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Abstract—We present a novel approach for robust localization of multiple people observed using a set of static cameras. We use this

location information to generate a visualization of the virtual offside line in soccer games. To compute the position of the offside line,

we need to localize players′ positions, and identify their team roles. We solve the problem of fusing corresponding players′ positional

information by finding minimum weight K-length cycles in a complete K-partite graph. Each partite of the graph corresponds to one of

the K cameras, whereas each node of a partite encodes the position and appearance of a player observed from a particular camera.

To find the minimum weight cycles in this graph, we use a dynamic programming based approach that varies over a continuum from

maximally to minimally greedy in terms of the number of graph-paths explored at each iteration. We present proofs for the efficiency

and performance bounds of our algorithms. Finally, we demonstrate the robustness of our framework by testing it on 82,000 frames of

soccer footage captured over eight different illumination conditions, play types, and team attire. Our framework runs in near-real time,

and processes video from 3 full HD cameras in about 0.4 seconds for each set of corresponding 3 frames.

Index Terms—Perceptual Reasoning; Video Analysis; Sports Visualization; Multi-camera Tracking; Data Fusion; Computer Vision.

F

1 INTRODUCTION

R Ecent sports analysis and visualization systems have

transformed viewers’ understanding and appreciation of

the game, and have created a new industry [1] [20]. However,

many analysis techniques and graphical additions require

significant human input. Automatically inferring the state of a

multi-player game remains an open challenge, especially when

the context of the game changes dynamically without discrete

plays (e.g., soccer, field hockey, basketball). Our work targets

this particular subset of sports.

A key technical challenge for sports visualization systems

is to infer accurate player positions despite visual occlusions

and clutter. One solution for this problem is to use multiple

overlapping cameras [23] [10], provided the observations from

these cameras can be fused reliably. Our work explores this

question of efficient and robust fusion of visual data observed

from multiple synchronized cameras.

The main theoretical contribution of our work is a novel

class of algorithms that fuse the location of players observed

from multiple cameras by iteratively finding minimum weight

K-length cycles in a complete K-partite graph. Each partite

of the graph corresponds to one of the K cameras, whereas

each node of a partite encodes the position and appearance

of a player observed from a particular camera. The edge-

weights in the graph are a function of similarity between

the detected players in different camera-pairs, and their cor-

responding ground plane distances (see § 3.5). We model the

correspondence between a player’s blobs observed in different

cameras as a K-length cycle in this graph (see Fig. 1 for

illustration).

Another important challenge in sports visualization is

the use of player positions to generate visualizations that

might be informative for the viewers, coaches, and players.

While there has been a lot of work in this regard (see

e.g. [22] [27] [28] [37] [17], and the references therein),

here we propose an end-to-end visualization framework that

is different from previous works in a few important ways.

First, our goal is to generate sports visualizations, and not

to develop a decision making system [15] [17]. Second, the

design principle of our system is to use off-the-shelf cameras

in a framework that is readily deployable to different playing

locations. Current pan-tilt-zoom (PTZ) camera based visual-

ization systems (as used in American Football for instance)

employ non-vision based technology, that is expensive and

not readily available. On the other hand, using a purely vision
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Fig. 1. Example player positions on a soccer field. Nodes in the corresponding K(=3) partite graph represent the player blobs detected in the
three cameras projected to a common ground plane. In this graph, the dotted lines represent the minimum weight cycles, whereas the solid lines
represent node edges. The weights of these edges are a function of the pair-wise appearance similarity of blobs and their corresponding ground
plane distances (§ 3.5).

based PTZ camera system would require maintaining full

camera calibration throughout a game, which is still an open

research problem [39] [2]. We therefore focus on using only

static cameras, which requires only planer homographies that

can be readily computed at the start of a game. Finally,

we are interested in generating visualizations with minimal

human supervision. This approach is different from previous

visualization systems [26] [9] that usually work off-line, and

require significant manual supervision.

The particular visualizations we have developed include

displaying a virtual offside line in soccer games, highlighting

players in passive offside positions, and showing players′

motion patterns accumulated over time. To demonstrate the

robustness of our framework, we present results on 82,000

frames of soccer footage captured over eight different illu-

mination conditions, play types, and team uniform colors.

The variation in the illumination conditions we tested include

naturally lit (morning, afternoon, evening, sunny, cloudy) and

artificially lit (night time) fields. The play types we considered

include drills and regular games. The teams we considered

in our testing include different combinations of red, green,

yellow, white, and blue team-uniforms. More details about

these experimental variations can be found in § 4.

2 MULTI-VIEW DATA FUSION

Data fusion using multiple information sources is a thoroughly

studied problem [13]. Broadly speaking, most of the previous

work in data fusion may be categorized into low-level (sensor-

level) fusion [12] [38], mid-level fusion [31], and high-level

(decision-level) fusion [35], [5].

Some of the recent work on fusing data from multiple

cameras in order to localize and track multiple people has

focused on combining low-level sensor data to achieve robust

inference [24] [29] [8]. In this work, however, we focus

on mid-level fusion that combines local inference from each

camera to reach a coherent global inference.

The problem of finding multi-object multi-frame correspon-

dence has previously been viewed from a variety of different

perspectives, including constraint optimization [19], greedy

randomized search [36], and graph based approaches [33]. The

particular graph structure that has been most frequently used is

the bi-partite graph [34]. The techniques for optimization for

this particular graph structure are well studied [16]. However,

using a bi-partite graph structure to model correspondences

across more than two information sources is a greedy ap-

proximation which naturally results in sub-optimal result. To

overcome the constraints posed by the bi-partite structure,

there have been some recent attempts to use complete K-

partite graphs [18] [32].

