessing is often performed on images acquired by a particular care-
fully selected camera. Camera calibration is therefore a good
opportunity to decrease the error in the input data (typically, the
coordinates of the extracted features), and at the same time avoid
projective ambiguities. The employed calibration procedure [42]
determines five parameters of a linear model organized in a matrix
K, and two pairs of parameters modeling radial distortion ðkud

1 ; k
ud
2 Þ

and correction ðkdu
1 ; k

du
2 Þ [43]. Both directions of the radial model

are needed since the tracked points need to be corrected before
being given to stereo reconstruction, while the predictions need
to be distorted before a new feature is actually searched for in
the current image.

4.4. Decomposed point transfer in the calibrated context

Point transfer [27,28] refers to projecting a point visible in two
views of the same scene onto a new view, by using other corre-
spondences between the three views. The technique allows to pre-
dict the current position of a feature matched between the two
neighboring key-images, provided that the corresponding three-
view geometry [28] has been previously recovered.

There are many ways to compute the three-view geometry,
with different assumptions and performance requirements. The
‘‘gold standard” method described in [28] involves bundle adjust-
ment with respect to the reprojection error in all views, which
may be too expensive in a real-time implementation. Additionally,
the standard method does not use pairwise correspondences, but
only the points visible in all three images. This is a remarkable loss
of information since in our experiments pairwise correspondences
were more than twice as numerous than the three-way correspon-
dences. Finally, during navigation, the estimation of the three-view
geometry is performed many times for each neighboring pair of
key-images. Thus it is advantageous to precompute two-view
4 http://www.ces.clemson.edu/stb/klt/.
geometries between neighboring key-images and store them as a
property of the incident arc. An efficient formulation of such
decomposed solution has been proposed and evaluated by Lourakis
and Argyros in the uncalibrated (projective) context [44]. Very
good experimental results have been reported although the ap-
proach is suboptimal. The same idea has been employed in this pa-
per, but within the calibrated context (cf. Fig. 5). The desired three-
view geometry is obtained by combining a precomputed two-view
geometry between the two key-images with a two-view geometry
between the current image and one of the two key-images.

The two-view geometries are recovered using the essential ma-
trix estimated by the random sampling scheme MLESAC [45], using
the recent five point algorithm [46] as the generator of motion
hypotheses. The employed implementation has been provided
within the library VW34

5 maintained at the University of Oxford.
The decomposition of the essential matrix into motion components
is performed next, followed by the triangulation of 3D points [28].
Before proceeding, the two two-view geometries need to be ex-
pressed in a common frame. It is advantageous to stay in calibrated
context, since the adjustment of two metric frames involves estima-
tion of only one parameter (scale), while in the projective context
the ambiguity has 4 degrees of freedom [44]. The scale factor be-
tween two metric frames is estimated by requiring that all points
visible in both frames have the same depth. In practice, different
points vote for different scale factors due to noise. A robust result
is in the end obtained as the median of all individual factors.

4.5. Evaluation of a two-view geometry

It is important to be able to tell whether an estimation of a two-
view geometry has succeeded or not, especially when the result is
used for navigation. We noticed that the root-mean-square (RMS)
reprojection residual correlates well with the quality of the recov-
ered geometry, except at occasions when the calculation involves a
small number of correspondences. A theoretical explanation for
these exceptions has been found, and a better measure is proposed,
based on a conservative estimation of the variance of the reprojec-
tion error.

Assume that the two-view geometry has been estimated by ran-
dom sampling, and let the random variables Dix and Diy be assigned
to the two reprojection error components of the ith inlier point
used in the estimation. We assume that these 2n variables are
independent, and that they have a common normal distribution
with zero mean [28]:

Dix;Diy � Nð0; r̂2Þ; i ¼ 1;2; . . . ;n: ð1Þ
5 http://www.doc.ic.ac.uk/~ajd/Scene/Release/vw34.tar.gz.
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We wish to estimate a conservative upper bound r2
p of the com-

mon pixel error variance r̂2, with a tolerated probability p of mak-
ing an error:

rp ¼ arg min
r

Pðr̂ > rÞ � p: ð2Þ

We notice that Pðr̂ > rpÞ ¼ p, and introduce an auxiliary ran-
dom variable Z as follows:

Z ¼
X

i

ðD2
ix þ D2

iyÞ=r̂2: ð3Þ

Under the assumption (1), Z is distributed as v2 with 2n degrees
of freedom ð2n because the mean of the variables is assumed, and
not estimated), so that:

PðZ < zÞ ¼ Fv2 ðz; 2nÞ; ð4Þ

where Fv2 ðz; 2nÞ corresponds to a cumulative probability function.
Consequently, by substituting (3) and z ¼

P
iðD

2
ix þ D2

iyÞ=r2
p into

(4), we obtain:

