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ABSTRACT

In this paper, we introduce for the first time the notion of directed hypergraphs in image processing and
particularly image segmentation. We give a formulation of a random walk in a directed hypergraph that
serves as a basis to a semi-supervised image segmentation procedure that is configured as a machine
learning problem, where a few sample pixels are used to estimate the labels of the unlabeled ones. A
directed hypergraph model is proposed to represent the image content, and the directed random walk
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1. Introduction

Graph-based methods have played an important role in Com-
puter Vision and Pattern Recognition (CVPR) due to their ability
to represent relational patterns [1,2]. However, in many situations,
a graph-based representation is incomplete, as only binary rela-
tions between nodes can be represented through graph edges. An
extension is provided by hypergraphs [3,4], where each edge is a
subset of the set of nodes. Hence higher-order relations between
nodes can be directly modeled in a hypergraph, by the means of
hyperedges. Since such a mode of representation is closer to the
human visual grouping system, hypergraphs have been shown as
more effective than graphs to solve many problems in applications
of practical interest that includes VLSI design and partitioning [5],
parallel scientific computing [6], database design [7] or categorical
data clustering [8]. The introduction of hypergraphs in the image
processing domain dates back to Bretto et al. [9] and has recently
received an increasing attention [10-15]. In particular, hypergraph
representations based on the INH (Image Neighborhood Hyper-
graph) model have achieved competitive results in unsupervised
image segmentation [15-17] that outperform graph-based meth-
ods. Recently, Ding et al. [14,18] introduced new image hypergraph
models and exploited them in an semi-supervised segmentation
framework that relies on a transductive setting given by Zhou's
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formulation allows to compute a transition matrix that can be exploited in a simple iterative semi-super-
vised segmentation process. Experiments over the Microsoft GrabCut dataset have achieved results that
demonstrated the relevance of introducing directionality in hypergraphs for computer vision problems.

random walk formulation on a hypergraph [8] that generalizes
the graph random walk formulation.

All the above methods are based on undirected hypergraph
models. While the notion of directionality (by the concept of a di-
rected graph) has been developed for a large number of years in the
graph theory, a generalization to the hypergraph case has been
slow to appear and a standard mathematically formal definition
is yet to be defined. First attempts for defining directed hyper-
graphs [19,20] considered a hyperarc (a generalization of a directed
graph edge) as a single vertex connecting a set of vertices. In this
paper we use a more complete generalization by defining a hyper-
arc as a connection between two sets of vertices [4]. In addition,
the use of directed hypergraphs for practical applications remains
marginal and only few papers report using directed hypergraphs
for applications such as relational databases [20], natural language
parsing [21], or for modeling high-level processes such as bio-
chemical [22], wireless [23,24] or social networks [25]. The main
goal of this paper is to introduce the notion of directed hyper-
graphs in the computer vision domain, and judge its relevance
especially compared to simple undirected hypergraphs. For this
purpose, we followed the idea of directed graphs that were re-
cently introduced in image segmentation [26-28]. Few previous
works that involve some image analysis report using directed
hypergraphs, but only to model high-level relationships between
visual elements, such as video events [29] or pre-segmented cells
motion [30]. None of these representations are directly linked to
the image analysis and processing methods or make use of the
low-level image data. To the best of our knowledge, and unlike
undirected hypergraphs, no image processing technique that
involve directed hypergraphs and no directed hypergraph-based



representation of image data has been investigated. This paper has
the objective to investigate these two aspects and show that direc-
ted hypergraphs can be useful at image data representation.

Image segmentation is a low-level image analysis process that
aims at partitioning an image into a number of disjoint regions,
such that the visual features are coherent among the pixels of a
single region. Although humans can easily extract meaningful seg-
ments from an image, this task remains difficult at computer level,
where unsupervised segmentation algorithms are still unable to
produce satisfactory results. In fact, fully automated segmentation
is known to be an ill-posed problem due to the absence of a clear
definition of a semantically meaningful segmentation, and the dif-
ficulty to judge its objective quality. Prior information about the
image to segment should then be provided to make the segmenta-
tion problem well-posed. Such information can be supplied by the
user through a set of representative pixels that labels the existing
regions in the image. This issue has been addressed as interactive
segmentation, and has been successfully used for foreground
extraction in intelligent scissors [31], GrabCut [32], or interactive
graph cuts [27].

Recent directions in this field rely on graph-based machine
learning [33-36]. The main idea is to model the image data by
the means of an affinity graph where each edge encodes the simi-
larity of two neighboring pixels in the image. The segmentation
problem is then formulated as an energy function minimization,
where the target function to estimate is smooth with respect to
the underlying graph structure. The graph is represented by a sym-
metric affinity matrix where each entry models the penalty if the
two corresponding pixels belong to separated regions in the seg-
mentation. Segmentation becomes then a labeling problem than
can be solved by graph-based learning methods. Such methods in-
clude harmonic energy minimization [37], graph min-cuts [27,38],
random walks [33], transduction by Laplacian regularization [35],
geodesics [39], or watersheds [36].

