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Abstract

We propose to use a multi-camera rig for simultaneous localization and mapping
(SLAM), providing flexibility in sensor placement on mobile robot platforms while
exploiting the stronger localization constraints provided by omni-directional sensors.
In this context, we present a novel probabilistic approach to data association, that
takes into account that features can also move between cameras under robot motion.
Our approach circumvents the combinatorial data association problem by using an
incremental expectation maximization algorithm. In the expectation step we deter-
mine a distribution over correspondences by sampling. In the maximization step, we
find optimal parameters of a density over the robot motion and environment struc-
ture. By summarizing the sampling results in so-called virtual measurements, the
resulting optimization simplifies to the equivalent optimization problem for known
correspondences. We present results for simulated data, as well as for data obtained
by a mobile robot equipped with a multi-camera rig.

Key words: localization, mapping, mobile robot, multi-camera rig,
omni-directional, SFM

1. Introduction

Visual simultaneous localization and mapping (SLAM) is the problem of creating
a map of the environment from camera images, while simultaneously using this map to
localize the camera. SLAM [1] is essential for many applications in mobile robotics,
ranging from search and rescue over reconnaissance to commercial products such
as entertainment and household robots. While cameras are cheap, small and have
low energy consumption, they only provide bearing information and have higher
processing requirements than other sensors. There are many publications on visual
SLAM, some of which use monocular [2, 3, 4, 5, 6, 7, 8], stereo-based [9, 10, 11, 12]
and omni-directional sensors [13, 14, 15, 16].
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(a)

(b)

Figure 1: (a) Our custom made 8-camera rig, mounted on top of an ATRV-Mini
mobile robot platform. The FireWire cameras are distributed equally along a circle
and connected to an on-board laptop. (b) A joint image from all eight cameras,
providing a 360o view. Note that the camera rig has multiple optical centers.

We propose to use a multi-camera rig to combine the advantages of individual
cameras with omni-directional sensing. In a multi-camera rig, the cameras are not in
any specific stereo configuration, but face in multiple directions potentially without
any overlap. While there are some complications from using multiple cameras, such
as more difficult calibration and additional wiring, there are several advantages to a
multi-camera rig: First, in contrast to single cameras and traditional stereo setups,
a multi-camera rig covers a wider field of view and therefore provides better localiza-
tion constraints. Second, in contrast to omni-directional cameras that distribute the
available pixels over the complete scene, a multi-camera rig can focus the available
resources on areas of interest depending on the application. Finally, the cameras of
a rig do not have to be in a central location and can therefore be placed according
to physical constraints of the mobile platform, allowing for new applications, such as
placing cameras in the front and the back of a vehicle. A more general configuration,
as we use for this work, is shown in Fig. 1, where the cameras are distributed equally
along a circle.

In terms of related work, multi-camera rigs appear in the literature in the context
of image-based rendering and structure from motion (SFM). A theoretical treatment
of multi-camera systems in SFM is presented by Pless [17]. Levin [18] uses the Point
Grey Ladybug six-camera omnidirectional rig in combination with a hand drawn map
for offline loop closing in the context of visual odometry, which does not create a map.
Sola [19] recently presented multi-camera visual SLAM by fusing information from
multiple independent monocular cameras.
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The problem of SLAM consists of two different components. One is the problem
of estimating the structure and motion, which is closely related to SFM in computer
vision [20]. We solve this estimation part by standard bundle adjustment [21, 4]
as has been applied in several recent SLAM works [22, 23, 7, 24, 25]. The other
problem is that of data association, or establishing correspondences between multiple
observations, which asks whether two measurements arise from the same structure
point or not.

We focus on the data association problem in this paper. Common approaches
include nearest neighbor and maximum likelihood assignment. A popular framework
for establishing correspondences is random sample consensus (RANSAC) [26], that is
frequently used in SFM [27] and visual SLAM [9, 2, 3]. However, selecting a specific
correspondence assignment involves the danger of choosing a wrong correspondence,
which can lead to catastrophic failure of the system. For dense range data, scan
matching [28] and the iterative closest point (ICP) algorithm [29] work well, but they
are not suitable for sparse representations as encountered in visual SLAM. A more
direct way of dealing with unknown correspondences is to consider multiple hypothe-
ses. This can be based on combinatorial considerations [30], tree search [31], or lazy
search that revises decision only if needed [32]. It can also be achieved in the context
of particle-based representations [33, 34, 35, 36], where each particle carries its own
correspondences, typically based on a per-particle maximum likelihood assignment or
random sampling. However, these approaches are directly affected by the underlying
combinatorial complexity of the problem, in that they might have to consider expo-
nentially many hypotheses or particles. A Bayesian approach is taken by Dellaert
et al. [37] that avoids the combinatorial nature of the problem by sampling from
probability distributions over correspondences. However, this approach has never
been applied to the domain of visual SLAM, where an incremental reconstruction is
needed.

In this paper, we present an expectation maximization (EM) based approach to
data association, that is based on the idea of Dellaert et al. [37]. In contrast to
this prior batch processing work, the incoming data is processed incrementally, from
one or more cameras mounted on a mobile robot. For each new frame we perform
expectation maximization. The initial estimate is based on the estimate obtained for
the previous frame. In the E-step, a distribution over the correspondences for the new
data is approximated by Markov chain Monte Carlo sampling. In the M-step, the
parameters of a density over structure and motion are optimized based on the outcome
of the E-step. By using the samples to create a more efficient representation, the so-
called virtual measurements, the complexity of the resulting optimization problem
is reduced to the same order as that of the equivalent SLAM problem under known
correspondences. We evaluate our system on simulated, as well as real data obtained
from our 8-camera rig mounted on top of a mobile robot.

Next, we describe how to perform SLAM with a multi-camera rig. In section 3
we discuss our main contribution, probabilistic structure matching, and show how to
deal with the distribution over correspondences by Monte Carlo EM. In section 4 we
discuss the overall system including computational complexity. We finally present
experimental results in section 5.
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2. Multi-Camera SLAM

The goal of multi-camera SLAM is to recover the robot motion and the environ-
ment structure from images taken by the camera rig and the odometry measurements
of the robot. We define the robot motion as M = {mi}mi=1, where mi specifies the
pose at time i, and the structure as X = {xj}nj=1 which describes n environment fea-
tures xj . The first pose m0 is constant and can be chosen arbitrarily. The odometry
O = {oi}mi=1 consists of measurements oi of the difference between the robot poses
mi−1 and mi. The set of image measurements U = {uk}lk=1 consists of features uk
extracted from the images by a feature point detector.

