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Abstract

Bio-inspired vision sensors are particularly appropriate candidates for navigation of
vehicles or mobile robots due to their computational simplicity, allowing compact
hardware implementations with low power dissipation. The Lobula Giant Movement
Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the
Locust nervous system. The LGMD increases its firing rate in response to both
the velocity of an approaching object and the proximity of this object. It has been
found that it can respond to looming stimuli very quickly and trigger avoidance
reactions. It has been successfully applied in visual collision avoidance systems for
vehicles and robots. This paper introduces a modified neural model for LGMD that
provides additional depth direction information for the movement. The proposed
model retains the simplicity of the previous model by adding only a few new cells. It
has been simplified and implemented on a Field Programmable Gate Array (FPGA),
taking advantage of the inherent parallelism exhibited by the LGMD, and tested
on real-time video streams. Experimental results demonstrate the effectiveness as a
fast motion detector.

Key words: Neural networks, Bio-inspired vision chip, Embedded vision, Visual
motion, FPGA

1 Introduction1

For animals, such as insects, the ability to detect approaching objects is impor-2

tant, serving both to prevent collision as the animal moves and also to avoid3

capture by predators [1,2]. Evolved over millions of years, the visual collision4

avoidance systems in insects are both efficient and reliable. The neural cir-5

cuits processing visual information in insects are relatively simple compared6
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to those in the human brain and provide an appropriate model for the op-7

tical collision avoidance sensors that are needed to equip mobile intelligent8

machines [3].9

The Lobula Giant Movement Detector (LGMD) is a wide-field visual neu-10

ron located in the Lobula layer of the Locust nervous system. The LGMD11

increases its firing rate in response to both the velocity of the approaching12

object and its proximity. It responds to looming stimuli very quickly and can13

trigger avoidance reactions when a rapidly approaching object is detected.14

It is tightly tuned to respond to objects approaching on a direct collision15

course [4], but produces little or no response to receding objects [5]. This16

makes the LGMD an ideal model to develop specialized sensors for automatic17

collision avoidance [6,7].18

A functional neural network based on the LGMD’s input circuitry was de-19

veloped by Rind and Bramwell [8]. This neural network showed the same20

selectivity as the LGMD neuron for approaching rather than receding objects21

and responded best to objects approaching on collision rather than near-miss22

trajectories. The expanding edges of colliding objects and the use of lateral23

inhibition were the key features of the model. This neural network has also24

been used to mediate collision avoidance in a real-world environment by in-25

corporating it into the control structure of a miniature mobile robot [9,10].26

Inspired by the presence of direction selective neurons in the locust [11,12],27

a new specialized translation-sensitive neural network (TSNN) has been pro-28

posed in [13,14]. The TSNN neuron has some common layers with the LGMD29

model, allowing efficiency savings in the neural computation. The TSNN fuses30

extracted visual motion cues from several whole-field direction selective neural31

networks, and is only sensitive to translational movements.32

TSNN can detect the direction of translation movements very well, but it33

is not sensitive to movement in depth; LGMD [8,15] detects the direction34

of movement in depth by both lateral inhibition and feed forward inhibition,35

where feed forward inhibition plays a critical role in inhibiting LGMD spikes to36

receding objects. This use of feed forward inhibition can make the system over-37

sensitive to background movements, thus decreasing the overall sensitivity of38

LGMD. In this paper we propose a modified model for LGMD with several39

extra cells to capture the directional information for depth movements quickly,40

while the feed forward inhibition cell is only responsible for whole field image41

movements. The new model is efficiently implemented on FPGA. We have42

previously presented preliminary details of the new model [16], but without43

the full discussion or the FPGA implementation presented here.44

The rest of this paper is organized as follows: In section 2, we give an overview45

of related work. In section 3, we address the modified LGMD model and its46
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software simulation. In section 4, we discuss the FPGA design and present ex-47

perimental results from the hardware implementation; in section 5 we present48

conclusions.49

2 Related work50

Motion sensors are presently employed in a wide variety of applications includ-51