Traditional variational methods for interactive (or semi-super-
vised) segmentation such as active contours [40] approach the seg-
mentation problem by minimizing energy functions that favor
alignment of the object boundaries with regions of high intensity
gradient. Later, Vasilevskiy et al. [26] noted that the direction of
the gradient contains valuable information that can improve the
segmentation. This concept has been translated to discrete optimi-
zation by using graphs with directed edges (by opposition to the
above methods that relies on undirected symmetric graphs),
resulting in asymmetric affinity matrices. Directed graphs for
semi-supervised segmentation have been used in min-cut [27]
and random walk [28] algorithms. In practice, asymmetric penal-
ties can help at segmenting thin elongated structures and can fur-
ther improve the segmentation results in regions of low contrast.

As noted above, and following the idea in [27,28], the objective
of this paper is to investigate the reliability of adding directional
information in hypergraph-based models and to judge the rele-
vance of using directed hypergraphs as a means for image data rep-
resentation. Consequently, we introduce the notion of directed
hypergraphs in computer vision problems by proposing a directed
version of the INH (Image Neighborhood Hypergraph) model. It is
important to note that this article is, to the best of our knowledge,
the first attempt to use directed hypergraphs in image analysis as a
low-level image data representation tool. A first application of this
DINH (Directed Image Neighborhood Hypergraph) representation
is developed in terms of semi-supervised image segmentation,
where the labels of all pixels are predicted according to the labels
of pre-defined seed pixels. The problem is expressed in terms of
Markov random walks, and a solution is found by estimating the
probability that a random walk, starting at an unlabeled pixel, will
first hit a given seed pixel. The random walk should be designed
with respect to the underlying directed hypergraph structure,

and by analogy with the undirected case, we give a formulation
of the transition matrix of a random walk in a directed hypergraph.
A theoretical solution to the hypergraph-learning process is given
by considering the random walk as an absorbing Markov chain
[41]. The transition matrix also served as a basis to design a simple
iterative algorithm for semi-supervised segmentation based on la-
bel propagation, which solution converges to the theoretical one.
Experiments over the GrabCut [32] dataset achieved interesting re-
sults, particularly compared to the same algorithm with transition
matrices obtained from graphs and undirected hypergraphs. These
results essentially demonstrate that the introduction of directed
hypergraphs is relevant in the computer vision domain, and that
they provide a richer model of representation than undirected
hypergraphs and simple graphs.

The remainder of this paper is organized as follows: we first
present some preliminary definitions for undirected and directed
hypergraphs (Section 2). We then give our formulation of a random
walk in a directed hypergraph as well as its transition matrix (Sec-
tion 3), and describe our proposed directed hypergraph model to
represent the content of an image (Section 4). We then present
the theoretical solution to the learning process on directed hyper-
graphs in terms of random walks, and the iterative label propaga-
tion procedure used to approach this solution (Section 5). Finally,
some experimental results are given and discussed (Section 6).

2. Preliminary definitions

The general undirected hypergraph theory [3] is well-known in
the field of mathematics, and we refer the reader to [3,4] for more
details and definitions. We will here focus on the definition of di-
rected hypergraphs.

A directed hypergraph (dirhypergraph) is an ordered pair:

H=(V;E={e:icl}),

where Vis a finite set ofverticesﬂamd E is a set of hyperarcs with in-
dex set I = {1,2,...,M}, M = | E|. Each hyperarc ¢ is written

o= (e =iy =(ie))

The set e} is the set of vertices ofe—f and the set e; is the set of
vertices of ‘e;. The vertices of € are denoted by e; = ¢/ Ue; and
E = {e; :i € I}. The hypergraph H = (V;E) is the underlying hyper-
graph of the dirhypergraph H= (V; f). The element e—f is called
the tail of the hyperarc ¢e;, whereas ? is its head. A limb is either
a head or a tail. We do not allow e; = () or e; = () and e; N e; #( for
all i € I. The index i stored in each limb of a hyperarc allows to dis-
tinguish from two hyperarcs that have the same set of vertices
either in its head or in its tail.

A dirhypergraph H= (V; f) can be represented by two inci-
dence matrices, the positive (or outer) incidence matrix *, and
the negative (or inner) incidence matrix +_, representing respec-
tively the tails and the heads of the hyperarcs. Entries of . are gi-
ven by (H.); = h (v, e)=1ifv; e e and 0 otherwise. Entries of
H_ are given by (H_); =h (v;, g)=1ifv; € e; and 0 otherwise.
We will consider that any hyperarc e can be weighted by a positive
function w(e) (called the weight of hyperarc €) representing the
importance of the hyperarc in the dirhypergraph structure, and
we will note W the diagonal matrix containing the hyperarc
weights. The positive (or outer) degree of a vertex »; € V is given
by d*(v;) = Z? fw(?j)fﬁ(vi, /). The negative (or inner) degree

j €
of v is defined as d () = Z? fw(?j)h’(vi, e). Let D, and
jE
D, be the diagonal matrices containing respectively the positive



and negative degrees of the vertices. We define the positive and
negative degrees of a hyperarc ¢ by 4"(ej)=le/| and
6 (e) = lej|. Let De+ and D.- be the diagonal matrices containing
the positive and negative degrees of the hyperarcs. The transpose

of a matrix (or vector) A will be noted A”. _ _

A directed path or hyperpath from x toy in H = (V; E) is a se-
quence Pyy = (X = vq,€1,02,€2,V3, ..., Ui, €, V1 =Y) such that
x=v1eef, y=v1 ce; and v; e Nef fori > 2.