The problem can now be formulated probabilistically as finding the structure X∗

and motion M∗ that best explain the image measurements U and vehicle odometry
O:

X∗,M∗ = argmax
X,M

P (X,M |U,O) (1)

∝ argmax
X,M

P (U,O|X,M)P (X,M)

= argmin
X,M

(logP (U,O|X,M) + logP (X,M))

where we made use of Bayes law. P (X,M) encapsulates any prior knowledge on struc-
ture and motion if available. Below, we describe how the distribution P (U,O|X,M)
is defined based on a generative model of the multi-camera rig projection process. To
solve this system, we apply Levenberg-Marquardt, a non-linear minimization algo-
rithm that achieves fast convergence to the global minimum based on a good initial
estimate derived from the odometry and the result of the previous step.

2.1. Camera Rig Projections
A multi-camera rig is a set of c cameras fixed with respect to each other and the

robot. Note that we make no assumptions about the orientation of the cameras. They
can face in any direction that seems suitable for a specific application, as long as they
are statically fixed with respect to each other and the robot. A joint image consists of
a set of images obtained synchronously from all rig cameras, where the pixel p = (u, v)
in rig camera r is represented by the tuple (r,p). Note that this corresponds to a
single camera with multiple optical centers, which means that a single point in the
environment can have more than one projection in the joint image.

Projecting a 3D world point x when the robot is at pose m is a two-step process.
First, the world point is transformed to rig coordinates x′ = RT (x − t), where the
3D rotation R and translation t are given by the pose m = (R, t). Second, this point
x′ is projected into rig camera r ∈ {1...c}, where c is the number of cameras in the
rig. Using standard practices [20], the overall projection hr(m,x) is given by

hr(m,x) = Kr[Rr|tr]RT (x− t) (2)

with the intrinsic calibration matrix

K =

 αx s u0

αy v0

1

 (3)
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Figure 2: An example of radial distortion removal, comparing the original image (left)
with the corrected image (right).

where αx and αy are the focal lengths in pixels, s is the skew (typically 0), and
p0 = (u0, v0) is the principal point. The extrinsic calibration parameters for camera
r consist of the 3×3 rotation matrix Rr and the translation vector tr with respect to
the center of the robot. The overall rig calibration as summarized by {Kr, Rr, tr}cr=1

is determined in advance.
Additionally it is necessary to model radial distortion. We approximate radial

distortion by the quadratic function rD = rU +κr2
U with a single parameter κ, as well

as the center of distortion pD = (uD, vD) that might be different from the principal
point p0. rU and rD are the radii of the projected point in ideal coordinates before
and after distortion, respectively. To remove radial distortion, the incoming images
are warped efficiently using a look-up table that is calculated only once. Fig. 2 shows
an example image with significant radial distortion and its corrected counterpart.

2.2. Measurements and Generative Models
We define the measurement distribution P (U,O|X,M) from (1) in terms of gen-

erative models for image and odometry measurements. The generative model for an
image measurement u = hr(m,x) + v of 3D point x in rig camera r at pose m is
given by the geometric prediction hr(m,x) from (2) with added measurement noise
v, that we assume to be i.i.d. zero-mean Gaussian with covariance Ξ. Similarly, the
odometry measurement oi = d(mi−1,mi) + w is given by the difference d(mi−1,mi)
of the two poses mi−1 and mi with zero-mean Gaussian noise with covariance Ω
added. Assuming known correspondences J = {jk} = {(ik, jk, (rk,uk))}lk=1, where
the triple jk = (ik, jk, (rk,uk)) describes an image measurement uk of map point jk
as observed by rig camera rk at time ik, equation (1) simplifies to the minimization
of a sum of terms over l correspondences and m odometry measurements

logP (U,O|X,M) (4)

=
l∑

k=1

‖uk − hrk(mik ,xjk)‖2Ξk
+

m∑
i=1

‖oi − d(mi−1,mi)‖2Ωi

where ‖y‖2Σ := yTΣ−1y.

2.3. Features and Templates
We use the Harris corner detector [38] to identify features in the input images.

After thresholding on the Harris response, we perform non-maximum suppression,
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Figure 3: Correspondences are shown as templates of the measurements of different
points (columns) over time (rows). To provide more context in the visualization,
much larger templates are shown than the ones that are actually used in the matching
process. Note that appearance changes over time depending on the motion of the
robot and the bearing at which the feature is observed.

selecting the best feature in any 5 × 5 neighborhood. To prevent an overly large
number of features in highly textured environments, only a limited number of features
corresponding to the highest Harris responses are accepted.

We preselect potential matches between features in different frames based on the
appearance of their local neighborhood. We define a template v to be the vector
of intensity values of a square region centered on the feature. The dissimilarity of
two templates va and vb is given by their sum of square differences ||va − vb||2. To
make the matching process more efficient, we restrict the search region to some area
around the odometry-based epipolar prediction. Note that for a camera rig, A and
B are joint images that each consist of multiple real images. Matches cannot only
occur between images taken by the same rig camera over time, but can also stretch
across different rig cameras. Fig. 3 shows an example of matches extracted over time
and between rig cameras (based on our reference RANSAC implementation [39]).

3. Probabilistic Structure Matching

In this section we present a Bayesian approach to data association that recovers
correspondences not just between subsequent frames, but instead matches against
all structure while taking into account the uncertainties of the estimation process.
In contrast to the incremental data association in our earlier work [39], this allows
for loop closing, ie. establishing correspondences to earlier parts of the trajectory.
Furthermore it can re-acquire feature tracks that are interrupted in the incremen-
tal matching due to noise or occlusion in an intermediate image. And finally, it
automatically matches features across cameras of a multi-camera rig.

We take a probabilistic approach in which we recover the parameters of a density
over the robot motion and the structure of the environment, based on the image
and odometry measurements. We use Θ to denote the parameters of a Gaussian
distribution over structure X and motion M , so that Θ = (µ,Σ) consists of a mean
µ = (m1...mm,x1...xn)T and a covariance Σ for the combined structure and motion.

In order to allow loops to be closed, we need to establish correspondences be-
tween measurements and structure. But if we assume for a moment that the data-
association problem has been solved, inference on Θ is relatively straightforward.
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That is, assume that all correspondences J1:m are known, where J1:m ⊆ J is the sub-
set of correspondences relating to only the first m frames, taken from the full set J
of correspondences available for the batch problem. In that case we determine a new
estimate Θ of the parameters by maximizing the likelihood P (Θ|U1:m, O1:m, J1:m)
given all image measurements U1:m and all odometry measurements O1:m:

Θ = arg max
Θ

P (Θ|U1:m, O1:m, J1:m) (5)

However, we typically do not know the correspondences J1:m. In that case we can
rewrite (5) to consider all possible correspondences J1:m by marginalization:

Θ = arg max
Θ

P (Θ)
∑
J1:m

P (U1:m, O1:m, J1:m|Θ) (6)

Unfortunately, it is intractable to sum over all correspondences J1:m for any non-
trivial example because of the combinatorial complexity of the correspondence prob-
lem.