ing surveillance, aerospace and automotive safety control systems and navi-52

gational systems. Motion sensors are primarily based on ultrasound, passive53

infrared (PIR) and radar detectors. Ultrasonic motion sensors are commonly54

used for automatic door openers and security alarms. PIR sensors are perhaps55

the most frequently used home security sensor. Radar sensors use microwave56

signals and detect intrusion by comparing a transmitted signal with a received57

echo signal and detect a Doppler shifted echo.58

Recent years, vision sensors [17] are becoming increasingly cheap and reliable,59

and may potentially be used for a number of tasks, including collision avoid-60

ance, navigation and object recognition. This makes it desirable to develop61

efficient collision avoidance algorithms using visual sensors. However, collision62

avoidance is computationally demanding, and requires a very quick response63

from the sensor [18–20].64

Motion patterns in 2D video imagery contain distance information about ob-65

jects in a 3D environment [21]. An object on a collision course with the sensor66

system displays movement in depth. There is a substantial body of literature67

on detection of depth from vision, primarily using stereo vision [22–24], al-68

though there is also some interesting work using monocular vision [25–27]. A69

looming object (one moving towards the sensor) appears to expand, which sug-70

gests using optic flow algorithms and looking for a divergent flow pattern. A71

number of authors have suggested using optic flow to compute obstacle time-72

to-collision from a moving robot [28–30,26,31]. However, optic flow algorithms73

are computationally expensive, and the difficulty in estimating accurate op-74

tic flow from real world data [32] make these insufficiently robust for general75

applications. Alternatively some collision avoidance systems are based on the76

fusion of vision and radar sensors [33], exploiting the advantages of each.77

Bio-inspired vision algorithms are a particularly good candidate for collision78

avoidance systems as they use simple, easily parallelized algorithms. Galbraith79

et al [34] proposed a population coded algorithm, built on established models80

of motion processing in the primate visual system, to estimate the time-to-81

collision with improved performance over the optic flow based method. How-82

ever, it remains computationally expensive.83
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There have been a number of attempts to design a bio-inspired neural chip84

based on the LGMD neural network for motion detection. This bio-inspired85

neural model features a particularly simple and highly parallelizable architec-86

ture, which may consequently be efficiently implemented on hardware, leading87

to low cost and low power dissipation. It provides a much quicker response88

that the normal monocular or stereo visual sensors.89

Laviana et al [35] proposed a vision chip architecture based on the LGMD90

model described in [36] – a simplification of the model proposed in [8,1].91

The system includes an FPGA, a block of 100 × 150 6-bit retinotopic units,92

a controller, a 16Kbits SRAM memory block, I/O registers and some other93

peripherals needed for addressing, timing control, digital-to analog converters94

and temperature monitoring. The FPGA chip uses 0.35µm 2P-2M technology.95

Okuno and Yagi [37,38] implemented an LGMD model based on [8], for a96

real-time collision avoidance vision sensor. The system consists of an analog97

VLSI silicon retina and a digital FPGA circuit. The system responds selec-98

tively to colliding objects even in complicated real-world situations. These two99

implementations both use FPGA, but have some important limitations: first,100

they are based on the original LGMD model, which lacks movement direction101

information; second, both have built-in restrictions due to their tight integra-102

tion with the non-FPGA parts of the system (e.g. the retinotopic units), and103

therefore are not general purpose FPGA implementations.104

In this paper, in order to reduce the false alarm caused by receding objects in105

the LGMD model, we modify the model to distinguish approaching movement106

from receding movement. The modified model retains simplicity in the soft-107

ware and hardware implementation. Its resource usage is low enough to admit108

integration with other functions on the FPGA, and it can be transferred to109

any FPGA development platform. This design can achieve a very high frame110

rate and can be applied in real-time vehicular collision avoidance systems with111

a low false alarm rate.112

3 Modified LGMD neural network model113

The LGMD based neural network proposed in this paper is based on previous114

studies described in [8,10,39,40]. The modified neural network is shown in115

figure 1. The LGMD neural network in [8–10] was composed of four groups116

of cells - photoreceptor cells (P ); excitatory and inhibitory cells (E and I);117

summing cells (S); and two single cells for feed-forward inhibition (FFI) and118

LGMD. The model in [40,15] has an extra set of grouping cells between the119

summing cells and LGMD. This allows clusters of excitation in the summary120

cells to feed into the LGMD cell, which is useful for collision detection in121

complex backgrounds.122
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3.1 Neural network model123

The input to the P cells is the luminance change. Lateral inhibition is indicated124

with dotted lines and has a one frame delay. Excitation is indicated with black125

lines and has no delay. The FFI also has a one frame delay. The input to126

FFI is the luminance change from the photoreceptor cells. The problem of127

parameter selection in this LGMD model has been tackled in [41].128

 

Fig. 1. A schematic illustration of the modified LGMD neural network model. There
are four groups of cells and five single cells: photoreceptor cells (P); excitatory
and inhibitory cells (E and I); summing cells (S); grouping cells (J and H); depth
movement direction cell (D); the LGMD cell and the feed forward inhibition cell
(FFI).