Pðr̂2 > r2
pÞ ¼ Fv2

X
i

ðD2
ix þ D2

iyÞ=r2
p; 2n

 !
: ð5Þ

Finally, by combining (5) and (2), an expression for r2
p is derived

in terms of the count of the observed points n, and the parameter p
describing the accepted risk:

r2
p ¼

P
iðD

2
ix þ D2

iyÞ
F�1

v2 ðp; 2nÞ
: ð6Þ

The inverse of the cumulative probability function can be deter-
mined using a precalculated table for a feasible range of n, and a
chosen p, e.g., p ¼ 0:05. Note that for a large n, the denominator
in (6) tends towards 2n, leading to the usual RMS residual. The pre-
sented idea of penalizing geometries recovered with small num-
bers of points should be applicable even in presence of outliers.
In this case the denominator in (6) could be determined using a ro-
bust estimator such as median absolute deviation.
6 Although the two-view geometry estimation tends to be more accurate when the
correspondences are distributed evenly, we do not try to enforce that. This is because
real environments tend to be unevenly rich in information content. Enforcing a better
spatial arrangement by favoring the correspondences in the sky, on the pavement, or
on the blank wall would likely deteriorate the results.
5. Implementation details of the proposed framework

This section describes implementation details of the high-level
vision components of the proposed framework. The mapping com-
ponent defines the behavior of the system within the mapping
phase: it creates the environment representation from a learning
sequence, as introduced in Section 3.2. The behavior in the naviga-
tion phase is implemented by the localization and control compo-
nents. The localization component tracks the mapped features,
employs them to locate new features and maintains the correct
topological location, as introduced in Section 3.4. The output of
the localization component is a set of vectors connecting the cur-
rent feature positions and their correspondences in the next key-
image. These vectors are provided to the control component which
is briefly described along the navigation experiments in Section
6.3.

5.1. The mapping component

Many maps can be constructed for the same learning sequence,
depending on the selected set of key-images and on the technique
for extracting correspondences. Quantitatively, a particular arc of
the map can be evaluated by an estimate of the reprojection error
[28] rpðWiÞ from (6), and the number of correspondences jMij. The
two parameters are related to accuracy of the point transfer, and
robustness to local sensing disturbances. There is a trade-off in
interpreting the criterion jMij, since more points usually means
better robustness but lower execution speed. Different maps of
the same environment can be evaluated by the total count of arcs
in the graph jfMigj, and by the parameters of the individual arcs
rpðWiÞ and jMij. We prefer having less arcs since that implies smal-
ler memory requirements, and favors the mapping of distant land-
marks which are more easily recognized during deviations from
the reference path. This is important since the ability to deviate
from the reference path enables the robot to tolerate control errors
and to avoid detected obstacles.

Two different options were considered to address the issues
above and achieve automatic mapping of the environment. The
alternatives are detailed and discussed in the following text.

5.1.1. Mapping by matching
The first considered mapping option is wide-baseline matching

of images from the learning sequence. A simple key-image selec-
tion technique is employed, in which initially each 30th frame is
selected. If for a certain index i the count of obtained matches
jMij is too small or the reprojection error rpðWiÞ is too large, a
new key-image is introduced between the two considered ones,
and the procedure is recursively repeated.

As presented in Section 4.1, a heterogeneous matching algo-
rithm is employed, providing features which are not necessarily
compatible with the tracker. For instance, a valuable SIFT feature
calculated in the centre of a 30� 30 pixels distinct blob might
not be trackable with a fixed feature window of 15� 15 pixels.
Such inadequacies of the features proposed by the matcher are de-
tected immediately after the matching, by trying to track each fea-
ture at the matched location in the other image. Inadequate
features are used only for recovery of the two-view geometry,
and disregarded within the localization component.

Unfortunately, the above matching procedure does not always
succeed to recover a two-view geometry with an acceptable level
of accuracy. In particular, the accuracy is not always proportional
to the success of the matching algorithm. This is because, as the
physical distance between two successive camera poses decreases,
the count of obtained correspondences increases, together with the
difficulty of the reconstruction problem due to a small baseline
[46]. Thus it can happen, e.g., that an accurate solution in terms
of rpðWiÞ can not be found for images n and nþ 5 of the learning
sequence, but a perfectly valid solution can be found between n
and nþ 14, although with less correspondences.

5.1.2. Mapping by tracking
In this mapping option, the tracker is used to find very stable

point features in a given subrange of the learning sequence. The
tracker is initialized with all Harris corners in the initial frame of
the subrange.6 The features are tracked until the reconstruction er-
ror between the first and the current frame of the subrange rises
above a predefined threshold rp. At this moment the current frame
is discarded, while the previous frame is registered as the new key-
image in the environment graph, and the whole procedure is re-
peated from there. To ensure a minimum number of features within
an arc of the graph, a new node is forced when the absolute number
of tracked points falls below n. Bad tracks are identified by a thresh-
old R on the RMS residual between the current feature and the ref-
erence appearance [33,21]. Typically, the following values were
used: rp ¼ 4, n ¼ 50, and R ¼ 6.