The key idea in our approach is to circumvent the combinatorics of (6) by us-
ing an incremental EM formulation, ie. perform EM for every new frame, which is
approximate in both E and M steps:

1. In the E-step, we use Markov chain Monte Carlo (MCMC), an approximate
inference method, to sample over the correspondences Jm in the current time-
step only, rather than over all correspondences J1:m.

2. In the M-step, we maximize an approximate expected log-likelihood function
where only the log-likelihood terms dependent on Jm are re-calculated.

3.1. An EM-based Solution
We find the optimal structure and motion parameters Θ by treating the unknown

correspondences Jm of the maximization problem (6) as hidden variables in the ex-
pectation maximization (EM) framework, as pioneered by [40]. EM is an iterative
algorithm that alternates between an expectation (E) and a maximization (M) step
[41], and maximizes the likelihood in an iterative fashion. For a derivation and further
details on EM see [41] or [42].

We start iteration t+1 of the EM algorithm from the previous estimate Θt, where
we define the initial estimate Θ0 := Θ′ to be the estimation result Θ′ of the previous
frame (with new variables initialized based on local measurements). In the E-step
we obtain a distribution over the hidden variables while keeping the parameters fixed.
Applied to our problem this yields the posterior distribution f t(Jm) over all possible
correspondences Jm based on the current structure and motion parameter estimate
Θt

f t(Jm) = P (Jm|Um,Θt) (7)

Note that the correspondences are independent of the odometry measurement given
the parameters Θt.

In the M-step we re-estimate the parameters Θt+1 that maximize the expected
log-likelihood, where the expectation is taken with respect to the posterior f t(Jm).
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In other words, we now keep the distribution over correspondences fixed while ob-
taining a better estimate for the structure and motion parameters. For our maximum
likelihood (ML) problem the new parameters Θt+1 are defined by

Θt+1 = arg max
Θ

Qt(Θ) (8)

with Qt(Θ) the expected log-likelihood of the parameters Θ

Qt(Θ) = 〈logP (U1:m, O1:m, J1:m|Θ)〉f t(J1:m) (9)

:=
∑
J1:m

f t(J1:m) logP (U1:m, O1:m, J1:m|Θ)

=
∑
Jm

f t(Jm) logP (Um, Jm|Θ) + logP (Om|Θ) +Q′(Θ)

where Q′(Θ) summarizes the log-likelihood terms from the previous step, that do
not depend on Jm and do not have to be re-calculated. The resulting algorithm is
guaranteed to converge to a local maximum based on the convergence proof of EM.
We can also expect fast convergence to a solution close to the global maximum, as
we start from a good initial estimate based on the previous parameters Θ′.

3.1.1. E-step and Distribution over Correspondences
We show how to evaluate the posterior distribution f t(Jm) over correspondences

from (7) for given structure and motion parameters Θt, as needed in the E-step.
By applying Bayes law we obtain the product of a correspondence likelihood and a
correspondence prior

f t(Jm) = P (Jm|Um,Θt) (10)
∝ P (Um|Jm,Θt)P (Jm|Θt)

The likelihood P (Um|Jm,Θt) of the correspondences Jm can be factorized, as the
individual measurements are independent given the parameters Θt:

P (Um|Jm,Θt) =
∏
k∈Km

P (uk|Jm,Θt) (11)

We define the predictive density P (uk|Jm,Θt) for an individual image measurement
uk by a generative model, based on geometrical considerations of the measurement
process. The image measurement function hrk(mm,xjk) as defined in Section 2 pre-
dicts the measurement uk in rig camera rk for known point location xjk and robot
pose mm by projection. We approximate the image measurement density in terms
of the marginalized covariance Ξk = HkΣjkH

T
k + Ξ that is derived in the Appendix,

where Ξ is the measurement noise, Hk is the linearization of hrk(·) evaluated at the
current parameters mm and xjk , and Σjk = Σmj is the marginal covariance of this
pose and point pair (mm,xj):

Σmj =
(

Pm Bmj
BT
mj Sj

)
(12)
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(a) Ground truth data. (b) Trajectory uncertainties after
adding of noise.

(c) Trajectory and structure un-
certainty after first two steps.

Figure 4: A simulated environment that illustrated the estimation uncertainties. We
simulate a rig with one forward and one backward facing camera in an environment
with 40 structure points. The robot poses are shown as red rectangles, with the
projected uncertainty ellipses in blue. The structure is shown by green crosses with
projected uncertainty ellipses. The black arc represents the noisy odometry. a)
Ground truth data. b) Significant noise added to odometry and image measurements,
resulting in high uncertainties towards the end of the circular trajectory. c) The
estimation uncertainty after the first two steps.

which consists of the point uncertainty Pm, structure uncertainty Sj and covariances
Bmj , which are all components of the overall estimation uncertainty Σ. To avoid
recovering the full covariance, we reorder the variables so that the current pose and
all structure are in the last columns. By matrix factorization, we obtain the covariance
Σ′ by back-substitution over those last columns only

Σ′ =


Pm Bmj

. . .
BT
mj Sj

. . .

 (13)

An example of the uncertainties is shown in Figure 4. The predictive density is now
simply a normal distribution

P (uk|Jm,Θt) (14)
= P (uk|mm,xjk)

≈ 1√
|2πΞk|

exp−1
2
‖uk − hrk(mm,xjk)‖2Ξk

Note that we cannot omit the normalization factor, as the covariance Ξk does depend
on Θt through Hk and Σjk .

What remains to be defined from the posterior distribution f t(Jm) is the prior
P (Jm|Θt) over correspondences. This prior encodes the mutual exclusion constraint
that allows a point or a measurement to appear in at most one correspondence. In
other words, the prior P (Jm|Θt) is 0 for any configuration that violates the mutual
exclusion constraint.
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Figure 5: Example of virtual measurements (red ’◦’) in an image frame with 6 image
measurements (red ’+’) and 4 projected structure points (green ’×’). The numbers
represent percentage probabilities of assignments (black) versus spurious (red, near
’+’) for each original image measurement. In the lower left part of the image, an
ambiguous configuration between three image measurements and one projection (in
combination with a high measurement uncertainty Ξ) leads to a virtual measurement
on that projection that corresponds to a weighted average of the original measure-
ments.