The model in [40] works very well for collision detection in complex envi-129

ronments. However, it cannot distinguish the direction of moving objects in130

depth. For example, it will respond to both an approaching object and a re-131

ceding object with high excitation level, especially when an object is very132

close. To enhance the ability to recognize the direction of the moving object133

in depth, we add a new neural layer with two grouping cells J and H, and a134
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new cell D to give in-depth direction information; see figure 1. Note that the135

J , H and D cells may not have exact counterparts in the locust visual system.136

The model is described in detail below.137

3.1.1 P layer138

The first layer contains the photoreceptor P cells arranged in a retinotopic139

matrix; the input frame pixel luminance Lf is captured by each photoreceptor140

cell. The cells calculate the luminance change, which forms the output of this141

layer, using the equation:142

Pf (x, y) =
np
∑

i

piPf−i(x, y) + (Lf (x, y) − Lf−1(x, y)) (1)143

where Pf (x, y) is the change of luminance corresponding to pixel (x, y) at144

frame f , x and y are the index into the matrix, Lf and Lf−1 are the luminance,145

subscript f denotes the current frame and f − 1 denotes the previous frame,146

np defines the maximum number of frames (or time steps) the persistence of147

the luminance change can last, the persistence coefficient pi ∈ (0, 1) and148

pi = (1 + eµi)−1 (2)149

where µ ∈ (−∞, +∞) and i indicates the previous ith frame counted from150

the current frame f . The LGMD neural network detects potential collision by151

responding to expansion of the image edges, a strategy that does not rely on152

object appearance. If there is no difference between successive images, the P153

cells are not excited.154

3.1.2 I E layer155

The output of the P cells forms the inputs to two separate cell types in the156

next layer. The excitatory cells pass excitation directly to their retinotopic157

counterparts in the third layer, the S layer. The excitation E(x, y) in an E158

cell has the same value as that in the corresponding P cell. The lateral in-159

hibition cells pass inhibition, after 1 image frame delay, to their retinotopic160

counterpart’s neighboring cells in the S layer. The inhibition strength of a cell161

in this layer is given by:162

If (x, y) =
∑

i

∑

j Pf−1(x + i, y + j)wI(i, j), (if i = j, j 6= 0) (3)163

where If (x, y) is the inhibition corresponding to pixel (x, y) at current frame164

f , wI(i, j) is the local inhibition weight. Note that i and j are not allowed165
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to be equal to zero simultaneously. Consequently, inhibition spreads out to166

neighboring cells in next layer rather than to the direct counterpart.167

In our experiments, on both software simulation and hardware implementa-168

tion, the local inhibition weight wI(i, j) are set to 0.25 for the four nearest169

neighbors and 0.125 for the four diagonal neighbors. These values are espe-170

cially convenient for hardware implementation.171

wI =















0.125 0.25 0.125

0.25 0.25

0.125 0.25 0.125















(4)172

3.1.3 S layer173

The excitatory flow from the E cells and inhibition from the I cells is summed174

by the S cells using the following equation:175

Sf (x, y) = Ef (x, y) − If (x, y)WI (5)176

where WI is the inhibition weight (usually less than 0.8; 0.35 was empirically177

chosen in our experiments). Excitations that exceed a threshold value are able178

to reach the summation cell LGMD:179

S̃f (x, y) =











Sf (x, y), if Sf (x, y) ≥ Tr

0, if Sf (x, y) < Tr

(6)180

where Tr is the threshold.181

3.1.4 J H cells182

The J and H cells are the two new grouping cells for depth movement direction183

recognition. The J cell is exactly the same as the LGMD cell in the previous184

LGMD model in terms of spatiotemporal structure and the value it holds: it185

sums the S cell activations to give an overall network response. The H cell186

shares the same structure as J cell, but with a temporal difference, having a187

one frame delay from J .188

Jf =
∑

x,y

S̃f (x, y) (7)189

Hf = Jf−1 (8)190
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From equations 1,3,5 and 7 it can been seen that the value of the J cell is191

particularly sensitive to pixels where there is a luminance changes between192

consecutive frames.193

3.1.5 D cell194

The D cell is used to calculate the difference between the differences of frame195

f , f − 1 and f − 2. It can be represented in the equation 9.196

Df = abs(Jf ) − abs(Hf ) (9)197

(a )