Our approach is different from these existing methods in

two important ways. First, given the temporal constraints of

previous problems, they have used graphs with directed edges,

which restricts their search space, and makes the solution

dependent on the order of individual graph partites. As we fuse

data at a per-frame level, our problem does not pose temporal

constraints, requiring us to use undirected graphs. Therefore

our solution is more general in that it explores a larger search

space, while being independent of the order of individual

graph-partites. Second, most previous approaches have used

an acyclic graph structure, however the graph structure we

use involve loops.

In the remaining part of this section, we provide details

regarding the modeling and analysis of our problem.
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Fig. 2. (a) A complete K-partite graph G with the edge structure for
one node shown. (b) A subgraph Gv generated from G, where tiers 1
and K + 1 contain only node v. The topology of Gv is the same as G

with the exception of the 1st and the (K + 1)st tiers. (c) A cycle c ∈ G

spanning each tier of G once and only once is shown using solid lines.
Path pv ∈ Gv , equivalent to the cycle c ∈ G is shown in dotted lines.

2.1 Problem Statement

Given a complete K-partite graph G, find the minimum weight

cycle c ∈ G, such that c passes through each k ∈ K once and

only once.

A complete K-partite graph and a node-cycle are shown in

Fig. 2-a and c respectively1. Each partite of G corresponds to

one of the K cameras, whereas each node of a partite encodes

the position and appearance of a player observed from a

particular camera. A cycle c in G represents a correspondence

among observations of a player in different cameras. The

goodness of a correspondence is ranked based on the weight of

its cycle – smaller weight cycles imply better correspondence.

As the number of players at any given instant of time is not

known, we use the greedy heuristic of iteratively finding the

longest (length K), and most cohesive (least weight) cycle, and

remove it from our original graph G. This operation is repeated

until there are no more K-length cycles that are also more

cohesive than a pre-defined threshold. We repeat this procedure

to iteratively find and remove all the K length cycles. This

process continues until there are no more non-trivial cycles in

the graph.

2.2 Naive Solution – Brute Force Search

A naive solution to our problem would be to first enumerate all

K-length cycles in the graph, and then search for the minimum

weight cycle in a brute force manner. With n nodes in each of

the K tiers, the total number of cycles would be O(nKK!).
Recall that here K represents the number of cameras and

n denotes the number of players observed in each of the

K cameras. Even for relatively small values of n and K,

this solution is expensive2, and a more efficient solution is

therefore needed.

2.3 Exploiting Problem Characteristics

Our problem exhibits two key characteristics that can be

exploited to create a more efficient solution.

1- Optimal Sub-Structure: The property of optimal sub-

structure implies that an optimal solution of a problem can be

1. The terms partite and tier will be used interchangeably from hereon.

2. For example, a setup with 5 cameras observing 15 players would require
searching through 91,125,000 cycles at each time-step.

constructed from optimal solutions of its sub-problems. More

specifically, in our case:

Lemma 1: A sub-path p between nodes {u, v} ∈ c is the

shortest path between u and v [7].

2- Overlapping Sub-Problems: The property of overlapping

sub-problems implies that a problem can be divided into sub-

problems which can be re-used several times. More specifi-

cally, in our case:

Lemma 2: A shortest path between nodes u and v is less than

or equal to the shortest path between u and an intermediate

node w, and the shortest path between w and v [7].

These properties enable us to use dynamic programming

approach of updating of the solution-set from one step to

the next in an incremental manner. This observation allows

us to have solutions that range from maximally to minimally

greedy in terms of the number of graph-paths explored at

each iteration. The globally optimal solution of our problem

is NP-hard for k ≥ 3 [32]. Therefore, the ability to choose

an approximate solution given the application requirements

of search efficiency versus optimality can be quite useful in

practice.

2.4 From Cycles to Paths

As our problem is cyclic in nature, the paths we find must

start and end at the same node. With traditional dynamic

programming, there is no guarantee that the shortest path

returned by the algorithm would necessarily end at the source

node. We therefore need to modify our graph representation

such that we satisfy the cyclic constraint of our problem, while

still using a dynamic programming based scheme.

Assume the size of all nodes V ∈ G is n. For each node

v ∈ V , we can construct a subgraph Gv with K+1 tiers, such

that the only node in the 1st and the (K + 1)st tier of Gv is

v. Besides the 1st and the (K + 1)st tiers of Gv , its topology

is the same as that of G (see Fig. 2-b). Note that the shortest

cycle in G involving node v is equivalent to the shortest path

in Gv that has v as its source and destination (see Fig. 2-c).

Our problem can now be re-stated as:

Modified Problem Statement: Given G, construct Gv , ∀v ∈
V . Find the shortest K length paths P = {pv ∈ Gv∀v,∈ V }
that span each tier once and only once. Find the shortest cycle

in G by searching for the shortest path in P .

We now present a class of algorithms for finding the shortest

path pv ∈ Gv . The overall shortest cycle in G can then be

found by repeating this process ∀v ∈ V .