3.1.2. M-step and Virtual Measurements
In the M-step we maximize an approximate expected log-likelihood function to

obtain the structure and motion parameters Θ that best explain the observed data
given the distribution over correspondences Jm obtained in the E-step. Even though
we deal with a distribution over correspondences, we show that the optimization
problem has the same number of terms as the standard SFM problem with known
correspondences. This is made possible by the introduction of virtual measurements
[37] as weighted average of the original measurements uk

vtmj := Ξmj
∑
k∈Km

f tjkΞ
−1uk (15)

with virtual measurement covariance Ξmj defined by

Ξmj =

 ∑
k∈Km

f tjk

−1

Ξ (16)

Here f tjk is the marginal posterior probability that measurement uk of image m
corresponds to feature xj , defined as

f tjk :=P (j = jk ∈ J |Um,Θt) (17)

=
∑
Jm

δ(j, jk ∈ Jm)f t(Jm)

An example of virtual measurements is shown in Figure 5. Except for ambiguous
situations such as in the lower left of the example, virtual measurements usually co-
incide with the actual measurements. In ambiguous situations, however, they provide
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weighted averages of possible candidate measurements. Note that the virtual mea-
surements are also associated with an uncertainty, so that more ambigous matches
are automatically discounted. Virtual measurements delay the actual decision, and
therefore avoid making a potentially wrong decision, that other methods such as
RANSAC might produce under high uncertainty. After a few EM iterations many
ambiguous situations will be resolved. Specifically, in this example we can expect
that the reprojected structure point moves closer to the top left feature (near ’5’),
because the other measurements and structure points will pull the estimate in that
direction. The virtual measurement will then become more strongly associated to
the top left feature, and eventually the links to the other two features will completely
disappear.

Note that virtual measurements are used in the context of data association and
are not used to represent the underlying SLAM estimation uncertainty. The estima-
tion is performed by the standard maximum likelihood formulation of SLAM given
in (8) that correctly deals with the estimation uncertainty, but using the virtual
measurements as input to deal with uncertainty in the data association part only.

The objective function (8) to be maximized is the expected log likelihood Qt(Θ)
from (9). Applying the chain rule to the likelihood P (Um, Jm|Θ) of the parameters
Θ yields P (Um|Jm,Θ)P (Jm|Θ). In contrast to the E-step, we can now assume that
the prior P (Jm|Θ) does not depend on structure and motion, ie. P (Jm|Θ) = P (Jm).
This is justified as we rewrite the equation in terms of the virtual measurements, and
therefore do not have to deal here with the mutual exclusion constraint. We drop the
prior P (Jm) since it does not depend on the parameters Θ:

Qt(Θ) = logP (Om|Θ) +Q′(Θ) (18)

+
∑
Jm

f t(Jm) logP (Um|Jm,Θ)︸ ︷︷ ︸
A

where the odometry measurement om is predicted based on the process model d(mm−1,mm)
from the previous robot pose mm−1 and the current pose mm, adding zero-mean
Gaussian measurement noise with covariance Ω:

P (om|Θ) = P (om|mm,mm−1) (19)

∝ exp−1
2
‖d(mm−1,mm)− om‖2Ω

The key to an efficient implementation is the independence of image measurements
for given correspondences Jm and parameters Θ. We apply the resulting factorization
of P (Um|Jm,Θ) from (11) to the measurement term A of (18)

A =
∑
Jm

f t(Jm)
∑
k∈Km

logP (uk|Jm,Θ) (20)

Using the definition of f tjk from (17) in (20), we now sum over only n structure points
rather than all possible correspondences Jm:

A =
n∑
j=1

∑
k∈Km

f tjk logP (uk|jk,Θ) (21)
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Finally substituting the definition of the virtual measurements from (15) and (16)
in (21), together with the measurement log likelihood from (14), we obtain a sum of
terms that is equivalent to the original SFM problem with known correspondences:

A =
n∑
j=1

∑
k∈Km

f tjk logP (uk|jk,Θ) (22)

=
n∑
j=1

∑
k∈Km

f tjk

(
−1

2
‖uk − hrk(mm,xjk)‖2Ξk

+ log
1√
|2πΞk|

)

= C − 1
2

n∑
j=1

∑
k∈Km

f tjk ‖uk − hrk(mm,xjk)‖2Ξk

≈ C − 1
2

n∑
j=1

∥∥vtmj − h(mm,xj)
∥∥2

Ξmj

Note that A only contains the terms of the current frame m, the others are remem-
bered in Q′(Θ) in (18).

3.2. Monte Carlo EM
There is no closed form solution available for the expected log likelihood Qt(Θ)

in (18), due to the mutual exclusion constraint that is contained in the posterior
f t(Jm) (9) [37]. However, for given correspondences Jm, this posterior can easily be
evaluated, which suggests the use of a sampling based approximation in the E-step.
Replacing the E-step of EM by a sampling approximation is known in the literature
as Monte Carlo EM (MCEM) [43]. Its application to our problem is described in this
section.

3.2.1. E-step and Sampling
To get a sampling approximation of the posterior distribution f t(Jm) over all

possible correspondences Jm, we use the Metropolis-Hastings [44] algorithm to setup
a Markov chain with the correct stationary distribution. The algorithm only evaluates
our target distribution f t(Jm) for a number of different parameters, and generates a
sequence of Γ samples {J t,γ}Γγ=1 from the distribution as follows:

1. Start with random, but valid initial correspondences J t,0.
2. Obtain new correspondences J ′ according to the proposal density g(J ′; J t,γ).
3. Calculate the acceptance ratio

a =
f t(J ′)
f t(J)

g(J t,γ ; J ′)
g(J ′; J t,γ)

(23)

4. J t,γ+1 =
{

J ′ if a ≥ 1 or with probability min(1, a)
J t,γ otherwise

5. Repeat from step 2

There are many possible choices for the proposal distribution g. One possible proposal
flips the assignments from two different correspondences. More intelligent proposals
that lead to faster convergence are discussed in [37]. Specifically, we employ the
“smart chain flipping” algorithm.
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Algorithm 1 Summary of our approach. For details please refer to the sections
specified in brackets.
For each new frame m:

1. Detect features [2.3].
2. Iteratively improve estimate Θt by Monte Carlo EM, starting from t = 0 with

Θ0 based on estimation result from previous frame m− 1 [3.2].

(a) E-step: Obtain Γ samples from f t(Jm) [3.1.1] using Metropolis-Hastings
algorithm [3.2.1] based on Θt

(b) M-step: Obtain Θt+1 by non-linear optimization using virtual measurements
[3.1.2] based on counting events in samples from f t(Jm) obtained in E-step
[3.2.2].