3. Random walks in directed hypergraphs
3.1. Introduction to Markov random walks

Arandomwalk|[33,42,43]is a particular case of a Markov random
chain, arandom process that consists on visiting a certain number of
locations (or states) by taking random steps. Consider a starting
location u. Then the next location visited by the random walk is ta-
ken randomly (following a given probability law) among all the
neighbors of u. A random walk of length t is then a sequence of
t+1 locations {vp, v1,...,7:} with vy =u the starting location
and v, = vtheending locatlon The random walks are useful in a ma-
chine learning manner, where the different locations are data points
to classify using a few sample seed points. The learning process can
be interpreted by the following assumption: given a random walk
starting at an unlabeled location, what is the probability that it first
reaches each of the seed points? The final label of the starting loca-
tion is then taken from the ending seed point of the random walk
with the highest probability. In a random walk each step is taken
independently from the previous steps, and consequently its behav-
ior is completely determined by a transition probability matrix P
where entry Pj is the probability for a random walk at location ;
to “jump” to the location v;. The “t-step” probabilities (representing
the probabilities that a random walk starting at location »; will reach
the location ; after exactly t steps) are simply given by the tth power
of the transition matrix P".

When the random walk is defined on a graph [33,43] the tran-
sition matrix is computed with respect to the underlying graph
structure. In practice the random walk matrix is given by
P = D7'A, where D denotes the diagonal matrix containing the ver-
tex degrees and A is the graph adjacency matrix. It has been shown
in many occasions that random walks on graphs have a strong con-
nection with usual electric networks problems [33,42,44]. In this
paper we are interested in designing such a learning process on a
directed hypergraph. The next sections will give a formulation of
the transition matrix associated to a natural random walk in such
a directed hypergraph.

3.2. Random walks in undirected hypergraphs

Following the concepts introduced by Zhou [8], we can associ-
ate a natural random walk to an undirected hypergraph with the
following transition rule: given the current position u € V, we first
choose a hyperedge e € E over all the hyperedges incident to u with
a probability proportional to w(e). We then choose a vertex
v € V, v#u uniformly at random. With the definitions given by
Zhou in [8], the probability p(u, v) associated to that transition rule
is

w(e . (1)
=2 ) o)

Obviously, a nonzero transition probability between u and v ex-
ists only if the two vertices are linked by at least one hyperedge
(otherwise h(u, e) or h(v,e) equals 0). The normalization by the de-
grees of u and e is motivated by, respectively, that a vertex with a

large degree has a smaller chance to choose a distinct hyperedge
for the transition, and that the transition between u and an inci-
dent vertex v is chosen uniformly at random. The transition matrix
P of the random walk is then defined by P = D,'HWD;'H".

3.3. Generalization to the directed case

At that time, very little attention has been dedicated to the
study of random walks on hypergraphs, and especially on direc-
ted hypergraphs. A first tentative to define a random walk on a
directed hypergraph was reported in [45], but this definition
comes from the interpretation of a directed hypergraph as a
bipartite graph, as we propose a direct formulation. More impor-
tantly, only the undirected case is further considered in [45] and
consequently the application of a random walk on a directed
hypergraph is not investigated. In [46], the authors propose the
extension of a specific random walk named loop-erased random
walk, but only consider directed hypergraphs where the tail is
reduced as a single vertex. Consequently, we propose here a for-
mal definition of a random walk on a directed hypergraph, as
well as its associated transition matrix.

By analogy with the random walks defined in [8] for undirected
h pergraphs we associate a random walk to a dirhypergraph
H = (V; E) that has the following natural transmon rule Given
the current position u € V, we choose a hyperarc € e E such that
u € et with a probability proportional to w(€). If we consider that
a transition can only be made from a tail to a head of a hyperarc
(following the definition a directed hyperpath given above), then
we choose a vertex v € e~ uniformly at random. The probability
p(u, v) associated to that transition rule can be formulated as

Zw(ah (u,€) h’(v,é). )

p(u, Z)) = d+( ) 57(6)

écE
With this formulation, a nonzero transition probability between
u and vexists only if 3¢ such that u € e* and v € e~, which follows
the intuitive idea that a transition can only be done in the direction
given by a hyperarc. The probability is normalized by the outer de-
gree of u to represent the probability of choosing a distinct hyper-
arc between those which contain u in their tails. The inner degree
of the hyperarc @ is also introduced to take into account that a ver-
tex is chosen uniformly at random in the head of . In matrix nota-
tion, the transition matrix P of the directed random walk is defined
by

P=D,'H,WD,'H". 3)

Proposition 1. The matrix P given by Eq. (3) is stochastic, i.e.
Vi,j,py = 0 and Vi,>7;, p; = 1, and is then suitable for the definition
of a random walk.

Proof. It is easy to verify that : forall u,v € V, p(u,v) = 0. Now:
“(u,€) h (v,€)
p(u,v) =
2P0 =22 w5 @
"(u,e v, e
BCE 725 2
ecE veV

h™(u, (v, h
=@ di?u)a e 2@

ecE

B h*(u, é) B
=2 W@ YetW(@h (u.e) Lo

ecE



4. A directed hypergraph image model

The INH (Image Neighborhood Hypergraph) model has been
found very effective at representing the image content [11,15]. In
this section we present an improvement of the INH that takes into
account directed relationships between pixels.