2.5 Finding the Shortest Path in Gv
2.5.1 Notations and Definitions

Let T be the set of all tiers ∈ G, and tv be the tier of a node

v ∈ V . Let P{v,k−1} denote the shortest k−1 length path from

source to v, and let T{v,k−1} denote the set of tiers covered by

P{v,k−1}. Let C{v,k−1} denote the cost of P{v,k−1}. Similarly,

let P{v,k−1,tu} denote the best k − 1 length path from the

source to v that does not pass through tu, and let T{v,k−1,tu}

denote the set of tiers covered by P{v,k−1,tu}. Let C{v,k−1,tu}

denote the cost of P{v,k−1,tu}. We define the neighborhood of

u as:
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Fig. 4. (a) While computing the best 3-length path for u, Algorithm 1 cannot query v, as the best 2-length path at v already passes through tu.
(b) Algorithm 2 maintains the minimal set of shortest 2-length paths for v that exclude each tier at least once. The extra path stored in v allows
Algorithm 2 to query it, thus adding it to the neighborhood of u. (c) The minimal set of tiers spanned by shortest 2-length paths for each tier are
enlisted. Here, t1 → {t3} represents the 2-length path from the source ending at t1 and including t3. Also enlisted are all the 3-length paths
available at t2. As all these paths share t1, the nodes in t1 cannot probe nodes in t2 in the next iteration. (d) Algorithm 3 resolves this bottleneck by
keeping paths for all combinations of tiers. While in Fig. 4-c all 3-length paths available at t2 had t1 in common, that is not the case now due to the
extra path that spans {t3, t4}.
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Fig. 3. (a) The figure shows the notion of neighborhood of a node u

while computing the best paths of length 3. Each crossed out node has
a best path that spans the tier of u, and therefore cannot be further used
by u itself. The checked nodes constitute best paths of length two that
do not span the tier of u, and can therefore not be used by u. The lines
with squares at the end highlight the paths stored in a particular node.
(b) An illustrative example of Algorithm 1, where the path through that
particular neighbor is selected that results in the shortest path from the
source to the node u.

v ∈ N(u, k) iff

{

tu /∈ T{v,k−1}

tu 6= tv
(1)

The notion of N(u, k) for a node u ∈ G is illustrated in

Fig. 3-a. Each node with a cross is included in a best path

that spans the tier of u, and can therefore not be further used

by u. Nodes with checks are best paths of length two that do

not span the tier of u, and can therefore be used by u. Note

that in Fig. 3, the lines with blocks at the end highlight the

path stored in a particular node.

2.6 Algorithm 1: Maximally Greedy

Algorithm 1 considers the best k−1 length path stored in each

of the neighbors of a node u in order to compute the best k

Algorithm 1 - Maximally Greedy Approach

for k = 2, 3, ...,K do

for all u ∈ V do

S = {φ}, Q = {φ}
for all v ∈ N(u, k) do

S = S ∪ {C{v,k−1} + w(v, u)} //Set of costs

Q = Q ∪ {P{v,k−1} + (v, tv)} //Set of paths

end for

i = index(min(S)); S{u,k} = S[i]; Q{u,k} = Q[i];
end for

end for

for all v ∈ V do

S = S ∪ {C{v,K} + w(v, s)}
Q = Q ∪ {P{v,K} + (v, s)}

end for

i = index(min(S)); Cbest = S[i]; Pbest = Q[i];

length path from the source to u. An illustrative example of

the flow of Algorithm 1 is given in Fig. 3-b.

Algorithm Complexity: The complexity of Algorithm 1 for

finding shortest path in Gv is O(n2K) because finding the

best length l path to a particular node requires searching over

O(n) paths of lengths l − 1 in the neighborhood of the node

being considered. Finding a shortest path of length K would

therefore require O(nK) operations, because this requires K

operations of complexity O(n), one for each path length from

1 to K. As this process is done for each of the n nodes in

Gv , the complexity of finding the overall shortest path in Gv is

O(n2K). Furthermore, since there are n sub-graphs Gv in G,

the complexity for finding the shortest cycle in G is O(n3K).

Bottleneck Cases: We need to find paths in Gv that span

each tier once and only once because Algorithm 1 proceeds

in a maximally greedy manner. There can be cases where

Algorithm 1 cannot query a certain node v anymore, as

the best k − 1 length path at v already passes through tu
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(Fig. 4-a). If best paths at {∀v ∈ V \ u} already span tu,

Algorithm 1 cannot converge further. We can therefore state

the convergence condition as:

|{N(u, k)}| > 0 ∀(u, k) (2)

Here convergence does not necessarily imply optimality. i.e.,

the state where the solution returned by an algorithm is the

same as that of exhaustive search (§ 2.2). Because of the

greedy search policy of Algorithm 1, the invariant of Lemma 1
does not always hold. Algorithm 1 therefore greedily attempts

to find the best solution that it can, and as often as it can.

2.7 Algorithm 2: Exclude Each Tier at Least Once

In Algorithm 1, if P{v,k−1} spans tk, then the subset of nodes

{u|tu = tk} cannot use this path anymore. We therefore need

alternate paths ending at v that do not pass through tk such

that nodes {u|tu = tk} could use these paths in later iterations.

Algorithm 2 attempts to achieve this goal by keeping the

minimal set of best k − 1 length paths that exclude each tier

at least once (a routine denoted as “Rank” in Algorithm 2).

Fig. 4-b shows how Algorithm 2 keeps alternate paths to allow

u to have a larger set of neighbors than that of Algorithm 1.

Algorithm 2 - Leave Each Tier Out At least Once

for k = 2, 3, ...,K do

for all u ∈ V do

S = {φ}, Q = {φ}
for all v ∈ N(u, k) do

S = S ∪ {C{v,k−1,tu} + w(v, u)}
Q = Q ∪ {P{v,k−1,tu} + (v, tv)}

end for

Sort(S);Rank(Q);T
′

= {T \ tu}
for all ti ∈ T

′

do

Find P{v,k,ti} ∈ Q

Find C{v,k,ti} = Cost(P{v,k,ti})
end for

end for

end for

for all v ∈ V do

S = S ∪ {C{v,K,φ} + w(v, s)}
Q = Q ∪ {P{v,K,φ} + (v, s)}

end for

Algorithm Complexity: The complexity of Algorithm 2 for

finding pv ∈ Gv is O(n2K2log(nK) + n2K3). Note that the

outer two loops of Algorithm 2 are of O(nK) complexity.