3. Add unassigned features temporarily as new structure [4.1].

3.2.2. M-step and Virtual Measurements
Our sampling approximation allows evaluation of the marginal posterior distribu-

tion, and consequently also the execution of the M-step. The sampling approximation
to the marginal posterior distribution f tjk from (17) is obtained by keeping a count
Cjk of how often feature j is assigned to measurement uk during the sampling process
in the E-step:

f tjk ≈
1
Γ

Γ∑
γ=1

δ(jγk , j) =
1
Γ
Cjk (24)

As a consequence we do not have to store all the samples or a count for every possible
correspondence vector Jm, but rather only keep a matrix of Km×n entries. Note that
each sampled correspondence vector increments several entries of this matrix. Once
the sampling finishes, this table is replaced by an even more compact representation
of n virtual measurements (15) and covariances (16).

4. Overall System

A summary of our approach is shown in Algorithm 1. Below we still need to
discuss how the algorithm is initialized and how new structure is added. We follow
up with an illustration based on simulated data.

4.1. Spurious Features and Initialization
So far we have assumed that we have already acquired some structure. However,

we need to discuss how this process is initialized, and also how structure is added
when exploring new areas. If we already have some structure, then all the points
that are currently visible and got detected in the current image will be covered by
virtual measurements. Most of those virtual measurements directly correspond to
single features, while others are weighted averages of multiple features as shown in
Fig. 5. However, typically some features do not contribute at all to any virtual
measurement. We call those features spurious.

Spurious features can be random detections due to noise. But spurious features
also regularly get detected along boundaries of partial occlusions. And the projections
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of previously unseen features are also classified as spurious, even though they should
be added to the structure. However, from a single image there is no constraint on the
depth of the point, but only on its direction. Fortunately we do have some idea of
its depth, though: The point has to be in front of the camera. Inside a building the
maximum distance is also restricted. In fact, the depth has some distribution that is
initially estimated, and later determined empirically from the data.

Using a Gaussian approximation with variance τ2, we find the uncertainty ellip-
soid Q in normalized coordinates as

Q = diag(σ2, σ2, τ2) (25)

By back-projection we obtain the point uncertainty S as

S =
(
HTQ−1H

)−1 (26)

The projected uncertainty Ξnew in the next image is obtained by combining S with
the motion uncertainty P relative to the previous image, projecting it into the image,
and adding image measurement noise Ξ

Ξnew = H

(
P

S

)
HT + Ξ (27)

Using its projected uncertainty, the candidate point is added temporarily and pro-
cessed as any other feature. There are two possible outcomes for the candidate: Its
virtual measurement can either have a high variance, indicating that the point indeed
is spurious and should be discarded. Or, in the case of a low variance, it is likely
that a new feature has been observed and needs to be added to the map. To make
the process more robust, we require more than one confirmation of the point. Three
observations correspond to a trifocal constraint which is very unlikely to be caused
by wrong matching.

When processing the first image, all features are automatically classified as spu-
rious, as the structure is empty. As a consequence, the structure is automatically
initialized from the first image, and no special handling is necessary.

4.2. Illustration on Simulated Data
To test our system with known ground truth, we have simulated a circular en-

vironment with a trajectory length of 30 meters, with 40 measurements taken at
uniform intervals. The simulated robot has a rig with two cameras, one forward and
one backward facing. The environment consists of 100 features that were projected
into the rig cameras. Pure point features were used without any appearance infor-
mation. The ground truth is shown in Figure 4a. We have added realistic noise with
standard deviations σ = 1 pixel for image measurements and σx = σy = 0.05m and
σα = 0.03rad for odometry translation and rotation, respectively. Figure 4b shows
the resulting noisy trajectory including the projected uncertainties.

As expected, the pose uncertainty towards the end of the trajectory and the
structure uncertainty are both large after the first two steps of matching (Figure
4c). After almost half the loop is traversed (Figure 6a), the uncertainty of the initial
structure is low, as many more constraints have been added. However, the current
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(a) Before loop closure. (b) Some loop-closing correspon-
dences established.

(c) Loop closure completed.

Figure 6: Results of our algorithm applied to the simulated environment from Figure
4 assuming a rig with one forward and one backward facing camera. As before, the
robot poses are shown as red rectangles, with the projected uncertainty ellipses in
blue. The structure is shown by green crosses with projected uncertainty ellipses. The
black arc represents the noisy odometry. a) Uncertainties shortly before loop closing,
ie. before the first correspondences are established to structure that was originally
observed near the beginning of the trajectory. b) Some observations overlap with
those from the start of the trajectory; note that the overall uncertainties decrease. c)
After closing the loop the highest uncertainties are on the far end of the trajectory.

pose uncertainty is larger than near the beginning of the loop, as the initial structure
cannot be seen from this location, and therefore uncertainties add up along the loop.
Once some of the initial structure is re-acquired (Figure 6b), the uncertainty in the
system shrinks significantly. When the loop is completely closed (Figure 6c), the
largest uncertainties in structure and motion with respect to the starting point are
opposite of the starting point, as one would expect.

After our algorithm successfully closes the loop, the reconstruction contains 107
features. All features were reconstructed, but 7 of them have duplicates. Note that
while the camera rig has advantages as it provides better constraints, the two cameras
with non-overlapping views also add some challenges. The structure created from one
camera needs to be matched against the second one later, which in itself is a loop
closing problem that is successfully managed by our system.

4.3. Computational Complexity
We discuss the computational complexity of the overall algorithm, starting from

the innermost loop. The actual estimation algorithm, the nonlinear optimization with
virtual measurements, requires exactly the same calculations as traditional SLAM
with known data association. In particular, both the number of variables and the
number of measurements in the estimation are the same. We use a fast method for
performing this batch estimation called smoothing and mapping (SAM) [23]. Only a
small number of iterations (typically 2 to 4) of the Levenberg-Marquardt algorithm
are needed as most variables have already been optimized based on previous frames,
and only the ones that are visible from the current frame are directly affected. While
it is difficult to provide general complexity bounds for SAM, we can provide a bound
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for a special case of SLAM problems that have a planar meta-graph structure [45]: In
this case, batch solution takes O(N1.5) for large-scale problems with arbitrary loops,
where N = O(n+m) is the number of variables for structure and motion combined.
Note that SLAM with a multi-camera rig inside a building has such a structure and
is therefore covered by our analysis.