A similar mapping procedure has been used in [9], but without
monitoring the reconstruction error. The proposed mapping is sim-
ilar to the recent visual odometry technique [40], except that we



Fig. 6. Typical projections of the uncertainty ellipsoids for local reconstructions in
the three arcs of the topological layer, for a prevalently forward movement.
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employ larger feature windows and more involved tracking (cf.
Section 4.2) in order to achieve more distinctive features and long-
er feature lifetimes. The obtained key-images are related to
key-frames in structure and motion estimation [47,4] since both
provide a solution to the problem of increasing noise in tracked
feature positions. However, the purpose of the two is different,
since our key-images need to be farther apart in order to be more
suitable for appearance-based navigation.

Generally, the tracking approach provided substantially better
results than the approach based on matching, both in terms of
reprojection error and the count of mapped features. In the over-
whelming majority of experiments the accuracy was satisfactory
even for very small baselines. This should be regarded as no sur-
prise, since more information is used to achieve the same goal.
However, exceptions to the above occur when there are disconti-
nuities in the learning sequence caused by a large moving object,
or a ‘‘frame gap” due to preemption of the acquisition process. In
the presented scheme, such events are reflected by a general track-
ing failure in the second frame of a new subrange. In principle, both
of these problems can be avoided by carefully preparing the acqui-
sition of the learning sequence, since the main goal of the system is
to achieve robustness during the navigation phase. Nevertheless,
we try to solve these problems automatically. A recovery is at-
tempted by matching the last key-image with the current image
in order to connect the disjoint parts of the graph. This is especially
convenient when mapping is performed online, from a manually
controlled robotic car.

Wide-baseline matching is also useful for connecting a cycle
in the environment graph, which is applicable if the learning se-
quence has been acquired along a closed physical path such that
the initial and final positions are nearly the same. After the
learning sequence acquisition is over, the first and the last
key-image are subjected to matching: a circular graph is created
on success, and a simple linear graph otherwise. In the case of a
monolithic geometric model, the above loop closing process
would need to be followed by a sophisticated map correction
procedure, in order to try to correct the accumulated error
[48,49]. Due to topological representation at the top-level, this
operation in our framework proceeds reliably and smoothly,
without any restrictions related to execution speed or the extent
of correction. The only consequence is that one needs to re-
nounce to absolute scale factors of the individual geometries,
since the sequence of scales along the arcs of a cycle may not
be consistent in general. However this can be solved by storing
the relative scale of each pair of neighboring edges within the
common node, as described in Section 3.2.

5.2. The localization component

The localization component is responsible for all navigation
procedures (cf. Section 3.4) except the robot control. The tracking
procedure is decoupled from the rest of the framework and is as
such described separately in Section 4.2. Therefore, here we de-
scribe in more detail feature prediction and tracking resumption,
as well as maintaining the correct topological location. Note that
the navigation is bootstraped from the local geometries recovered
from correspondences obtained by wide-baseline matching, as de-
scribed in Section 3.3.

5.2.1. Feature prediction and tracking resumption
The point features which are tracked in the current image It are

employed to estimate the two-view geometries Wt:iðIi; ItÞ and
Wt:iþ1ðIiþ1; ItÞ towards the two key-images incident to the actual
arc (cf. Fig. 4). As detailed in Section 4.4, the three-view geometry
ðIt ; Ii; Iiþ1Þ is recovered by adjusting the precomputed two-view
geometry Wiþ1 towards the more accurate of Wt:i and Wt:iþ1. Sim-
ilarly, the geometry ðIt ; Iiþ1; Iiþ2Þ is recovered from Wiþ2 and Wt:iþ1,
while the geometry ðIt ; Ii�1; IiÞ is recovered from Wi and Wt:i. Cur-
rent image locations of landmarks mapped in the actual arc iþ 1
are predicted by the geometry ðIt ; Ii; Iiþ1Þ. Landmarks from the pre-
vious arc i and the next arc iþ 2 are transferred by geometries
ðIt; Ii�1; IiÞ and ðIt; Iiþ1; Iiþ2Þ, respectively.

The obtained predictions are employed only if the estimated
reprojection error rp from (6) of the selected current geometry is
less than a predefined threshold. The predictions are refined by
minimizing the residual between the warped current feature and
the reference appearance, as in the tracker. The initial scale of
the feature [21] is set by dividing the distance of the reconstructed
3D point towards the current pose, with the distance of the same
3D point towards the viewpoint of the image used to initialize
the reference. As in tracking, the result is accepted if the procedure
converges near the predicted location and scale, with an acceptable
residual.