(b )
)

L i -1 L i L i+1 A i A i+ 1

Fig. 2. An illustration of the difference between approaching (a) and receding (b)
depth movement. Li−1, Li and Li+1 are three consecutive three frames in the video
clip. Ai and Ai+1 are the affected areas while doing the frame subtractions between
these frames. In the approaching case, the affected area gets larger; in the receding
case smaller.

The D cell estimates the direction of movement in depth very well. It exploits198

the property that a looming object gets larger, whereas a receding one gets199

smaller; see figure 2. Due to the aperture effect, a moving object may only200

cause detectable changes around the edge (or internal contrast boundaries);201

however, at constant speed the size of the area of change is still related to the202

direction of movement in depth. When an object is moving away, abs(Jf ) is203

smaller than abs(Hf ). When an object is approaching, abs(Jf ) is bigger than204

abs(Hf ). The absolute value function on J and H cells is used to cancel the205

different effects on their values when the object is darker or brighter than the206

background. In order to distinguish slow movements we add a threshold TD207

for Df . We then get a simple variable D̃ that has only three values: ‘0’, ‘1’208

and ‘−1’, where ‘1’ stands for approaching, ‘−1’ for receding and ‘0’ for no209

significant movement. The threshold TD depends mainly on the size of the210

image.211

D̃f =



























1, if Df ≥ TD

0, if −TD < Df < TD

−1, if Df ≤ −TD

(10)212
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When augmented with the above cells, the LGMD model recognizes directional213

information for depth movements quickly. The feed forward inhibition cell, as214

detailed later, is able to concentrate on whole image movements to avoid215

perturbation from background movements.216

3.1.6 LGMD cell217

The membrane potential J is then transformed to a spiking output using a218

sigmoid transformation,219

LGMDf = (1 + e−Jf n−1

cell)−1 (11)220

where ncell is the total number of the cells in S layer. Since Jf is greater than221

or equal to zero (as equation 7 is a sum of absolute value), the sigmoid mem-222

brane potential LGMDf varies from 0.5 to 1. The collision alarm is decided223

by the spiking of cell LGMD. If the membrane potential LGMDf exceeds the224

threshold Ts, a spike is produced. A certain number of successive spikes, de-225

noted by SLGMD, will trigger the collision alarm in the LGMD cell. Of course,226

in the modified model, the collision alarm is only triggered under the condi-227

tion that D̃ = 1 where the moving object is approaching. The spikes may be228

suppressed by the FFI cell when whole field movement occurs [39].229

3.1.7 FFI cell230

If it is not suppressed during turning, the network may produce spikes and231

even false collision alerts due to sudden changes in the scene. The feed forward232

inhibition and lateral inhibition work together to cope with such whole field233

movement [39]. The FFI excitation at the current frame is gathered from the234

photoreceptor cells with one frame delay,235

Ff =
na
∑

j

αF
f−jFf−j +

nr
∑

x=1

nc
∑

y=1

abs(Pf−1(x, y))n−1

cell (12)236

where αF
f−j is the persistence coefficient for FFI and αF

f−j ∈ (0, 1), na defines237

how many time steps the persistence can last.238

Once Ff exceeds its threshold TFFI , spikes in the LGMD are inhibited imme-239

diately. The threshold TFFI is also adaptable,240

TFFI = TFO + αffiTFFIf−1
(13)241
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where TFO is the initial value of the TFFI , the adaptable threshold is decided242

by the previous TFFI and αffi is a coefficient. The parameters, including TFO,243