For each iteration of the inner loop, the two key procedures

that need to be performed are (i) sorting the neighborhood

paths based on their costs, and (ii) finding the path and cost-

set for each tier in T except for the tier of the current node.

The complexity of the sorting procedure is O(nK.log(nK)),
while that of finding the new path and cost-set is O(n.K2).
Therefore the overall complexity of Algorithm 2 for finding

pv ∈ Gv is O(n2K2log(nK) +n2K3). Furthermore, because

there are n sub-graphs Gv in G, the complexity for finding the

shortest cycle in G using Algorithm 2 is O(n3K2log(nK) +
n3K3).

Bottleneck Cases: If all the paths available to a node u have

a particular tier (say tc) in common, Algorithm 2 may still not

always be able to exclude each tier at least once. In the next

iteration, the nodes in tc would not be able to query u (see

Fig. 4-c for illustration). If this is true ∀u, Algorithm 2 would

terminate prematurely.

2.8 Algorithm 3: Combinatorial Approach

Algorithm 3 maintains the best k − 1-length paths for all

combinations of tiers such that nodes in all tiers can always

query their neighbors. Fig. 4-d shows how this approach

avoids a bottleneck case for Algorithm 2. Algorithm 3 is

guaranteed to have |{N(u, k)}| = |{V \{v|tv = tu}}| ∀{u, k},

and always satisfies Lemma 1. It therefore guarantees both

convergence and optimality. We now provide a proof for these

claims.

2.8.1. Convergence of Algorithm 3
We first prove that the convergence condition (as defined in

Eq. 2) for Algorithm 3 would always be satisfied.

Theorem: Algorithm 3 never returns a NULL solution.

Lemma: ∀u ∈ G, the set N(u, k) satisfies the constraint:

|{N(u, k)}| = |{V \ {v | ∀v tv = tu}}| (3)

Proof: A node v ∈ N(u, k), iff ∃ a path of length k − 1 that

ends at v and does not include tu. The total number of k− 1
length paths stored at v that do not include tu is K−2Ck−2.

Therefore, Eq. 3 would hold if:

K−2Ck−2 ≥ 1 ∀k (4)

Eq. 4 holds if k ≤ K, which is always true. �

Algorithm 3 - Combinatorial Approach

for k = 2, 3, ...,K do

for all u ∈ V do

S = {φ}, Q = {φ}
for all v ∈ N(u, k) do

for all i ∈ ψ{v,k−1} do

S = S ∪ {C{v,k−1,ψ{v,k−1,i}} + w(v, u)}
Q = Q ∪ {P{v,k−1,ψ{v,k−1,i}} + (v, tv)}

end for

end for

Sort(S);Rank(Q);T
′

= {T \ tu};
ψ{u,k} ≡ Set of all (k-1) size subsets of T

′

for all i ∈ ψ{v,k} do

Compute P{u,k,ψ{u,k,i}} ∈ Q

Compute C{u,k,ψ{u,k,i}}

end for

end for

end for

for all v ∈ V do

S = S ∪ {C{v,K,ψ{v,K,1}} + w(v, s)}
Q = Q ∪ {P{v,K,ψ{v,K,1}} + (v, s)}

end for

2.8.2. Optimality of Algorithm 3
We now prove the optimality of Algorithm 3.

Theorem: Algorithm 3 always returns the optimal solution.
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Fig. 5. (a) Percentage of times that each algorithm returned optimal solution. (b) Percent convergence. (c) Percent convergence and optimal
solution. (d) Log-based execution time.

Proof: The optimality of Algorithm 3 can be proved if it could

be shown that:

• A sub-path of a shortest path is a shortest path itself, and

• Shortest sub-paths for any path length are available.

Lemma 1: If s − (v1, t1),−(v2, t2), ...,−(vk, tk) is the

shortest k-length path that ends at vk and involves tiers

{t1, t2, ..., tk−1}, then s−(v1, t1),−(v2, t2), ...,−(vk−1, tk−1)
is the shortest path that ends at vt−1 and involves tiers

{t1, t2, ..., tk−2}.

Proof: Since G = (V,E,w) has non-negative weights,

w : E → R
+, the triangular inequality implies that the

sub-path of a shortest path is the shortest sub-path itself [7].

Lemma 2: The best k − 1 length path ending at v, ∀v ∈ V

that includes any subset of k − 2 tiers is always available.

Proof by Induction: Assume Lemma 2 is true for paths

of length k − 2. We define Tk−3 as the set of all subsets

of length k − 3 tiers, and assume that Tk−3 is available at

every node. Now, consider a set of length k − 2 tiers Tk−2.

Let tk ∈ Tk−2, then Tk−2 \ tk ∈ Tk−3. Any node in tk will

have the best path of length k − 2 that includes Tk−2 \ tk.

Algorithm 3 accumulates all best paths including Tk−2 \ tk
tiers, and sorts them to find the best overall path involving

Tk−2. �

Algorithm Complexity: The number of K-length paths main-

tained at each node by Algorithm 3 is 2K−1. Recall that at each

node, Algorithm 3 maintains the best k − 1 length paths for

all combinations of tiers in order to compute k-length paths.