4.1. The INH (Image Neighborhood Hypergraph) representation

Let]: V C 7®>—F C 7" be an image. Elements of V are the collec-
tion of the image pixels, and elements of F are the visual features
associated to each pixel. A distance d on V defines a grid (a con-
nected, regular graph, without both loop and multi-edge, associ-
ated with a regular lattice L of R"). In this contribution, we will
be concerned only with 8-connected grids defined by the distance
d(v,v) =max{|x — x|, [y—y'|}, where (x,y) and (x',y’) denote
respectively the spatial coordinates of v and ¢’ on the grid. Thus,
we define the g-neighborhood of a pixel v € V by:

Iy(v) ={v e Vid(v,v') < p}. (4)

Let d' be a distance measure on F, we have a neighborhood rela-
tion on an image defined for each pixel v by:

Fip(v) = {v € Iy(v)|d (F(v). F(v)) < 2} )

Here 8 and /4 are real values, called respectively spatial threshold
and feature threshold. Thanks to this neighborhood relation, to each
image we can associate a hypergraph called Image Neighborhood
Hypergraph (INH) [47]:

Hr,y = (Vi({2} UT54(2) yev)- (6)

Each pixel v in the image generates a distinct hyperedge e(v),
and v is called the center of e(v). In this work, the feature distance
between two pixels will be computed as
d'(F(v),F(v") = |I(v) — I(¢)|, where I(v) denotes the gray level of
pixel . The choice of the thresholds g and 4 will be discussed in
Section 6.

4.2. The Directed INH (DINH) model

In directed graphs (digraphs) for image representation, two
neighboring pixels x and y in the image are linked by two distinct
directed edges (arcs) (x,y) and (y, x). If the same weight is assigned
to both arcs than the digraph reduces to an undirected graph. It
was then suggested [27,28] to use two different weighting func-
tions w; and w, such that the penalty assigned to an arc (x,y)
should be equal to wy((x,y)) if I(x) <I(y), and to wy((x,y)) if
I(x) = I(y), leading to an asymmetric adjacency matrix. We will
follow that concept by building two different sets of hyperarcs in
our following Directed Image Neighborhood Hypergraph (DINH)
model. For an image I with set of pixels V, each pixel v; € V will
generate two distinct hyperarcs e; and e5:

er(v) = (ef (v1):e7 (v1)),
er () = ({wi} UV € Tip(ui)ll(v)) < I(v)}), (7)
er(v) = ({v/ € Toyp(w)I(v) > I(v)}),

e (vi) = (5 (vi)ie; (v),
e;(vi) = ({viy U {V € Tip(m)ll(V') > I(v1)}), (8)
e;(v) = ({/ € Thy(w)ll(v) <I(y)}).

Since the center pixel #; is in each tail of both hyperarcs, it will
exist a nonzero transition probability between »; and every pixel in
its I'; ; neighborhood. The presence of the two types of hyperarc is
necessary to allow a transition from regions of low intensity to re-
gions of high intensity (this transition is represented by the hyper-

arc ey), and also a transition from regions of high intensity to
regions of low intensity (represented by the hyperarc e;). Finally,
the Directed Image Neighborhood Hypergraph (DINH) associated
to an image can be computed as:

HV) = (ViE = @(2))yey U @ (0))er). 9)

4.3. Choice of hyperarc weights

With the definition of the hyperarcs of the DINH model given by
Egs. (7) and (8), assigning the same weights to e; and & will lead to
a symmetric transition matrix associated to the random walk for-
mulation (2), equivalent to a transition matrix obtained from an
INH model, up to a factor 2. Consequently, a hyperarc €(v) centered
at a pixel v will be weighted by the following weighting function
w:

:F —R",

é(v) = (et (v);e (v)) —exp(d'(v, V)yee (v))- (10)

s

In other words, each hyperarc will be weighted by the exponen-
tial of the average value of the feature distance (defined in Sec-
tion 4.1) between the center pixel v (in the tail) and every pixel
in the head of the hyperarc. We should note that this definition fa-
vors transitions between pixels that are close according to the gi-
ven feature distance. By definition, the tails of e; and e, centered
at a pixel v are different, and so are the weights associated to them.
Consequently, the transition matrix of the directed random walk
will be asymmetric.

5. Segmentation by semi-supervised learning

We consider the image segmentation problem in a transductive
setting, in which a set of known labels of some pixels (called seeds)
are used to predict the labels for all other pixels. More mathemat-
ically, let us reorganize  the image  pixels as
V={v1,va,...,0L,...,vn}, such that V| = {v,~}fz1 is the labeled
pixels set and Vy = {#;}}, , is the unlabeled pixels set. Note
L={1,...,1} (with I <L) the set containing the labels, and
y:V — £ the function associating to each pixel »; € V its label
y(v;) in the final segmentation. Our goal is to estimate y(v;) for
each unlabeled pixel v;.