The EM algorithm in the outer loop requires the nonlinear optimization to be
performed multiple times, adding a constant factor to the complexity. As only the
data association of the most recent frame is affected by the EM algorithm, the algo-
rithm typically converges within a few iterations (in our example always below 10).
Additionally, sampling has to be performed in each iteration. A constant number of
samples is obtained, but the complexity depends on the number of visible structure
points, and is therefore O(n). Sampling therefore does not increase the computa-
tional complexity bound of the overall algorithm. However, sampling requires access
to parts of the covariance matrix, which can be very expensive to obtain when cal-
culated naively (O(N3)). Our initial work was severely affected by this problem,
leading to the discovery of faster covariance recovery methods as described in Section
3.1.1, and eventually to the work presented in [25]. For the latter one, the complexity
depends on a number of factors and is difficult to quantify, but has been shown to
work in real-time for large SLAM problems (over 20000 variables, [25]). Note that the
same covariances are needed for the combinatorial JCBB data association algorithm
[46].

As a summary we can state that the proposed method adds a constant, but
not insignificant, factor to the complexity of state-of-the-art full SLAM estimation
methods that operate on known data association.

5. Experimental Results and Discussion

We have successfully implemented and applied our system to real world multi-
camera rig data. In our implementation, non-linear optimization is performed using
the Levenberg-Marquardt algorithm, which achieves fast convergence by adaptively
blending between Gauss-Newton and gradient descent. We use a sparse LDL decom-
position [47, 48] with approximate minimum degree ordering for efficiency [23]. An
automatic differentiation framework [49] allows us to efficiently calculate a Jacobian
for a given point, free of numerical instabilities. The minimum track length used for
the optimization is 4.

The data was taken with our custom-made multi-camera rig mounted on a mobile
robot platform (see Figure 1) traversing an indoor office environment. The camera
rig consists of 8 cameras in a circular arrangement to provide a complete 360 degree
coverage. The robot’s trajectory is nearly rectangular with side lengths of 10m and
20m. The measurements consist of the odometry provided by the ATRV-Mini mobile
robot, as well as 87 joint images taken with variable distances of up to 2 meters be-
tween successive views, and an overall trajectory length of about 58m. An average of
145 Harris features were extracted from each joint image. The unknown poses were
modeled as having 6 degrees of freedom (DOF), three translational and three rota-
tional, parametrized as Euler angles yaw, pitch and roll. Even though 3 DOF seems
sufficient for a planar indoor office environment, we found that 6 DOF with a prior on
the pitch, roll and height is necessary, because floors are typically not completely flat
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Figure 7: Camera image with measurements and reprojected structure.

and the robot pitches when changing velocity. From a reference reconstruction based
on incremental trifocal RANSAC-based matching [39], the standard deviations were
statistically determined on x to be 0.022m, on y 0.023m and on yaw 0.012rad. Noise
on z, pitch and roll was modeled as zero mean normal distributions with standard
deviations 0.002m and 0.002rad respectively.

The camera rig was calibrated in advance by a semi-automatic approach. We
placed sets of colored points on three different walls in a small space and recorded
joint images at several different locations and for multiple rotations of the rig. We
then manually initialized the robot poses by identifying a small number of points in
each joint image. The remaining procedure was automated: First, feature points of
the calibration pattern were detected. Second, the known geometry of the calibration
patterns are projected into the image based on the initial pose estimates. Third, data
association is performed by nearest neighbor. And finally, the calibration parameters
(see Section 2.1), the relative poses within the camera rig as well as the exact offsets
between the three calibration patterns are estimated iteratively.

In order to make full use of visual features, appearance needs to be considered.
Appearance can be modeled and included into the EM algorithm. However, it then
becomes necessary to recalculate the virtual measurements over all times in each step.
Since this is too expensive, we choose an approximation that obtains the appearance
from the geometrically closest viewpoint. The reasoning behind this solution is that
we can expect the appearance of a point to change more significantly with increased
distance and rotation between the viewpoints, and therefore the best available in-
formation comes from the geometrically closest pose. Typically this is the previous
frame, but in the case of a loop closing it can also originate much earlier in the tra-
jectory. The appearance is extracted from the corresponding virtual measurement in
the closest frame by taking a weighted average over the templates around the orig-
inal feature points, based on the marginals. These so called virtual templates are
calculated in each step and stored together with the virtual measurements, so that
the full marginals do not need to be remembered.

Figure 8 shows the trajectory based on the noisy odometry measurements (right),
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(a) Final trajectory and map (left) and trajectory based on odometry only (right).

(b) Uncertainties before (left) and after loop closing (right).

Figure 8: Results of probabilistic structure matching based on real data from our
8-camera rig mounted on top of an ATRV-Mini platform. (a) The trajectory (red
rectangular robot outlines) and the structure (green points) after loop closing are
shown on the left, manually aligned with the building map (gray) for comparison.
The only input to the algorithm were the features extracted from the images, and
the robot’s odometry measurements as shown on the right. Note that the structure
consists of 3D points, and many of the features are along the ceiling, only apparently
in the middle of hallways, see Figure 7. (b) Structure uncertainties (green ellipses)
and pose uncertainties (blue ellipses) are shown before and after loop closing.
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as well as the result of our algorithm (left), with a successfully closed loop. For ref-
erence, the trajectory is manually aligned with the building map. Note that while
some structure appears in the middle of hallways, the model is actually three di-
mensional and features are also extracted from the ceiling as can be seen in Figure
7. The reconstruction contains 593 structure points that are based on 4480 virtual
measurements, which corresponds to an average track length of 7.6. In comparison
to an average track length of 3.9 for our reference incremental trifocal reconstruc-
tion [39], this clearly shows our algorithm’s capability of locally closing the loop by
re-acquiring features that were temporarily occluded or dropped because of image
noise. The algorithm took an average of 7.3s per step, most of which is used for
recovering large parts of the covariance matrix, which can be sped up by using more
advanced methods [25]. Without covariance recovery, the algorithm takes an average
of 1.6s per step. Timing results were obtained on a laptop with 2.2GHz Core 2 Duo
processor.

In terms of the overall loop closing, there are several correct correspondences
between features in the last images of the trajectory and structure that was instan-
tiated at the beginning of the loop. However, many features have not been correctly
matched, and new structure created instead. We belief that the main problem for this
is the insufficient modeling of feature appearance, as the view points are significantly
different. What supports this belief is that most of the correctly matched structure
appears in the last 3 frames after turning around the corner, where the view point
is sufficiently close to the beginning of the trajectory, but at this point the duplicate
structure has already been created.