The number of paths maintained at each node by Algorithm

3 can therefore be given as:

K−1C0 + K−1C1 + ... + K−1CK−1 (5)

According to the Binomial theorem [6],

(x+ y)n =

n
∑

k

nCk x
n−k yk

(6)

Eq. 5 can be written in terms of the Binomial theorem (Eq. 6)

if we choose x = y = 1. Therefore, summing up Eq. 5

results in 2K−1. The complexity of Algorithm 3 for finding the

shortest path in Gv is O(n2K−1), and its overall complexity

for finding the shortest cycle in G is O(n22K−1).
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2.9 Empirical Analyses

To predict the behavior of our algorithms for applications

with different number of cameras, we now present simulation

experiments using a complete K-partite graph with 5 nodes

in each tier, and the number of tiers varying from 3 to 123.

For each set of tiers, we generated 1, 000 random graphs by

sampling edge weights from a normal distribution N (0, 1).
Fig. 5-a shows that Algorithm 1 and Algorithm 2 always return

an optimal solution for tiers ≤ 4 and ≤ 6 respectively. Fig. 5-

b, shows that bottleneck occurs for Algorithm 1 quite rapidly,

while Algorithm 2 converges more than half the time for tiers

≤ 8. Fig. 5-c highlights the greedy nature of Algorithm 1 and 2

which do not guarantee optimality even when they converge.

Algorithm 3 however consistently shows convergence and

optimality, but costs a reduction in efficiency (Fig. 5-d).

3 APPLICATION: PLAYER LOCALIZATION US-
ING MULTIPLE CAMERAS

As an application of our proposed algorithms, we present a

computational framework for localization of multiple soccer

players captured using three synchronized overlapping static

cameras. We captured two soccer data-sets on different soccer

fields in order to maximize the data variability, and to test the

generalizability of our framework more rigorously. We now

summarize the main attributes of these data-sets:

Data-set 1: For the first data-set, we erected 40 feet high

scaffolds, and mounted synchronized 1080P-HD cameras on

them. The soccer field dimensions for this setup were 204x121
feet. We used three static cameras to capture one half of this

field. The camera positions with respect to the field are shown

in Fig. 1-a. We captured different colors for the team jerseys

(red, yellow, blue, green, and white), types of soccer plays

(matches, drills), and lighting conditions (morning, afternoon,

and evening, all in natural lighting).

Data-set 2: For the second data-set, we used scissor lifts with

adjustable heights to mount synchronized 720P-HD cameras

on them. The soccer field dimensions for this setup were

344x225 feet. Similar to the first data-set, we used three static

cameras to capture one half of this field. We collected two

games with heights of the lifts set to 60 feet. One of these two

games was recorded at night under flood lights. We captured

a third game with the lifts set at about 25 feet. Furthermore,

for a third game, the position of camera 3 was changed such

that it was on the end line opposite to camera 2.

The main steps of our computational framework are illus-

trated in Fig. 6, and are explained below.

3.1 Background Removal

We begin by adaptively learning per-pixel Gaussian mixture

models for scene background. The probability of a background

pixel having value xn is given as:

p(xn|background) =

J
∑

j=1

wjζj (7)

3. Recall that here a node represents an observation in one of the cameras,
while a tier corresponds to a particular camera.
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View 1 View 2 View 3

View 2     1 OutputView 3     1

H23

H13

1

2
3

4

5
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7

1

2

34

5
6

7

1 2 3

4

5
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7

Fig. 7. Homographies from view 2 ← 1 and 3 ← 1 are used to project
views 2 and 3 onto view 1. As shadow pixels in view 1, and projected
view 2 and 3 overlap, they can be removed.

where ζj is the jth Gaussian component, and wj is its weight.

The term ζj is given as:

ζj(xn; µj ,Σj) =
1

(2π)D/2|Σj |1/2
e

−1

2
(x−µj)

JΣ−1

j
(x−µj) (8)

where µj and Σj are the mean and covariance of jth com-

ponent. These models are used for foreground extraction by

thresholding appearance likelihoods of scene pixels [21].

Note that there exists a trade-off between how often the

background appearance model is updated, and how often a

slowly or occasionally moving object is incorrectly assigned

to be part of the background. This tradeoff is particularly

important to us because players move with variable speeds

– in fact some players (especially the goalie) could remain

stationary for a few seconds, introducing error in our inference

regarding who is the second last defence player. To solve

this challenge, we maintain two background models – the

first to learn the appearance of the background over the next

t seconds, while the second (the one we learned over the

last t seconds) to discriminate between the background and

foreground objects. We swap these two background models

every t seconds. This mechanism allows us to maintain a

relatively current model of what the background looks like,

without misclassifying the slow-moving objects.

3.2 Shadow Removal

While there are numerous appearance-based methods for

shadow removal [30], they work best for relatively soft shad-

ows. In soccer games however, shadows can be quite strong.

We therefore rely on geometric constraints of our multi-camera

setup for robust shadow removal.

Consider Fig. 7, which illustrates that the shadow pixels

of the player are view invariant. Here invariance is brought

about by the fact that the shadow pixels are projected on the

common ground plane viewed by multiple cameras. Given the

homographies between the field image seen from multiple

views, we can transform the pixels of the soccer field as

Fig. 8. Points on the image plane of the three cameras used to estimate
the homography matrices between image planes 1 ← 2, 2 ← 3, and
3 ← 1. Note that all these points are co-planar. In practice, we found
that the more spread out these points were, the better was our estimate
of the homographies.
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Fig. 9. View dependent blob classification using multiple player tem-
plates. Only one of the three views is illustrated.

viewed by one camera to other cameras4. We use these

homographies to remove shadows by warping the extracted

foreground in one view onto another, and filtering out the

overlapping pixels [23] [24] [10].