In our framework, the pixels set is taken as the vertex set of the
directed hypergraph defined by Eq. (9), and let P be the transition
matrix of the random walk defined on this dirhypergraph by Eq.
(3). Let f® : V — [0, 1] be the function associating to each pixel z;
its membership f¥ (2;) to the label k, i.e. the probability for the pix-
el »; to belong to label k in the final segmentation. If 7; € V, is a la-
beled pixel, we set f®(z;) = 1 if the (known) label of v; is k, and 0
otherwise. We want to estimate the value of f¥) for each unlabeled
pixel v;, so its label y(#;) will be taken as the k which maximizes
FO(w3).

With our random walk interpretation of this learning process,
f%(v;) will be calculated as the probability that a random walk, gi-
ven by the transition matrix P and starting at location v;, will first
reach a labeled location belonging to the label k, before hitting a
seed location with a different label. It is not difficult to see that
simulating such a random walk and see what seeded point it
reaches first may be impractical, because the number of unlabeled
pixels is in practice considerably higher than the number of seed
pixels. In addition, it is subject to random biases, since it is possible
for a random walk to take a direction it has a small probability to
take, and then be trapped in a sub-optimal solution. This section
presents two ways of resolving this problem by estimating the



probabilities f®, one theoretical and one more practical, and the
summary of the segmentation algorithm.

5.1. Random walks as absorbing Markov random chains

The solution of the learning process in terms of random walk is
to consider the latter as an absorbing Markov chain. More details
about the absorbing Markov chains theory can be found in [41].
In an absorbing Markov chain (given by its transition matrix P'),
some of the locations are absorbing states that can be considered
as traps, where the random walk ends when it reaches one of those
absorbing states. More formally, P; = 1 and P;; = 0Yj when ; is an
absorbing state. Then if we pose all the seed labeled locations as
absorbing states, and if we assume that every random walk start-
ing at a given unlabeled location (which is called a transient state
in terms of Markov random chains) can reach at least one absorb-
ing state (not necessary after just one step), then the random walk
is an absorbing Markov chain, with some interesting properties
[42]. Thanks to the reorganization of the pixels set by grouping
seed and unlabeled pixels together, we can split the transition ma-
trix P of the Markov chain in the following canonical form:

:I:PLL PLUj|
PUL PUU '

where Py; and Pyy represent the submatrices of P restricted to the
probabilities between respectively the unlabeled and seed loca-
tions, and between all the unlabeled locations. P;; and P,y are the
submatrices corresponding to the transition probabilities between,
respectively, all the seed locations, and the seed and unlabeled loca-
tions. Since the seed pixels are considered as absorbing states, Pj;
must reduce to the L x L identity matrix I; and Py to 0, a matrix
with all entries equal to 0. It is not difficult to see that this is not
the case with our formulation of the transition matrix P of a random
walk in a directed hypergraph (see Eq. (3)). In fact, this formulation
does not depend on the seeds, which will be placed after the con-
struction of P. It is not a problem, because the submatrices P
and Py are not useful for the learning process (since we do not have
to start a random walk from already labeled locations) and do not
intervene in the following. Therefore, P;; and Py can easily be fixed
to, respectively, I; and 0 after placing the seeds.

The matrix N = (Iy — PUU)’I is called the fundamental matrix for
the absorbing chain given by P (in this case Iy denotes the identity
matrix of size N — L x N — L). It can be found in [41] that the matrix
(Iy — Pyy) is invertible and thus the matrix N exists. The entry Nj
can be interpreted as the expected number of times that a random
walk starting at »; will pass through »; before being absorbed by a
seed location. Then the vector t = N1 (where 1 is a column vector
of all 1's) gives the expected number of steps before absorption for
each starting state. Consequently, let B be the N x L matrix which
entry By gives the probability that a random walk starting at »; will
be absorbed by the absorbing state z;. Then B is calculated by:

B = NPy, = (Iy — Pw) 'Pu.. (11)

This can be interpreted as follows: to get the probability of
starting at »; and ending up a given absorbing state z;, we add
up the probabilities of going to z; from all the transient states,
weighted by the number of times we expect to be in those tran-
sient states starting from v;.

Now that we have the absorption probabilities from each start-
ing state, we have to estimate the label probabilities f®. Let
£9 = (F9(21),....fO(v),....f¥(vy))" be the vector containing
the label memberships of all pixels for the label k. As well as the
matrix P, we can split f¥ as:

£ = () 6))

In full generality, the probability U;, that a random walk P start-
ing at v; will reach the absorbing state v, is given by the solution
to the system of equations [41]

Uin = Y _PiUjn. (12)
vieV

Since the value f®(v;) is interpreted as the probability that a

random walk starting at »; will first reach the location belonging

to the label k, it can be calculated as the sum of the probabilities

of reaching each absorbing state labeled with k. If we note V the
set of all labeled pixels of label k, thus we have:

fO) =Y Um= > Piljm=> Pj > _ U,

vmeVy vmeVyvjeV vieV  vmeVy
k
= S Py (). (13)
vieV

We can clearly see that f¥(z;) is the harmonic average between
all the values of f®¥ among the neighborhood of u; because
>-;Pi = 1. Consequently, f® is a harmonic function with domain
the state space of the absorbing Markov chain P. If we consider
the absorbing states (i.e. the seed locations) of P as the boundaries
of the harmonic function f¥, then the solution to the learning pro-
cess is the same as the one to the combinatorial Dirichlet problem
[42,44], which is to find a harmonic function subject to its bound-
ary values. Those values are known, because obviously we set
f® () =1 if the label of the seed pixel v; is k, and 0 otherwise.
The solution to the Dirichlet problem can be expressed in terms
of absorbing Markov chains [42], since f® is harmonic for P means
that Pf® = £* which implies that

vn, P'f0 = f0, (14)

where P" is the nth power of matrix P. It has been shown [41] that
the nth power of P will approach a matrix of the form