Comparing to other methods, this result could not have been achieved with EKF
based methods due to the large number of structure points that are recovered. In
particular, MonoSLAM [6] is based on the EKF and uses the covariances directly
for efficient data association of a small number of points. However, the EKF only
works well up to about 100 points, and the squared computational complexity makes
dealing with larger sets difficult. In contrast, our data contains over 500 points.
However, the comparison is not completely fair, as we are also dealing with low
frame rate data, while MonoSLAM runs at 30 frames per second, but with only small
changes between frames. Another method that should be mentioned here is joint
compatibility branch and bound (JCBB) [31], which also works well with smoothing
based methods [46]. However, under high motion uncertainty, such as when closing
large loops, the combinatorial complexity starts to take over at about 20 points per
frame, as experienced in [46]. In contrast, our method successfully matched about
50 points per frame. There is of course a tradeoff: while JCBB finds the assignment
that is optimal under some metric, our algorithm is not guaranteed to succeed. In
our work, in particular, a weak wrong match can get reinforced over multiple EM
iterations if not counteracted by other matches, pulling the state estimate in the
wrong direction, and eventually leading to a confirmation of the wrong match. Also,
EKF and JCBB might be applicable here if we restrict ourselves to recovering less
structure points.
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6. Conclusion and Future Work

We have presented visual SLAM with multiple cameras in a general, non-stereo
setting. Our novel approach to the correspondence problem avoids the combinatorial
complexity by using a sampling based approximation for the distribution over cor-
respondences within an incremental expectation maximization framework. We have
successfully demonstrated loop closing in a simulated example with significant mea-
surement noise. We have also shown successful loop closing based on data acquired
by a multi-camera rig on a mobile robot in an indoor office environment. Our eight
camera rig allows robust operation because of the full 360 degree view. Operating
with a single forward facing camera for example fails when turning in a hallway with
untextured walls, as not enough features will be available. And even though dealing
with multiple cameras adds some complications, the individual cameras provide more
flexibility for distributed placement, such as in the front and back of a vehicle, than
a single omni-direction camera that requires a central mounting point.

We have made use of odometry, but there is no fundamental reason why the
proposed method could not work without. However, convergence will be slower if
EM is started from a poor initial estimate for new variables. Furthermore, nonlinear
optimization is generally susceptible to local minima, and our method makes no ex-
ception. However, a reasonable initial estimate might also be generated by a dynamic
model of the vehicle.

For larger scale environments a more efficient method to recover the required parts
of the structure and motion covariance is needed. We have recently presented this
capability in iSAM [25] and plan to combine it with probabilistic structure matching.
It then also becomes feasible to obtain positional uncertainty in order to restrict the
search region to a manageable size. Furthermore, using a more discriminative feature
descriptor would reduce the complexity of the problem by further restricting the
search space of possible correspondences, therefore allowing to resolve ambiguities at
a larger scale instead. Further generalizations of this work might include multi-robot
applications, where the algorithm can be used to merge multiple maps, or to run in
a distributed fashion.
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Appendix

We show how the predictive measurement density P (uk|Jm,Θt) = P (uk|jk,Θt)
from (14) is obtained by marginalization. As we are interested in an expression that
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only deals with image measurements, we integrate out structure and motion

P (u|j,Θt) (28)

=
∫
mx

P (u|m,x)P (m,x|j,Θt)

∝
∫
mx

exp−1
2

(
‖u− h(m,x)‖2R + ‖s− µ‖2Σ

)
where µ and Σ are the mean and covariance of the parameters of s := (m,x)T , which
are part of Θt, and R is the image measurement uncertainty. In order to solve the
integral in (28), we marginalize out s. The negative log likelihood

f(u, s) =
1
2
‖u− h(s)‖2R + ‖s− µ‖2Σ (29)

assumes its maximum for s = µ and u = Hµ, where H is the Jacobian of h(·) at s.
This can easily be confirmed from the partial derivatives ∂

∂uf = R−1(u − Hs) and
∂
∂θf = −HTR−1(u − Hs) + Σ−1(s − µ). The Hessian W for both variables (u, s)T

combined is given by

W =
(

R−1 −R−1H
−HTR−1 HTR−1H + Σ−1

)
(30)

The Schur complement of the lower right block inW yields the marginal Hessian Ξ−1

in u as
Ξ−1 = R−1 −R−1H

(
HTR−1H + Σ−1

)−1
HTR−1 (31)

where we have made use of R−T = R−1 as R is symmetric. By applying the ma-
trix inversion lemma, we obtain a simple expression for the covariance Ξ in image
measurement space

Ξ = HΣHT +R (32)

Intuitively Ξ is the sum of the image measurement noise R and the combined structure
and motion uncertainty Σ projected into the image space using the Jacobian H at
s = µ, where

Σ =
(

P B
BT S

)
(33)

with S the uncertainty in the structure point and P the uncertainty in the motion,
and the off-diagonal entry B represents dependencies between structure and motion.
Σ is obtained directly from the optimization process as explained in Section 3. We
can now approximate the density in measurement space by a normal distribution
with covariance Ξ

P (u|s) ≈ 1√
|2πΞ|

e−
1
2
‖u−h(s)‖2Ξ (34)

References

[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT press, Cambridge, MA, 2005.
[2] A. Davison, Real-time simultaneous localisation and mapping with a single camera, in: Intl.

Conf. on Computer Vision (ICCV), 2003, pp. 1403–1410.



REFERENCES 22

[3] N. Karlsson, E. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, M. Munich, The vSLAM al-
gorithm for robust localization and mapping, in: IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2005, pp. 24–29.

[4] C. Engels, H. Stewénius, D. Nistér, Bundle adjustment rules, in: Symposium on Photogram-
metric Computer Vision, 2006, pp. 266–271.

[5] R. Eustice, H. Singh, J. Leonard, M. Walter, Visually mapping the RMS Titanic: Conservative
covariance estimates for SLAM information filters, Intl. J. of Robotics Research 25 (12) (2006)
1223–1242.

[6] A. Davison, I. Reid, N. Molton, O. Stasse, MonoSLAM: Real-time single camera SLAM, IEEE
Trans. Pattern Anal. Machine Intell. 29 (6) (2007) 1052–1067.

[7] E. Eade, T. Drummond, Monocular SLAM as a graph of coalesced observations, in: Intl. Conf.
on Computer Vision (ICCV), 2007.

[8] R. Sim, P. Elinas, J. Little, A study of the Rao-Blackwellised particle filter for efficient and
accurate vision-based SLAM, Intl. J. of Computer Vision 74 (3) (2007) 303–318.

[9] S. Se, D. Lowe, J. Little, Mobile robot localization and mapping with uncertainty using scale-
invariant visual landmarks, Intl. J. of Robotics Research 21 (8) (2002) 735–758.

[10] L. Paz, P. Pinies, J. Tardós, J. Neira, 6DOF SLAM with stereo-in-hand, in: IROS visual SLAM
workshop, 2007.

[11] T. Marks, A. Howard, M. Bajracharya, G. Cottrell, L. Matthies, Gamma-SLAM: Stereo vi-
sual SLAM in unstructured environments using variance grid maps, in: IROS visual SLAM
workshop, 2007.