For our setup, we begin by finding 3 × 3 planer homogra-

phies Hπa,πb
between each pair of views πa and πb, such that

for any point pair pa and pb in πa and πb, the following holds:

pa = Hπa,πb
· pb (9)

Recall that 2-D homographies have 8 degrees of freedom (9
entries in the Hπa,πb

with common scale factor). To determine

4. For K cameras observing a soccer field, we require K2 homographies.
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each Hπa,πb
we require at least 4 pairs of corresponding

points in respective view pairs [14]. In practice we use a 15
point correspondence across the three cameras to estimate the

mapping between their field regions. These points are shown

in Fig. 8, and were manually marked.

When a player’s blob in a particular view is occluded

by the projection of the blob of another player, or their

shadow in a different view, relying simply on these geometric

constraints might result in losing image regions belonging to

the occluded parts of the player in the considered view. To

avoid this challenge, we apply chromatic similarity constraints

of original and projected pixels before classifying them as

shadow versus non-shadow. The intuition here is that the

appearance similarity of shadow pixels across multiple views

is more than the similarity for non-shadow pixels.

3.3 Player Tracking in Individual Cameras

We track the player blobs using a particle filter based blob

tracker [25]. We represent the state of each player using

a multi-modal distribution, which is sampled by a set of

particles. To propagate the previous particle set to the next,

three steps are performed at each time-step:

Selection: A particle set s
′n
t : n = [1 → N ] is sampled from

prior density p(xt−1|zt−1) [25]. Here x and z are object-state

and observation vectors.

Prediction: Predicted states of particles snt : n = [1 → N ] are

generated from s
′n
t : n = [1 → N ] using the dynamical model.

The dynamics are applied to state parameters as:

s
n
t = s

′n
t + A · vt−1 + B · wt where wt ∼ N(0,Σ) (10)

Here vt−1 is the velocity vector obtained from the previous

steps, while A and B are matrices representing the determin-

istic and stochastic components of the dynamical model.

Measurement: We compute the probability of the state p(snt =
zt|xt) and normalize the probabilities of all particles so that

they sum to one:

πn
t =

p(zt|xt = snt )

ΣN
i=1p(zt|xt = sit)

(11)

These weights are used in the next frame for particle selection.

Based on the discrete approximation of p(zt|xt = snt ), different

estimates of the best state at time t can be devised. We use

the maximum likelihood state

x̂t = argmax
snt

p(zt|xt = s
n
t ) (12)

as the tracker output at time t (for more details, see [25]).

3.4 View Dependent Blob Classification

We classify the tracked blobs on a per-frame and per-view

basis. We pre-compute the hue and saturation histograms of

a few (10 − 15) player-templates of both teams as observed

from each view. During testing, we compute the hue and

saturation histograms for the detected blobs, and find their

Bhattacharyya distances from the player-templates of the cor-

responding view [3]. We classify each blob into offense or

defense based on the label of their nearest neighbor templates.

The pipeline of blob-classification for one particular view is

shown in Fig. 9.
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Fig. 10. Examples where the player was correctly extracted (top), and
where the lower body was erroneously removed (bottom).

3.5 Data Fusion for Player Localization

Ideally, one would expect that the homographies between pairs

of image planes, and between the image plane and the ground

to be precise enough to localize players’ positions accurately.

In practice however, this is not the case because when players

in one view are occluded by the projections of other players

or by their shadows in another view, parts of the players

might be removed. This problem is illustrated in Fig. 10.

We consider the bottom point of a blob as the location of a

player in the image plane, and the removal of players’ legs can

create significant error, particularly when players are gathered

close to each other. One way to solve this problem is to use

information from multiple cameras.

To use multiple cameras, we first need to transform players’

location observed in different views into a shared coordinate

system. We do this by projecting the base-point of all blobs

observed from each camera into the real-world coordinates

of the field (Fig. 6). These projected blobs are nodes in our

K-partite graph (Fig. 2-a). Edge-weights on node-pairs are

computed according to Eq. 13.

w(nb1 , nb2) =

{

0 if d(b1, b2) > dth
√

1−B(b1, b2) Otherwise
(13)

Here nb1 is the node for a particular blob b1, while B(b1, b2) is

the Bhattacharyya distance [3] between b1 and b2. The distance

threshold, dth is manually selected. For each cycle in this graph

(§ 2.1), we infer the player location by averaging the strongest

node-pair in the cycle.

As our three proposed algorithms perform equally for 3-

tiered graphs, each of them is applicable for our current setup.

In sports broadcast however, the number of cameras maybe

16 or more [11], making the analysis of how our algorithms

performs for larger numbers of cameras crucial.

4 RESULTS

We use our localization framework to visualize a virtual

offside line, highlight players in passive offside state (see

§ 4.2), and show the motion patterns of the players.

4.1 Offside Line Visualization

An important foul in soccer is the offside call, where an

offense player receives the ball while being behind the second

last defense player (SLD)5. We want to detect the SLD

5. We consider the defense goalie as the last defense player.
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(a) Yellow/Red, Afternoon, Match

(b) Green/Red, Morning, Drills (c) Blue/Yellow, Evening, Drills

(d) Red/White, Noon, Match (e) Red/Yellow, Morning, Drills

Fig. 11. Example frames from each of the five tested sets along with their attributes of color, type of play, and time of play.