The above concept substantially improves the application field
of the point tracker. However, a special care must be taken in order
not to introduce an association error, by resuming a similar feature
in the neighborhood. As illustrated in Fig. 6, the reprojection uncer-
tainty is greatest for the features from the previous arc, which tend
to be the nearest, and smallest for the farthest points from the next
arc. However, Fig. 6 does not take into account the risk of making
an association error which is the greatest for the features from the
next arc, which are likely to be tracked farthest in the future. A pru-
dent strategy is therefore taken, in which the tracking of the fea-
tures from the next arc is resumed only if the current pose is
closer to the next node. If we introduce st:iþ1 as the recovered scale
of Wt:iþ1 with respect to Wiþ1 (cf. Fig. 4), then the above criterion
can be concisely written as:

st:iþ1 � ktt:iþ1k=ktik < 0:5: ð7Þ

A similar criterion is employed for choosing whether to attempt
to re-establish the connection with the features from the previous
node:

st:i � ktt:ik=ktik < 0:3: ð8Þ

Other than for introducing new features, the above procedure is
also employed to check the consistency of the tracked features,
which occasionally ‘‘jump” to the occluding foreground. Thus, fol-
lowing the sanity check on the employed two-view geometry, the
tracking of a feature is discontinued if the tracked position be-
comes too distant from the prediction.

5.2.2. Maintaining the topological location
Maintaining a correct topological location is critical in the pro-

posed framework since both feature prediction and robot control
depend on its accuracy. An incorrect topological location leads to
suboptimal introduction of new features, which may be followed
by a failure due to insufficient features for calculating Wt:i and
Wt:iþ1 (cf. Fig. 4). This is especially the case in sharp turns where
many landmarks from the neighboring geometries project outside
of the current image borders.



Fig. 7. The employed criterion for a forward transition of the topological location.
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After experimenting with different approaches, best results
have been obtained using a straightforward geometric criterion.
Following this criterion, a forward transition is taken whenever
the camera pose in the actual frame Wiþ1 comes in front of the far-
ther camera Iiþ1. This can be expressed as:

h�R>iþ1 � tiþ1; tt:iþ1i < 0 ð9Þ

The decision is based on the current geometry related to the
next key-image Wt:iþ1, which is geometrically closer to the hypoth-
esized transition, as shown in Fig. 7. As in Section 5.2.1, the
transition is canceled if the estimated reprojection error rp from
(6) of the employed current geometry is not less than a predefined
threshold. Backward transitions are analogously defined in order to
support reverse motion of the robot.

After each change of the topological location, the reference
appearances are redefined for all relevant features in order to
achieve better tracking. For forward transitions, references for
the features from the actual geometry Wiþ1 are taken from Iiþ1,
while the references for the features from Wiþ2 are taken from
Iiþ2 (cf. Fig. 4). The tracking of previously tracked points from
geometries Wiþ1 and Wiþ2 is instantly resumed using their previ-
ous positions and new references, while the features from Wi are
discontinued.

6. Experimental results

The experiments have been carried out on sequences acquired
by a camera mounted on an electric car-like robot named Cycab,
and in real-time during autonomous navigation. The presented
experiments consider realistic physical paths for which no com-
mon landmarks are visible from the initial and the desired position.
The experiments are also illustrated in videos which can be ac-
cessed from:

� http://www.irisa.fr/lagadic/video/CycabNavigation.mov
� http://www.zemris.fer.hr/~ssegvic/pubs/

diosi07iros_0581_VI_i.mp4
� http://www.zemris.fer.hr/~ssegvic/pubs/segvic07cvpr.mov

6.1. Mapping experiments

Two groups of mapping experiments will be presented. In the
first group, the two mapping approaches are applied to the same
learning sequence. The sensitivity of the better approach to the
choice of parameters is investigated in the second group.

6.1.1. Comparison of the two mapping approaches
The two mapping approaches described in Section 5.1 have

been experimentally compared on the learning sequence ifsic5.
The sequence contains 1900 frames acquired along a physical path
of about 150 m, corresponding to the reverse of the path shown in
Fig. 1. For illustration, the set of key-images obtained by the track-
ing approach is presented in Fig. 8.
The comparison was performed in terms of parameters of the
obtained geometric models which were introduced in Section
5.1. These parameters were: (i) the number of point features jMij
(more is better), (ii) the reprojection error rpðWiÞ (less is better),
and (iii) the frame distance (related to jfMigj, larger is better).
The obtained values for the first two parameters are summarized
in Fig. 9.

Qualitative illustration of the third parameter (inter-frame dis-
tance) is shown in Fig. 10 as the two sequences of recovered cam-
era poses corresponding to the nodes of the environment graph
(common global scale is enforced for visualization purposes). The
figure shows that the matching approach produced more key-
images (40 vs. 30), while their spatial arrangement is less coherent
than what can be observed for the tracking approach. Thus, the fig-
ures show that two of the relevant parameters (frame distance and
reprojection error) are considerably better when the mapping is
performed by the tracking approach. Similar results have been ob-
tained for other sequences as well.