P“—{I 0}
B o)

so we can rewrite Eq. (14) as follows:

f(k) _ Pocf(k)7

K K
£ 11 o7[f”
fgﬂ B 0 fgﬂ ’
£ = Bf}",

£ = (1= Pyy) Py £ (15)

The last equation is fundamental, because it allows us to com-
pute the value of each function f* at each unlabeled pixel. The fi-
nal labeling of a given pixel »; can be obtained by taking the
highest probabilities among all the labels, i.e.

y(v;) = argmax,f® (v;). (16)

5.2. A label propagation approach

A practical means to estimate the theoretical solution of the
learning process given by Eq. (15) (since its direct computation is
difficult due to the size of the matrices in use) is to adopt an iter-
ative label propagation behavior [34,48], that has been chosen in
this paper for its computational feasibility and quickness of con-
vergence. It is based on the assumption that at each iteration of
the algorithm, each unlabeled pixel will update its label member-
ship by "absorbing” the label information given by the pixels in its
spatial neighborhood. Intuitively, the pixel »; should learn more



information from a pixel which is more likely to belong to the same
semantically meaningful object. Note p; the likelihood that #; and
v; share the same label in the final segmentation, then the k label
membership of an unlabeled pixel v; at iteration step t will be com-
puted by

FO0 (2) = 3 pyf O (). (17)

vieV

As that notation suggests, the likelihood p; will be taken from
the transition matrix P defined by Eq. (3), with p; = P;. Since the
labels of the seed pixels are user-defined labels, they should not
be updated and can be clamped at each iteration. Consequently,
we can split f¥ and P as

T T Py P
g0 _ (g £l p_ [Pu Puw
< t ) 7< v ) ' Py Pwl

where f;")(” and fg‘)(” correspond to the predicted label member-
ships for label k of the labeled and unlabeled labels respectively.
Py and Pyy represent the submatrices of P restricted to the transi-
tion probabilities between respectively the labeled and unlabeled
locations, and between all the unlabeled locations. Then the update
rule given by Eq. (17) can be rewritten as [34,48]:

£ = Puf + Pyf) V. (18)

Here the iteration step of ¥’ has been omitted since it remains
the same in all iteration steps. Therefore, the labels of the unla-
beled pixels can be predicted using Eq. (18) until a convergence
is achieved. The final labeling after the learning process at a pixel
v is then given by y(v) = argmaxkfg‘)(v). We will now show that
the label memberships given by this iterative procedure converge
to a solution that is equivalent to the theoretical solution found
by considering the random walk as an absorbing Markov chain.

Proposition 2. The iterative update rule from Eq. (18) converges to
£ — (I — Pyy) " PufX.

Proof. When the number of iterations approaches +oo, the itera-
tive update rule from Eq. (18) leads to

t
(k) . i—1 (k) (k)(0)
f' = }L@<§ PUU)PULfL +Pyufy’™,
i1

where fg‘)(o) denotes the initial configuration of the label member-
ship of the unlabeled pixels, and P}, represents the tth power of
the matrix Pyy. We now have to show that the second term
P, f0© — 0. 1f we assume that P is row-stochastic, i.e. Vi, j, we have
0<P;j<1and YiPi=1, since Pyy is a sub-matrix of P it follows
that (with (Pyy); denoting the (i, j)th entry of matrix Pyy)

N-I

3, Y (Puw)y < 1.

=

Since there is N pixels and L labeled points, note n = N — L and
Pyy is of size n x n. Pose r; as the sum of the ith row of Py, i.e.
ri = j(Pw);. Puu is nonnegative, so from Perron-Frobenius theo-
rem [49] we know that the spectral radius p(Pyy) (i.e. the maxi-
mum eigenvalue of Pyy) satisfies p(Py) < maxr;, because
Viy Py =1 we haver; <1, so p(Pyy) < 1. Minc theorem [49] also
states that

p(Pyy) < max; (Zn:(PUU)imrm) /"i.

m=1

Recall that we have r; < 1Vi and that Ji,r; < 1. So it comes that

(i(Puux«mrm) / < (ia’uu),«m) / -1,
m=1 m=1

and consequently

p(Pyy) < max; (Z(Puu)imrm) / <l
m=1

Because the spectral radius of Pyy is less than 1, thus
t

fimPy =0, Hmd Puy = (I~ Pow)™
i=1

Consequently P.,f’” — 0, and therefore

t

(k) . i—1 (k) t (k)(0)
f,” =lim (ZPUU)PULfL +Pufy™,

i=1

=(-Pw) 'Puf?. O

Another version of the proof can be found in [34]. Since fﬁ") is
immutable, the iterative update rule converges to a unique fixed
point and gives us a theoretical guarantee of the feasibility of the
algorithm. In addition, this fixed point is equivalent as the theoret-
ical solution given by Eq. (15), which shows that the iterative algo-
rithm is able to solve the labeling problem in terms of random
walks.