Camera 1 Camera 2 Camera 3 Naive Fusion Proposed Fusion

Frames %P %R %A %P %R %A %P %R %A %P %R %A %P %R %A

Game 1 13,500 86.1 97.2 84.7 83.2 100 83.2 92.4 99.5 92.1 74.3 97.2 74.2 93.1 97.2 91.2

Game 2 11,500 62.1 99.1 61.8 81.5 100 81.5 88.1 100 88.1 73.9 100 73.9 95.6 99.3 95.2

Game 3 7,500 72.3 100 72.3 74.2 100 74.2 88.8 100 88.8 64.8 100 64.8 89.8 100 89.8

Game 4 13,500 77.8 99.4 78.4 79.7 97.8 78.7 92.3 99.6 92.1 78.1 99.2 77.7 94.2 98.0 92.8

Game 5 13,500 86.1 100 86.1 85.5 100 85.5 93.9 100 93.9 87.6 100 87.9 95.5 98.2 94.0

TABLE 1. Comparative Results for Offside Line Visualization (Set 1) - P, R and A denote precision, recall, and accuracy. We consider True
Positives (TP) as frames where the second last defence player (SLD) is present and correctly detected. False Negatives (FN) are frames where the
SLD is present but not detected. True Negatives (TN) are frames where the SLD is absent and not detected. False Positives (FP) are frames where
the SLD is present and detected incorrectly, or the SLD is absent but still detected. Precision is defined as TP/(TP+FP), recall as TP/(TP+FN), and
accuracy as (TP + TN)/(TP+TN+FP+FN).



  

11

(a) White/Black, Afternoon, Match.

(b) White/Blue, Night (Floodlights), Match (c) White/Red, Morning, Match

Fig. 12. Example frames from each of the three tested games for the second data-set along with their attributes of color, type of play, and time of
play. Note that game 2 was captured at night under flood-lights. Also, the image from game 3 shows the rapidly changing illumination conditions
right before a rain-storm when part of the field was shadowed by a cloud. Finally, note that the camera height in the third game is lower than that in
the first two games.

player, and to draw an offside line underneath him/her. We

now summarize our results on our two different data-sets. To

the best of our knowledge, this is the most thorough test of

automatic offside-line visualization for soccer games to date.

Results on Data-set 1: For the first data-set, we tested our

framework on around 60, 000 frames (2,000 sec.) for five dif-

ferent illumination conditions, play types, and teams’ clothing

colors (see Fig. 11). We compared the performance of our

proposed system with that of finding the SLD player in each

camera individually and with naively fusing this information

by taking the average of those locations (see Table 1).

Our fusion mechanism outperforms the other approaches

with an average accuracy of 92.6%. The naive fusion produces

an average accuracy of 75.7%. The average accuracy across

all three individual cameras over all five sets is 82.7%. Note

that the average accuracy of camera 3 (91%) is quite close

to the accuracy of our proposed fusion mechanism (93%).

While these results do imply that the accuracy achievable

from a single camera can be comparable to that obtained

from our proposed mechanism, knowing the optimal camera

position a priori to get that high level of accuracy from a

single camera is generally quite difficult. We therefore believe

that the expected individual accuracy of all three cameras

(83%) is a more accurate estimate of the measure of accuracy

Data-set 2

Frames %P %R %A

Game 1 7,792 84.6 96.7 84.8

Game 2 8,943 94.0 99.2 94.4

Game 3 4,755 84.5 75.4 66.2

TABLE 2. Data set 2: Results for Offside Line Visualization - P, R and
A denote precision, recall, and accuracy.

of individual cameras, and that fusing information using our

mechanism to achieve a more robust inference is indeed a

valuable solution.

Results on Data-set 2: For the second data-set, we tested

our framework on around 22, 000 frames (367 sec.) for three

different illumination conditions, and teams’ clothing colors

(see Fig. 12). Recall that the dimensions of the soccer field

used in the second data-set are more than twice that used in

the first data-set (§ 3). Moreover, as noted in § 3, the resolution

of the cameras in data-set 2 was only half of that used in data-

set 1 (720P as opposed to 1080P). This additional field size

and lower camera resolution imply that the players in data-set

2 generally occupy fewer pixels, making the task of player

tracking more challenging.

The accuracy, precision, and recall rates of our framework

on data-set 2 are summarized in Table 2. Our overall accuracy
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Fig. 13. The average time taken for processing different steps for all
three cameras is 0.413 seconds.

for the 3 games is around 82%. Note however that our average

accuracy for the first two games is around 90% (85% and 94%
individually), while the accuracy for the third game is around

66%. The third game is particularly challenging because it

was recorded right before a rain storm, and the illumination

conditions were varying very rapidly between sunny, very

cloudy and dark. Due to this unusually rapid change in the

illumination conditions, the process of background subtraction

was extremely challenging. Furthermore, the height of the

cameras for the third game was set to only around 25 feet

(as opposed to 60 feet for the first two games). This lower

camera height resulted in more pronounced player occlusion,

which made the task of player tracking more challenging.

Run-Time Analysis: We performed a run-time analysis of

our framework (see Fig. 13). The average time to process

images from all three cameras is roughly 0.4 seconds. These

results were achieved on a 4-core machine. For background

subtraction and shadow removal, we used multi-threading

where individual threads were generated for each of the three

cameras. We used the optimized Intel integrated performance

primitive library to further enhance our code performance.

As can be observed in Fig. 13, the background subtraction

algorithm requires the most time because we are doing per-

pixel learning of Gaussian Mixture models for the appearance

of the scene. Using the GPU instead of the CPU would reduce

this computational time. Our initial experiments for using the

GPU show a five-fold performance gain. The second most

time consuming step is shadow removal. The reason for this

latency is that because we currently have three cameras, we

have to project all pixels from one image to another for six

times. Note that the rate of increase in the number of times we

have to project pixels of one image to all other cameras is sub-

quadratic in the number of cameras. While this is encouraging

from a complexity perspective, we believe there is a need to

improve the time taken for each projection of one image plane

onto another. Because plane projections mostly require matrix

arithmetics, we believe this process could be ported to GPU

(a)

+

+

+
+D2 (SLD)

D4
D3

+
O2

+
D1

(b)

Fig. 14. Highlighting offence player(s) in passive offside state. Player O1

is behind the SLD, while not being directly involved in the play.

based processing in a straight forward way. We plan to explore

this direction in the future.