Fig. 10 suggests that the tracking approach produces predict-
able results by adapting the density of key-images to the inherent
difficulty of the scene. The matching approach on the other hand at
times produces a large number of correspondences, but their qual-
ity is sometimes insufficient for recovering a usable two-view
geometry. The dense nodes 7–14 in Fig. 10(b) correspond to the
first difficult moment of the learning path (cf. Fig. 8, middle row
and Fig. 1, reverse direction): approaching the traverse building
and passing underneath it. Nodes 20–25 correspond to the sharp
left turn, while passing very close to the building which can be
seen in Fig. 8. The difficult conditions persisted after the turn due
to large featureless bushes and a reflecting glass surface: this is re-
flected in dense nodes 26–28, cf. Fig. 10(b). Fig. 9(b) shows that the
number of features in arc 20 is exceptionally high, while the inci-
dent nodes 19 and 20 are very close. The anomaly is due to a large
frame gap causing most feature tracks to terminate instantly. Here
the tracking approach had been automatically aided by wide-base-
line matching, which succeeded to relate the key-image 19 and its
immediate successor which consequently became key-image 20.
The error peak in arc 21 is caused by another gap which had been
successfully bridged by the tracker alone.

To summarize the above experiments, the tracking approach to
mapping is a reasonable default option. However, in exceptional
situations such as when some frames in the input sequence are
missing or after a total occlusion by a moving object, better results
are obtained by the described combination with matching.

6.1.2. Sensitivity of the mapper to the choice of parameters
In the following text, a circular sequence will denote a sequence

acquired along a closed physical path. In order to acquire such se-
quence, the initial and final robot coordinates need to be similar or
the same, while the interval of attained viewing directions needs to
be ½0;2pi. Note that here we consider only car-like robots which
are not capable to perform pure rotational motions.

Circular sequences are especially suitable for testing the map-
ping alternatives since they provide an intuitive notion about the
achieved overall accuracy. The sensitivity of the mapping algo-
rithm to the three main parameters was tested on the circular se-
quence loop-clouds taken along a path of approximately 50 m.
The resulting poses are plotted in Fig. 11 for four different triplets
of mapping parameters described in Section 5.1.2: (i) minimum
count of features n, (ii) maximum reprojection error rp from (6),
and (iii) the maximum RMS residual R used to detect unreliable
feature tracks.

Reasonable and usable representations were obtained (cf.
Fig. 11) despite the smooth planar surfaces and vegetation which
are visible in Fig. 12. The presence of node 00 indicates that the cy-
cle at the topological level has been successfully closed by wide-

http://www.irisa.fr/lagadic/video/CycabNavigation.mov
http://www.zemris.fer.hr/~ssegvic/pubs/diosi07iros_0581_VI_i.mp4
http://www.zemris.fer.hr/~ssegvic/pubs/diosi07iros_0581_VI_i.mp4
http://www.zemris.fer.hr/~ssegvic/pubs/segvic07cvpr.mov


Fig. 8. Key-images from the 29 nodes of the map created from the sequence ifsic5 by the tracking approach. The sequence contains 1900 images, acquired along a 150 m
path.
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baseline matching. Ideally, nodes 00 and 0 should be very close; the
extent of the distance indicates a large magnitude of the accumu-
lated drift in the result with n ¼ 25. The relation between the two
nodes in the results with n ¼ 50 and n ¼ 100 suggest that the dis-
tance between the corresponding locations is around 1.5 m.

The experiments show that there is a direct coupling between
the number of arcs jfMigj, and the number of features in each arc
jMij. Thus, it is beneficial to seek the smallest jfMigj ensuring
acceptable values for rpðWiÞ and jMij. The requirement that neigh-
boring triplets of images need to contain common features did not
cause problems in practice: the accuracy of the two-view geome-
tries rpðWiÞ was the main limiting factor for the mapping success.

In some cases, a more precise overall geometric picture might
have been obtained by applying a global optimization post-pro-
cessing step. This has been omitted since in our context, global
consistency brings no immediate benefits (and poses scalability
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Fig. 9. Counts of mapped point features and reprojection errors plotted against the arcs of the two environment graphs. The data were obtained on the sequence ifsic5, by
employing approaches based on wide-baseline matching (a) and tracking (b).
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Fig. 10. Two sequences of camera poses corresponding to the nodes of the two environment graphs representing the sequence ifsic5. The two maps have been obtained
using matching (a) and tracking (b) approach to mapping. The set of key-images for the graph obtained by tracking (b) is shown in Fig. 8.

Fig. 11. Poses from the maps obtained on the input sequence loop-clouds, by
employing different mapping parameters.
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problems). Enforcing the global consistency is especially fragile
for forward motion which occurs predominantly in the case of
the car-like robots. In this context, more than half of the corre-
spondences are not shared between neighboring geometries, and
the ones that are shared are more likely to contain association
errors due to a larger change in appearance. The last map in
Fig. 11 (bottom-right) was deliberately constructed using subop-
timal parameters, to show that our mapping approach worked
even when enforcing global consistency would likely have been
difficult.
6.2. Localization experiments

In the following paragraphs, we shall focus on the individual as-
pects of the localization component. These aspects are robustness
to moving objects, robustness to different imaging conditions,
quantitative success in recognizing mapped features and the capa-
bility to traverse topological cycles.

6.2.1. Robustness to moving objects
In this group of localization experiments, the capability of the

localization component to correctly resume temporary occluded
and previously unseen features have been tested. Illustrative fea-
ture tracking results are presented in Fig. 13. The figure shows a
situation in which six features have been wiped out by a moving
pedestrian, and subsequently resumed without errors. The em-
ployed map has been illustrated in Figs. 9 and 10(a), and discussed
in the accompanying text.