αffi, are tuned to the application, the value depending on the image size and244

the style of camera movement. In the case when the camera is nearly stable,245

the FFI cell is normally ignored as it rarely reacts.246

3.2 Simulation results on the proposed model247

Two data sets were used to test the efficiency and stability of the proposed248

LGMD model in software simulation. The first experiment is on a simu-249

lated data set that demonstrates carefully-calibrated approaching and receding250

movements. The second data sets are two recorded video clips. The parame-251

ters were kept the same in all experiments; values are shown in table X. [YOU252

BEST REPLACE THIS X!]. The simulation was performed using MATLAB.253

Because the camera was still in the following experiments, FFI cell was ig-254

nored. Other parameters used in the all following experiments are listed in the255

table 1256

Table 1
Settings for the control parameters of the LGMD model where nr and nc are the
numbers of the pixels in the horizontal and vertical directions in the video frame.

np µ p1 WI Tr TD ncell

1 1.95 0.125 0.25 3 0.25*nr ∗ nc nr ∗ nc

3.2.1 Results on simulated data set257

                  5                                 20                                 35                                 50                                 65              

                 80                                 95                                 110                                 120                            125            

Fig. 3. Selected frames from the simulated sequence. The square object looms and
recedes twice, with the second sequence at twice the speed of the first.

We created a sequence containing 125 frames, resolution 150×100, of a square258

black object on a white background. The object alternatively approaches and259

recedes. Sample frames are shown in figure 3. Initially the square is stationary260

with size 3× 3. It looms from frame 5− 41, then recedes from frame 41− 79,261
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Fig. 4. Output of the new LGMD model on the simulated sequence shown in fig-
ure 3. The vertical axis shows the normalized membrane potentials of the LGMD
cell; the markers denote the depth movement direction of the object: ‘△’ denotes
approaching, ‘▽’ receding and ’©’ no significant movement.

both at one pixel per side per frame. It is stationary from frames 79 − 84, at262

size 3 × 3, then approaches from 84 − 101 and recedes from 101 − 120, this263

time at 2 pixels per edge per frame. It remains stationary again at size 3 × 3264

for the remainder of the sequence.265

Figure 4 shows the output of the LGMD model on the simulated sequence266

shown in figure 3. The vertical axis is the normalized membrane potential of267

the LGMD cell; the marker represents the output of the depth direction cell.268

This result shows that this model works very well in the simulation dataset.269

3.2.2 Results on real recorded data270

We recorded two short video clips (shown in figures 5 and 7 respectively) for271

the second experiment, using 320 × 240 gray scale images. In these videos272

(5) a ball is shown, mainly receding to the chair and then bouncing back273

to approach the camera. There are 18 and 21 frames in the first and second274

sequences respectively. The first recording has a bigger, fast-moving ball while275

the second has a smaller, slower-moving ball.276

Figure 6 and 8 show the output of the new model on the recorded sequences277

shown in figure 5 and 7 respectively. In the first dataset, the ball is a bit278

brighter than background while in the second dataset,the ball is a bit darker279

than the background. Although the situations are different, the simulation280
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Fig. 5. The first recorded sequence. There are 18 frames featuring a ball receding
from the camera and then bouncing back to the camera after it hits a chair.
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Fig. 6. The output of the model on the sequence shown in figure 5. The vertical axis
is the normalized membrane potentials of the LGMD cell. The markers denote the
depth movement direction; ‘△’ denote approaching objects; ‘▽’ receding objects
and ’©’ no significant movement.

results are quite similar. We can clearly see that the new model works very281

well on both recorded data sets.282
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Fig. 7. The second recorded sequence. There are 21 frames, featuring a ball receding
from the camera and then bouncing back towards the camera after it hits the chair.

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 8. The output of the model on the sequence shown in figure 7. The vertical axis
is the normalized membrane potentials of the LGMD cell. The markers denote the
depth movement direction; ‘△’ denote approaching objects; ‘▽’ receding objects
and ’©’ no significant movement.

4 Hardware design and implementation283

The entire collision detection algorithm, based on the modified LGMD as284

presented in section 3 has been implemented on a Field Programmable Gate285

Array (FPGA). In contrast to the previously published mixed digital/analogue286

implementation of the LGMD[35,37], this all-digital implementation has key287

advantages in easy integration with other digital algorithms on the FPGA.288
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Fig. 9. A high-level block diagram of the FPGA implementation of the modified
LGMD model.