[12] K. Konolige, M. Agrawal, Frame-frame matching for realtime consistent visual mapping, in:
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2007, pp. 2803–2810.

[13] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, S. Teller, An Atlas framework for
scalable mapping, in: IEEE Intl. Conf. on Robotics and Automation (ICRA), 2003, pp. 1899–
1906.

[14] B. Mičušík, D. Martinec, T. Pajdla, 3D metric reconstruction from uncalibrated omnidirectional
images, in: Asian Conf. on Computer Vision (ACCV), 2004.

[15] D. Burschka, G. Hager, V-GPS(SLAM): Vision-based inertial system for mobile robots, in:
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2004, pp. 409–415.

[16] T. Goedemé, M. Nuttin, T. Tuytelaars, L. V. Gool, Omnidirectional vision based topological
navigation, International Journal of Computer Vision. Special Issue: Joint Issue of IJCV and
IJRR on Vision and Robotics 74 (2007) 219–236.

[17] R. Pless, Using many cameras as one, in: IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), Vol. 2, 2003, pp. 587–593.

[18] A. Levin, R. Szeliski, Visual odometry and map correlation, in: IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2004.

[19] J. Sola, A. Monin, M. Devy, T. Vidal-Calleja, Fusing monocular information in multicamera
SLAM, IEEE Trans. Robotics 24 (5) (2008) 958–968.

[20] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University
Press, 2000.

[21] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle adjustment – a modern synthesis,
in: W. Triggs, A. Zisserman, R. Szeliski (Eds.), Vision Algorithms: Theory and Practice, LNCS,
Springer Verlag, 1999, pp. 298–375.

[22] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd, Real time localization and 3d
reconstruction, in: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2006.

[23] F. Dellaert, M. Kaess, Square Root SAM: Simultaneous localization and mapping via square
root information smoothing, Intl. J. of Robotics Research 25 (12) (2006) 1181–1203.

[24] K. Konolige, M. Agrawal, FrameSLAM: From bundle adjustment to real-time visual mapping,
IEEE Trans. Robotics 24 (2008) 1066–1077.

[25] M. Kaess, A. Ranganathan, F. Dellaert, iSAM: Incremental smoothing and mapping, IEEE
Trans. Robotics 24 (6) (2008) 1365–1378.

[26] R. Bolles, M. Fischler, A RANSAC-based approach to model fitting and its application to
finding cylinders in range data, in: Intl. Joint Conf. on AI (IJCAI), Vancouver, BC, Canada,
1981, pp. 637–643.

[27] P. Beardsley, P. Torr, A. Zisserman, 3D model acquisition from extended image sequences, in:
Eur. Conf. on Computer Vision (ECCV), 1996, pp. II:683–695.

[28] J.-S. Gutmann, K. Konolige, Incremental mapping of large cyclic environments, in: IEEE Intl.



REFERENCES 23

Symp. on Computational Intelligence in Robotics and Automation (CIRA), 1999, pp. 318–325.
[29] P. Besl, N. McKay, A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Machine

Intell. 14 (2).
[30] H. Baltzakis, P. Trahanias, Closing multiple loops while mapping features in cyclic environ-

ments, in: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2003, pp. 717–722.
[31] J. Neira, J. Tardos, Data association in stochastic mapping using the joint compatibility test,

IEEE Trans. Robot. Automat. 17 (6) (2001) 890–897.
[32] D. Hähnel, W. Burgard, B. Wegbreit, S. Thrun, Towards lazy data association in SLAM, in:

Proceedings of the 11th International Symposium of Robotics Research (ISRR’03), Springer,
Sienna, Italy, 2003.

[33] D. Hähnel, W. Burgard, D. Fox, S. Thrun, A highly efficient FastSLAM algorithm for generating
cyclic maps of large-scale environments from raw laser range measurements, in: IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2003, pp. 206–211.

[34] M. Montemerlo, S. Thrun, Simultaneous localization and mapping with unknown data associ-
ation using FastSLAM, in: IEEE Intl. Conf. on Robotics and Automation (ICRA), 2003.

[35] J. Nieto, H. Guivant, E. Nebot, S. Thrun, Real time data association for FastSLAM, in: IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2003.

[36] A. Eliazar, R. Parr, DP-SLAM: Fast, robust simultaneous localization and mapping without
predetermined landmarks, in: Intl. Joint Conf. on AI (IJCAI), 2003.

[37] F. Dellaert, S. Seitz, C. Thorpe, S. Thrun, EM, MCMC, and chain flipping for structure from
motion with unknown correspondence, Machine learning 50 (1-2) (2003) 45–71, special issue on
Markov chain Monte Carlo methods.

[38] C. Harris, M. Stephens, A combined corner and edge detector, Proceedings of the 4th Alvey
Vision Conference (1988) 147–151.

[39] M. Kaess, F. Dellaert, Visual SLAM with a multi-camera rig, Tech. Rep. GIT-GVU-06-06,
Georgia Institute of Technology (Feb 2006).

[40] F. Dellaert, The expectation maximization algorithm, Tech. Rep. GIT-GVU-02-20, College of
Computing, Georgia Institute of Technology (February 2002).

[41] G. McLachlan, T. Krishnan, The EM algorithm and extensions, Wiley series in probability and
statistics, John Wiley & Sons, 1997.

[42] T. Minka, Expectation-Maximization as lower bound maximization, tutorial published on the
web at http://www-white.media.mit.edu/~tpminka/papers/em.html (November 1998).

[43] M. Tanner, Tools for Statistical Inference, Springer Verlag, New York, 1996, third Edition.
[44] W. Hastings, Monte Carlo sampling methods using Markov chains and their applications,

Biometrika 57 (1970) 97–109.
[45] P. Krauthausen, F. Dellaert, A. Kipp, Exploiting locality by nested dissection for square root

smoothing and mapping, in: Robotics: Science and Systems (RSS), 2006.
[46] M. Kaess, F. Dellaert, Covariance recovery from a square root information matrix for data

association, Journal of Robotics and Autonomous Systems. To appear.
[47] T. Davis, J. Gilbert, S. Larimore, E. Ng, A column approximate minimum degree ordering

algorithm, ACM Trans. Math. Softw. 30 (3) (2004) 353–376.
[48] T. A. Davis, Algorithm 8xx: a concise sparse Cholesky factorization package, Tech. Rep. TR-

04-001, Univ. of Florida, submitted to ACM Trans. Math. Software. (January 2004).
[49] A. Griewank, On Automatic Differentiation, in: M. Iri, K. Tanabe (Eds.), Mathematical Pro-

gramming: Recent Developments and Applications, Kluwer Academic Publishers, 1989, pp.
83–108.