The figure shows that the point transfer is accurate, since the
projections of the occluded features have been correctly predicted.
These features have been designated with crosses, since the predic-
tions have been rejected due to a differing appearance. In the case
of feature 146 in frame 743, the tracker ‘‘zoomed out” so that the
legs of the occluding person are aligned with the edge of the
tracked corner. Feature 170 has been found in the same frame by
‘‘zooming in” onto a detail on the jacket. Both findings were re-
jected due to a large residual towards the reference appearance.

The danger of introducing an association error while searching
for an occluded feature can not be completely avoided, but it can
be mitigated by a careful design of the tracker. Due to the presmoo-
thing of input images, distinctiveness of the 15� 15 feature win-
dow and the conservative residual threshold, false positive
feature recognitions occur very rarely. Thus the correct recovery
of the two-view geometry is in most cases not disturbed by such
association errors which consequently can be detected as de-
scribed in Section 5.2.1.



Fig. 12. Key-images from the 29 nodes of the environment representation obtained on the input sequence loop-clouds with parameters n ¼ 50, rp ¼ 4, and R ¼ 6. Please
refer to Fig. 11 and text for details.
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6.2.2. Robustness to different imaging conditions
In this experiment, the sequence ifsic1 used to localize the

robot has been acquired under different imaging conditions than
the learning sequence ifsic5. In practice, the two sequences have
been obtained while driving on different times of day roughly over
the same physical path. The first important consideration is there-
fore whether the linear photometric warp can compensate the dif-
fering appearances due to a change in imaging conditions. The
localization was successful for more than thousand image frames
of the localization sequence, even though the dynamics of move-
ment was not controlled, as would be the case in real navigation.
The results are presented in Fig. 14.

On the right, six pairs of reference and optimized current
appearances are shown for the six numbered features on the left.



Fig. 13. Restarting the tracking of a temporary occluded group of features: tracked features and rejected projections are designated with squares and crosses, respectively.
The bottom row shows the optimized warps for the features #146 (left) and #170 (right).

Fig. 14. The results at the 1806th frame on the localization sequence ifsic1 acquired under different imaging conditions than the sequence ifsic5 used to create the map.
Tracked features and rejected projections are designated with squares and crosses, respectively. The current (warped) and reference appearance for the six chosen tracked
features are shown in the right part of the figure.
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Features 841, 1085, 1116, 1154, and 1164 illustrate that the pho-
tometric warp often succeeds to compensate appearance varia-
tions. Feature 1106 is an occurrence of an association error: the
feature was badly matched in the mapping phase, and conse-
quently incorrectly projected towards a similar structure in the
neighborhood. The robustness required to deal with such gross
outliers is provided by random sampling within the two-view
geometry estimation. Note that this experiment has been per-
formed on a map obtained by matching, and that the tracking ap-
proach to mapping produces substantially less false
correspondences.

6.2.3. Quantitative results in recognition of the mapped features
This experiment is concerned with the quantitative success in

recognizing the features mapped in ifsic5, while performing
localization on the sequences ifsic5 and ifsic1 acquired under
different imaging conditions. Fig. 15 shows two graphs in which
the number of tracked features are plotted against the first 28 arcs
of a map obtained by the matching approach.
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Fig. 15. Counts of tracked point features at different arcs of the map while processin
The three plots in each of the two figures show the total
number of mapped features within the arc, as well as the max-
imum and average counts of features which have actually been
tracked. The left graph shows that introduction of new features
nicely works as far as pure geometry is concerned. The right
graph shows that useful results can be obtained even under dif-
ferent lighting conditions, when the feature loss at times ex-
ceeds 50%.

6.2.4. Quantitative results on a circular sequence
The capability of the localization component to traverse a

topological cycle was tested on a sequence obtained for two
rounds roughly along the same circular physical path. This is a
quite difficult scenario since it requires continuous and fast intro-
duction of new features due to persistent changes of viewing
direction. The first round was used for mapping (this is the se-
quence loop, discussed in Figs. 11 and 12), while the localization
was performed along the combined sequence, involving two com-
plete rounds. During the acquisition, the robot was manually dri-
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g the learning sequence ifsic5 (a) and the localization sequence ifsic1 (b).
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Fig. 16. Counts of tracked points at different arcs of the map shown in Fig. 12, while processing the sequences (a) loop-clouds (two rounds), and (b) loop-sunlight (one
round).

Fig. 17. The results at the 509th frame of the localization sequence loop-sunlight using the map obtained on learning sequence loop-clouds. Tracked features and
rejected projections are designated with squares and crosses, respectively. The current (warped) and reference appearance for the six chosen tracked features are shown in
the right part of the figure. For more details on the map, cf. Figs. 11 and 12.
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ven so that the two trajectories were more than 1 m apart at sev-
eral occasions during the experiment. Nevertheless, the localiza-
tion was successful in both rounds, as summarized in Fig. 16(a)
where the average number of tracked features is plotted against
the 28 arcs of the map. All features have been successfully located
during the first round, while the outcome in the second round de-
pended on the extent of the distance between the two
trajectories.