4.1 Overall architecture and platform289

The high-level block diagram of the overall architecture of the system is shown290

on figure 9. The real-time video stream is input from a digital camera to the291

FPGA chip, displayed on an monitor and the frames transferred to gray scale292

images stored in two external RAMs. The neural computing is carried out on293

the FPGA chip, the excitation S-layer is displayed on another monitor, and294

an alert is also generated.295

Figure 10 shows the system setup. It includes a Celoxica RC340 board, a dig-296

ital camera and two monitors. The LGMD and D cell outputs are displayed297

on the board’s LCD, and the LEDs (flash lights) are activated on alert. The298

Celoxica RC340 board is packaged with a Xilinx Virtex-4 XC4VLX160, em-299

bedded Block RAM totaling 5,184 Kbits and four banks of ZBT RAM totaling300

32MB, LCD, LEDs and multiple video input and output ports.301
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Fig. 10. The system setup includes a Celoxica RC340 board, a digital camera and
two monitors. The modified LGMD model lights up the LEDs (flash lights) on the
FPGA board based on the values of both LGMD and D cells. These values are also
shown on the LCD of the FPGA board.

4.2 FPGA design302

The FPGA design (see figure 11) has five blocks: the input, P-layer, S-layer, J303

cell and D cell. The input and P-layer blocks run in parallel, while the S-layer304

gets triggered when the entire frame has been processed.305

The input block reads real-time camera data in 24 bit RGB format and con-306

verts it into 8-bit gray-scale intensity. The 8-bit intensity value is written into307

one of the available RAM blocks whiles the corresponding stored data is read308

from the other RAM block, serving as the previous pixel value. The 10-bit x-309

location and y-location address is also use to address the store data in RAM.310

The two block of RAM are used to buffer input data from the camera.311

The current pixel value (from the camera) and the previous pixel value (from312

RAM) are used to estimate the luminance P-layer value for the corresponding313

pixel. This three stage pipeline is completed when an entire frame is captured.314

The excitatory S-layer is then triggered. This layer uses all eight neighboring315

pixels in the P-layer. The architecture implemented here is as shown in figure316

12. Pixel data from the three rows involved in the computation are copied317

into a buffer one after the other. The S-layer for each pixel takes exactly three318
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RGB2Gray

RAM 2RAM 1

P layer

H cell J cell

D cell LGMD cell

S layer

E layer

Address bus

I layer

Address bus

Fig. 11. A high-level circuitry diagram of the various blocks on FPGA

clock cycles, the same number of cycles required to fill the three buffers.319

The processing requires seven comparators arranged in a chain as shown in320

figure 12 and begins execution as soon as the buffer is full. From figure 12,321

the shaded pixels in the second row are the pixel whose corresponding S-layer322

value will be generated after three clock cycles.323

The S-layer data is passed over to the J cell, which sums all the pixels values324

from the S-layer. This block runs in parallel with the S-layer and uses a single325

accumulator. The J cell in conjunction with the H cell is used to generate the326

value for the D cell. The D cell uses the H cell, which is the delayed J cell327

value, as shown in figure 11.328

In addition, we simulate equation 11, which determines the output of the329

LGMD cell from the input, J , using a step function, thus avoiding the com-330

putation of exponentials and division. We discretize the output, LGMD, into331

the set {0.50, 0.51, · · · , 0.99, 1.00}. Since equation 11 is monotonically increas-332

ing in J , we can rearrange equation 11 to equation 14, to back-calculate the333

minimum and maximum values of J that yield a specified value of LGMD334

(e.g. we plug values of LGMD = 0.505 and LGMD = 0.515 into 14 to cal-335
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P layer

S layer

Fig. 12. A detailed translation of the p-layer into s-layer

culate the minimum and maximum values of J that map to LGMD = 0.51).336

These range limits are checked in parallel to determine the value of LGMD337

in a single clock cycle.338

Jf = − ln(LGMD−1

f − 1) × ncell (14)339

All the layers in the modified LGMD have been implemented on the FPGA340

fabric with the use of the Block RAM, making it possible to address each341

layer like a dual-port memory block. The hardware implementation currently342

excludes the FFI cell as shown in figure 1. However, this can be easily added343

as it is not computationally complex. The hardware implementation rather344

makes use of a predefined threshold to estimate the excitation. The excitation345

of the LGMD cell in figure 12 is very dependent on the value of the D cell;346

thus if the object is stationary or receding, there is no alert generated at the347