5.3. Segmentation algorithm

The proposed semi-supervised segmentation framework can be
summarized as follows:

1. Obtain a set of labeled pixels, either automatically or
interactively.
. For each labeled pixel u with label k, set fﬁ")(u) =1.
. For eagll unlabeled pixel v and for each label k, set fg‘)(o)(v) =0.
4. Build H as the DINH representation of the image following Eq.
(9).
. Compute the directed transition matrix P following Eq. (3).
. Sett =1 and £ = £PO,
7. While t < tya O \fg’” - fﬁ?\ > 0,
(a) For each label k, update fg‘) by:
fgﬂ(f) _ PULf;_k) + Puufgﬂ(f*])_
(b) Set t =t +1 and £y = £V,
8. For each pixel ¢, give it label k such that

w N

a v

argmax, £ (v).

The stopping condition of our iterative algorithm is here con-
trolled by the parameter t;q > 0 if one wants to limit the maxi-
mum number of iterations, or the parameter ¢ > 0 if one wants
to achieve a convergence over the label memberships.

6. Experiments

In order to evaluate the reliability of our approach and to judge
the relevance of our directed hypergraph model, we conducted
experiments on the commonly used Microsoft GrabCut dataset
[32]. It includes a set of 50 real images, as well as ground-truth seg-
mentations that can be used as a comparison basis. Seed regions
are also provided in the form of trimaps, where white, dark gray
and light gray areas denote respectively the labeled object, the la-
beled background and the unlabeled region. Some original images
from the GrabCut dataset and their corresponding trimaps can be
found in Fig. 1. One may note that this dataset (and particularly
the seeds) is of a particular type, where the unlabeled data lies only
within a narrow band around the real objects boundaries. Conse-



quently, it is reasonable to think that an algorithm exploiting the
particular shape of the seeds could provide a good segmentation.
But nevertheless, none of the algorithms compared in this experi-
mental section makes use of a priori information on the nature of
the seeds, or involves a particular spatial distance to the labeled
pixels in the energy function to minimize. For this reason, the
GrabCut dataset remains of a considerable interest in the evalua-
tion of an algorithm that can be used in an interactive framework
[35], and some examples are difficult due to the lack of seed pixels
in some regions (see for instance the last image of Fig. 1). Further-
more, this dataset (and its original seeds) remains very standard in
the supervised segmentation field, as many state-of-the-art algo-
rithms evaluate their performance on this dataset, and thus allows
us to quantitatively compare our proposal to these algorithms. One
may argue that the seeds can be modified to judge the stability of
the algorithm (as in [36]), but we chose to use the original seeds for
the sake of consistency, since the evaluation measures reported in
many state-of-the-art articles that exploit this dataset are also
computed with the original seeds, thus providing a benchmark
for this dataset and allowing a direct comparison with our
proposal.

For a quantitative comparison, the performance of each semi-
supervised segmentation algorithm will be measured by the aver-
age error rate over all 50 images in the dataset. The error rate is
computed as the ratio of the number of wrongly classified pixels
to the total number of pixels to classify [32,50]. The wrongly clas-
sified pixels can be directly obtained from the ground truth label-
ing provided in the dataset (see Fig. 1). Please note that the
foreground object is surrounded by a thin band of grey pixels cor-
responding to an uncertainty about the precise location of the
boundaries of the object in the ground truth (since it has been
annotated by multiple persons). Consequently, these pixels are
not counted in the error rate to ensure its consistency. Again, other
performance measures can be computed [51], but the error rate we
use here is widely reported in many state-of-the-art papers, thus
allowing a direct comparison with our algorithm. Results of our ap-
proach using the DINH model have been first compared to those
obtained with the same iterative algorithm (see Section 5.3), but
with different transition matrices exploiting different representa-
tion models (see Section 6.1), to judge the reliability of directed
hypergraphs in this context. Second, the performance of our pro-
posed segmentation approach is compared to some state-of-the-
art algorithms (see Section 6.2) to judge its efficiency as a stand-
alone segmentation method. And finally, some examples of mul-
ti-label segmentation are given (Section 6.3).

6.1. Comparison with different representation models

To judge the reliability of using directed hypergraphs as a
means of image representation (and thus our proposed DINH mod-
el) independently from the learning method used, we first com-
pared the results of our approach with those obtained with the
same iterative algorithm (see Section 6.1) but with different tran-
sition matrices built from:

e A typical undirected graph model [34], which connects every
pixel with its 8 neighbors in the image. The edge between
two pixels x and y is weighted by a standard Gaussian kernel
w(x,y) = exp(—a|l(x) —I(y)|) exploiting the image intensity, as
well as our approach. The standard value 1 has been used for
the oo parameter since it provided the best results. The transition
matrix is computed as in [34] and is equivalent as a graph ran-
dom walk formulation.

e A directed graph model obtained from the DINH, generated by
converting every hyperarc of the DINH representation by a set
of directed graph edges (arcs) starting from the center pixel of

the hyperarc. The weights associated to each arc is the same
as the hyperarcs weights defined in Section 4.3. The parameters
used for the arcs construction are obviously the same as the
ones used for the DINH. We can observe that with this defini-
tion a directed hypergraph as defined in the first works in this
direction [19,20] reduced to the present directed graph model.

e An undirected INH model as described in Section 4.1. The INH
model have been previously successfully used for image seg-
mentation [11,16], and the transition matrix can be obtained
by Zhou’s random walk formulation [8] for undirected hyper-
graphs, as suggested in [18]. The 8 and A parameters used for
this representation are the same as in our DINH model.