The map built from the sequence loop-clouds has also been
tested on a sequence loop-sunlight, acquired along a similar cir-
cular path in bright sunlight. The imaging conditions during the
acquisition of the two sequences were considerably different, as
can be seen in Fig. 17. Nevertheless, the localization component
successfully tracked enough mapped features, except at arcs 10,
11, and 12 as shown in Fig. 16(b). The recovered geometries in
arc 10 were too uncertain so that the switching towards arc 11
did not occur at all, resulting in zero points tracked in arcs 11 and
12. The two factors amplifying the effects of feature decimation
due to different illumination were a tree covering most of the field
of view, and a considerable curvature of the learning path (cf.
Fig. 17). The localization component was re-initialized by wide-
baseline matching using the key-images incident to the arc 13,
where the buildings behind the tree begin to be visible. Fig. 17
shows the processing results immediately after the reinitialization,
within arc 13.

Fig. 17 shows that there was a big potential for association er-
rors since many prominent landmarks were ambiguous due to
structural regularities typical for man-made environments. Exper-
iments showed that the framework deals successfully with such
ambiguities, since accurate predictions of invisible feature posi-
tions are provided by point transfer. Note that only predictions
originating from accurate geometries are used to search for new
features, due to the monitoring of the estimated reprojection er-
ror as described in Section 5.2.1.
6.3. The navigation experiments

The proposed framework performed well in navigation experi-
ments featuring real-time control of the robotic car. A simple visual
servoing scheme was employed, in which the steering angle w is
determined from average x components of the current feature loca-
tions ðxt ; ytÞ 2 Xt , and their correspondences in the next key-image
ðx�; y�Þ 2 Xiþ1 [16]:

w ¼ �kð�xt � �x�Þ; where k 2 Rþ: ð10Þ

In several navigation experiments, the presented scheme suc-
cessfully handled lateral deviations of up to 2 m from the learned
path.

We present an experiment carried out along an 1.1 km refer-
ence path, offering a variety of driving conditions including narrow
sections, slopes and driving under a building [16]. An earlier ver-
sion of the program was used allowing the control frequency of
about 1 Hz. The navigation speed was set accordingly to 30 cm/s
in turns, and otherwise 80 cm/s. The map was built by the proce-
dure described in Section 5.1.2, and it required about 30 MB of
the disk space. Note that at this rate (roughly 30 kByte/m) a single
1 TByte external hard drive would suffice for mapping 30,000 km,
which in our view indicates outstanding scalability. The compound
appearance-based navigation system [16] performed in a way that
only five re-initializations were required, at locations shown in
Fig. 18.

Between the points A and B (cf. Fig. 18) the robot smoothly
drove over 740 m despite a passing car occluding the majority of
the features, as shown in Fig. 19. Several similar encounters with
pedestrians have been dealt with in a graceful manner too. The sys-
tem also succeeded to map features (and subsequently find them)
in seemingly featureless areas where the road and the grass occu-
pied most of the field of view.
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Fig. 18. The graph of 320 nodes mapping a 1.1 km reference path which was considered in one of the control experiments. Large circles mark places where initializations took
place. Between the points A and B the robot drove approximately 740 m without human intervention.

Fig. 19. Sequence of images obtained during the execution of a navigation experiment. The points used for navigation re-appear after being occluded and dis-occluded by a
moving car. This is possible since the localization component is able to predict the locations of the invisible features and consequently restart their tracking on the fly.
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The reasons for the five re-initializations were (i) failures within
the localization component (points A, B, and D) due to inadequate
introduction of new features in turns and (ii) prevention of a curb
contact due to a tendency of the current control component to ‘‘cut
the corners” (C) and an extremely narrow section of the road (E).
The three localization failures happened at places in which a shal-
low (or outright planar) inconveniently textured structure (build-
ing in A, B and a large tree in D) occupied the entire field of view
at the cusp of a sharp turn. Unfortunately the pattern is not uncom-
mon since turns in roads usually occur because there is something
large to be avoided. We believe that these situations would be dif-
ficult for any algorithm relying on a fixed perspective camera, and
plan improvements based on a camera with a steerable viewing
direction. The problem at points C and E can be much more easily
addressed, since the learning sequence was acquired so close to the
inner edge of the road, that even a deviation of 10 cm posed a
risk of damaging the equipment. These situations will be more
thoroughly considered in our future work in the domain of robot
control, focusing on obstacle detection and avoidance.
The environment representation shown in Fig. 18 is not globally
consistent in the geometric sense. The beginning and the final node
of the graph correspond to the same physical location (the garage).
This is not the case in our representation due to evident errors in
recovered orientation (most angles should be 90�), and scale (the
path between O and A and the last nearly straight region of the
path represent the same road). Nevertheless, the experimental sys-
tem succeeds to perform large autonomous displacements, while
being robust to other moving objects. The experiment demon-
strates that the global consistency may not be necessary for
achieving large-scale vision-based autonomous navigation.