4.2 Passive Offside Visualization

Offence players can be in an offside state either actively

(when they get directly involved in the play while being

behind the SLD), or passively (when they are present behind

the SLD and not directly involved in the play). Fig. 14 is

a graphic generated using our framework which shows an

example where the offense player in a passive offside state is

automatically highlighted. Visualizations such as these can be

used in assisting viewers to predict whether or not an offside

foul is likely to take place.

4.3 Visualizing Players′ Movement Flow

Broadcast of soccer games only shows an instantaneous repre-

sentation of the sport, with no visual record of what happened

previously. There are two important challenges in having a

lapsed representation of a game. First, automatic detection of

players’ actions is hard. Second, summarizing these actions

in an informative manner is non-obvious. To this end, we

consider players’ movement as a basic representation of the

state of a game [4], and use our framework to visualize

development of a game over a window of time (see Fig. 15).

Visualizing such holistic movements of players accumulated

over time can potentially help viewers’ understanding of how

a game is progressing, identifying the various defence and

offence strategies being used, and predicting the subsequent

game-plan for each of the teams.
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t

Defense Flow

Fig. 15. Players’ motion flow accumulated over the last 15 seconds. Red
denotes the latest measurements while blue shows the earliest. Notice
that the figure depicts that in the last 15 seconds of the game there was
an attack from the offense team from the left wing (a lot of red in the
offense image inside the D-area). Similarly, the figure shows that the
defense team made an attempt to counteract the offense team’s move
(notice the red color in similar area of the defense and offense images).

5 CONCLUSIONS

We have presented a novel modeling and search framework

for fusing evidence from multiple information sources as find-

ing minimum weight K-length cycles in complete K-partite

graphs. As an application of the proposed algorithm-class,

we have presented a framework for soccer player localization

using multiple synchronized static cameras. We have used this

fused information to generate sports visualizations, including

the virtual offside line, highlighting players in passive offside

state, and showing players’ accumulated motion patterns. We

have demonstrated the robustness of our framework by testing

it on a large data-set of approximately 82, 000 frames of soccer

footage captured over eight different illumination conditions,

play types, team attire, field sizes, and camera positions.

Some of our conclusions based on our results are given below.

• Representing correspondence among different observa-

tions of a particular player as a weighted cycle in a

complete K-partite graph is sufficient to accurately fuse

information from multiple sources. Note that there exist

more strict representations of correspondence (e.g., a

clique), and a cycle is a somewhat greedy correspondence

representation. For our setting however, our empirical

results show that representing correspondence in a greedy

manner still results in accurate data fusion overcoming

the challenges of occlusions and varying illumination.

• Utilizing a mid-level data representation (player locations

in each view) to fuse information from multiple sources

(cameras) works reasonably accurately for overcoming

the problem of player occlusion in tracking.

• In this work have assumed that the playing field is a

plane. This assumption should be made with caution, and

it might be useful to treat larger fields in a by-part manner,

considering each part as a separate planer surface.

• Maintaining alternate background appearance models can

help characterize the background scenes accurately, par-

ticularly if the illumination conditions in the scene change

rapidly, or if different foreground objects move at signif-

icantly different speeds.

• Using the view invariance property of shadow pixels to

remove them can work quite well, particularly when the

shadows are hard and cannot be removed using purely

illumination based methods.

• Employing Bhattacharyya distance over hue and satura-

tion values as a similarity measure for player blob clas-

sification can result in quite accurate blob classification.

6 CURRENT LIMITATIONS AND FUTURE WORK

There are a few research directions we would like to pursue

in the future.

• Currently we perform search for each frame independent

of the results from previous frames. In future work,

we want to explore incorporating temporal dependency

between observations over time to initialize our search

procedure in each frame. This would help us improve

the search efficiency and accuracy of our framework.

• We are currently modeling correspondences as cycles in

complete K-partite graphs. In the future we would like to

explore alternate models of correspondence (e.g., paths,

and cliques) to see what impact do they have on the

search optimality versus efficiency tradeoff.

• We want to test our framework using a larger number of

cameras. This experiment would give us a better sense

of how many cameras are sufficient for our framework to

perform well for different sized fields.

• An important question to explore is the required number

of cameras as a function of camera height, and the

impact this number has on the processing speed of our

framework.

• We also want to perform a thorough quantitative analysis

of the efficiency gain for using GPUs instead of CPUs.

• A qualitative factor for the usability of our framework is

to analyze how frequently is our system able to actually

perform correctly in cases where an expert believes there

is something interesting taking place. This would provide

a better understanding of the usefulness of our framework

in situations that really matter to the viewers.

• We would like to use our framework for a variety of

sports where the context of the game usually changes

continuously without discrete plays. Other examples of

such sports besides soccer include ice/field hockey, and

basketball.

• Finally, as our proposed set of algorithms are quite

general, we want to apply them on a wider set of

correspondence finding problems. In particular, we would

like to test our algorithms on the problems of feature

matching for depth estimation, trajectory matching using

multiple cameras, and motion capture reconstruction.
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Highlights:

• K-partite graph is a useful model for multi-source matching problems.

• It is useful to have mid-level representations to fuse data from multiple sources.

• Alternate background models can help characterize the background scenes accurately.

• Shadow pixels can be accurately removed by using their planner view-invariance.

• Appearance based Bhattacharyya distance is a robust blob-similarity measure.
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