LGMD cell.348

The resources used by the FPGA implementation are listed in table 2. It was349

implemented on a Xilinx Virtex-4 XC4VLX160 chip, package FF1148 and350

speed grade -10. Memory and IO requirements are high, but computational351

requirements are minimal.352
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Fig. 13. A step function is used in FPGA implementations for determining the
outputs of LGMD cell (vertical axis) from the inputs of J cell (horizontal axis).
Only 51 values {0.50, 0.51, · · · , 0.99, 1.00} were used for the outputs of LGMD cell
in the FPGA implementation. Here, the image size is 600 × 400.

Table 2
Implementation results for the modified LGMD, using Virtex-4 XC4VLX160, pack-
age FF1148 and speed grade -10 .

Resource Total Used

Name Total Used Per.(%)

Flip Flops 135,168 2,325 1

4 input LUTs 135,168 3,001 2

bonded IOBs 768 355 46

Occupied Slices 67,584 3,206 4

RAM16s 288 285 98

4.3 Hardware testing results353

The hardware implementation has been tested with two frame sizes, 300×200354

and 600 × 400. The maximum attainable clock frequency is 50MHz, with355

40MHz being the highest stable frequency. The design takes a total of 3N + 7356

cycles to completely generate an LGMD output, where N is the number of357

pixels in the entire frame. For frame size 300 × 200 running at 40MHz, the358

system processes approximately 222 frames per second; for frame size 600×400359

the value reduces to 55 frames per second. The low resource utilization of360
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Fig. 14. Frame samples from a video clip of a looming and receding hand movement.
The frame numbers are shown under each frame. There are 115 frames, size 600×400,
at frame rate 25 f.p.s.

the implementation makes it possible to run multiple LGMD at the same361

frequency.362

The high computational efficiency makes it possible for the modified LGMD363

to be used in visual sensor systems with very high frame rate and/or high364

image resolution.365

The reported clock frequency of 40MHz to 50MHz also includes the design for366

controlling the external logic for the 2 VGAs, the camera input and the LEDs367

for alerts. The design and verification was accomplished using Handel-C high368

level descriptive language. Compilation and simulation were achieved using369

the Agility DK design suite. Synthesis, the translation of abstract high-level370

code into a gate-level netlist, was accomplished using Xilinx ISE tools.371

Figure 14 shows a video sequence used to test the hardware implementation.372

The object (hand) approaches and recedes three times. The video was recorded373

into the digital camera and the outputs of the LGMD and D cells were written374

into the external memory, and retrieved for plotting; see figure 15. We can see375

clearly that the FPGA implementation worked very well in response to this376

object movement. In comparison with the software simulation results (see377

figure 6), the curve is not as smooth, due to the step function used in the378

computation of the LGMD values. Nevertheless, this implementation fulfils379

the task of giving correct alarms.380
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Fig. 15. Experimental results read from external memory of the FPGA board, using
the video sequence in figure 14. The vertical axis is the normalized membrane po-
tentials of the LGMD cell. The markers denote the depth movement direction; ‘△’
denote approaching objects; ‘▽’ receding objects and ‘©’ no significant movement.

5 Conclusion381

In this paper, we propose an LGMD model that provides additional informa-382

tion on the depth direction of the movement. It requires little additional com-383

putational cost compared to previous models, and can distinguish approaching384

from receding objects very quickly.385

The new model has been implemented on the Xilinx FPGA chip, and the386

general purpose design is suitable for transfer to any other FPGA device.387

The design is compact, occupying limited hardware resources, and therefore388

be easily integrated with other computational components on a single chip.389

It has been successfully tested on real-time video clips; experimental results390

showed hardware performance is consistent with software simulation results.391

The high computational efficiency makes the modified LGMD suitable for392

use in visual sensor systems with very high frame rate and/or high image393

resolution, and the implementation on a general purpose hardware platform394

makes it suitable for application in various situations.395

In future research we will design a complete chip combining this LGMD model396

with the specialized translation-sensitive neural network. This will provide397

both translation and depth movement information, and will work as a general398

motion tracking sensor.399
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