6.4. Impact of the applied camera

Three different cameras have been considered in the per-
formed experiments. All of the three cameras had lenses provid-
ing reasonably sharp images in the range of about 5–100 m.
Auto-shutter facility alleviated the effects of different illumina-
tion. The lenses differed in the field of view between 30� and



Table 1
Influence of the field of the view to the number of nodes of the environment graph in
an experiment involving a reference path of 200 m

Field of view 30� 70�

Number of key-images 16 95
Mean distance 13 m 2 m
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70�. Wide angle lenses proved helpful in tolerating occluding ob-
jects (cf. Fig. 19) and alleviating the problems arising due to
rotating motion in turns. For rotational motions, a wide-angle
lens offers smaller inter-frame feature displacements which re-
sult in longer feature lifetimes, allowing to RANSAC more chances
to find a good geometry. A narrow lens on the other hand offers a
better accuracy in the re-estimated two-view geometries [50],
due to a smaller error in normalized coordinates for the same
pixel error in the tracked features. Thus, more precise geometries
can be recovered with a narrow lens for a given distribution of
feature correspondences within the two images. Finally, an
appropriate narrow lens is especially suited for straight forward
motion: the visible features near the optical axis tend to be pro-
jected from far structures and therefore (i) they are easy to track
since they do not move much, and (ii) they exhibit little motion
blur, which is important in conditions with low light and/or high
speed.

The experiment summarized in Table 1 confirms the above con-
siderations. In the experiment, the same 200 m long mostly
straight reference path was mapped using a narrow (30�) and a
wide-angle lens (70�). Due to longer feature lifetimes, the map ob-
tained with the narrow-angle lens had 16 key-images (13 m per
arc) in comparison with 95 key-images (2 m per arc) in the map
obtained by the wide-angle lens. Note however that the above dif-
ference has been amplified by a canyon-like environment, consist-
ing of a straight narrow road between two rows of different
buildings.

The performance in sharp turns has been a limiting factor of the
experimental system. Thus most experiments were performed
with a 70� lens, while a 45� lens has been used on sequences if-
sic. The potentials of the narrow lens will be considered in the fu-
ture work relying on steerable viewing direction.

6.5. Performance considerations

Typical experimental setup involved 320� 240 gray-level
images and 50 mapped landmarks per arc. In the last implementa-
tion, the mapping and localization throughput were 5 Hz and 7 Hz,
respectively, on a notebook computer with a CPU equivalent to a
Pentium 4 at 2 GHz. The performance analysis has shown that
most of the processing time is spent within the point feature track-
er, which uses a three-level image pyramid in order to be able to
deal with large feature displacements in turns. In the light of the
opportunity to harness GPU power [51], this suggests that a vi-
deo-rate performance on even larger images should be achievable
in near future.

7. Conclusion

We described a novel framework for large-scale mapping and
localization based on point features extracted from monocular
perspective images. Although the main idea is to support the nav-
igation based exclusively on 2D image measurements, the frame-
work relies extensively on local 3D reconstruction procedures.
The motivation for this apparent contradiction is an ability to pre-
dict the positions of temporary occluded and new features using
point transfer. The required three-view geometry is recovered
using a decomposed metric approach, in order to do as much
work as possible at the learning stage before the navigation takes
place.

2D navigation and 3D prediction smoothly interact through a
hybrid hierarchical environment representation. The navigation
interacts with the upper topological level, while the prediction is
performed within the lower, geometrical layer. In comparison with
approaches employing monolithic geometric representations, our
approach relaxes the global consistency requirement. Thus, the
proposed framework is applicable even in environments in which
the global consistency may be difficult to achieve, while offering
an order of magnitude faster mapping.

The two main hypotheses of this work were (i) that navigation
is possible without a globally consistent 3D environment model,
and (ii) that a useful navigation system does not need to accurately
track the trajectory used in the learning phase. The first hypothesis
is confirmed in the experiment with a circular path, where the nav-
igation bridges between the last and the first node of the topology,
despite of the considerable accumulated error in the global 3D
reconstruction. The second hypothesis is confirmed by successful
large-scale navigation experiments such as the one shown in
Fig. 18, as well as by public demonstrations at our institute featur-
ing an autonomous parking scenario over a curved and sloped
path. Although the path realized during the navigation is in general
different from the learned path, we have not noticed a single ‘‘false
positive” occurrence where the robot would steer off the path
without realizing being lost.

The localization component requires imaging and navigation
conditions such that enough of the mapped landmarks have recog-
nizable appearances in the acquired current images. The per-
formed experiments suggest that this can be achieved even with
very small images, for moderate-to-large changes in imaging con-
ditions. The difficult situations include featureless areas (smooth
buildings, vegetation, pavement), photometric variations (strong
shadows and reflections) and large feature displacements due to
sharp urban turns. In the spirit of active vision, the last problem
will be addressed by steerable viewing direction and a more elab-
orate robot control.
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