The proof of convergence and the theoretical properties of the
algorithm with these transition matrices can be found in [34]
(for the graph version) and [14] (for the undirected hypergraph
version). The remaining parameters used along these experiments
have been set as follows:

e For the parameters that control the stopping criterion of the
iterative algorithm (see Section 5.3), we chose not to limit the
number of iterations and fixed the § parameter to 0.1 which is
in practice enough to achieve convergence.

The standard value 8 = 1 has been used for the spatial threshold
in INH and DINH representations, since it has been shown in
many occasions [11,16] that increasing this parameter has a
small influence over the segmentation output.

Finally, the /. parameter for the feature threshold has been com-
puted in an adaptive way [16] as A(v) = (% at pixel v,
where I(v') and o(I(7')) design respectively thé Té4n and the
standard deviation of the intensities of each pixel (including
v) in the g-neighborhood of .

One should note that with the given INH and DINH definitions
(see Section 4), two neighboring pixels in the image can be dis-
connected in the corresponding hypergraph, which will result
in a zero transition probability in the propagation matrix. To
overcome this limitation and to guarantee that the random
walk will reach at least one seed pixel (see Section 5.1), we
chose to compute such a probability as a very small value (typ-
ically 10e~4). This is equivalent to adding a hyperarc (or hyper-
edge) of weight 10e~* between two pixels that are neighbors in
the image but not in the DINH (or INH).

Table 1 compiles the average error rates obtained on the 50
images of the GrabCut [32] dataset with our iterative algorithm
with the four different transition matrices described above. When
we observe these values we can clearly see that the best results are
obtained with our proposed directed hypergraph model compared
to the previously cited ones. Consequently, our label propagation
behavior has been found more effective when the transition matrix
of the associated random walk is built by the means of our pro-
posed directed hypergraph model. Since this model is based on
the existing INH model, we can conclude when looking at the re-
sults that simply adding a directional information and asymmetric
weights to the underlying hypergraph structure provided by the
INH can help at improving the segmentation. It is also interesting
to observe that the average error rate is higher in the case of a
graph structure, which confirms the fact that hypergraph-based
model are more accurate than graph-based ones for image content
representation. This can be explained by the ability of hypergraphs
to take into account multiple relationships between elements,
when graphs are only able to maintain pairwise affinities. Conse-
quently, a hypergraph is able to handle relationships that are not
only based on pixel-to-pixel comparison, but on the comparison
of whole regions of neighboring pixels, and thus allows some pixels
to be linked by multiple relationships from different points of view.



Fig. 1. (a) Original images from the GrabCut dataset, (b) the trimaps providing seed regions, and (c) the original ground truth.

On the contrary, graphs used in image representation (and partic-
ularly their matrix representations) do not allow vertices to be
linked by multiple edges. For the same reasons, the results ob-
tained with a DINH model are better than those obtained with a di-
rected graph built from the DINH, showing the reliability of using a

Table 1
Comparison of the average error rates obtained on the GrabCut dataset [32] between
our iterative framework with different transition matrices exploiting different models
of data representation. The value obtained with our proposed method is highlighted
in bold.

Model Average error rate (%)
Undirected graph [34] 6.92
Directed graph 6.57
Undirected hypergraph 6.53
Directed hypergraph (proposed) 6.15

hypergraph formulation. However, the performance obtained from
the directed graph are close to those from the INH case, which
shows that using directional information and asymmetric weight-
ing can improve segmentation results.

Fig. 2 presents a comparison of qualitative results obtained with
our proposed directed hypergraph approach, to those from a typi-
cal graph model, a directed graph model and an INH model. The re-
sults displayed are close-ups of the foregrounds obtained with the
different algorithms corresponding to the images in the first three
rows of Fig. 1. Despite the fact that all the segmentation results dis-
played in this figure can be considered as semantically meaningful,
the computed error rates are different, in general due to the bound-
ary placement. In the top row example, the boundaries around the
flowers are more precise in the directed hypergraph case. In the
middle row, the directed hypergraph is the only model that was
able to correctly segment the mushroom foot, and particularly
the leaf at the bottom. This result is also partially found in the di-



rected graph case, which suggests that directional information is
useful to segment thin elongated objects. The example of the last
row is probably the one that shows the best the benefits of the
introduction of directional information into the INH model. In fact,
the arm of the boy is difficult to segment in an semi-supervised
framework due to its color proximity with the background and
the lack of seed pixels in this region. However, our approach
exploiting the DINH model was the best at segmenting the arm,
confirming that directional information can help at detecting elon-
gated objects. The directed graph can also improve the arm seg-
mentation, but we can see that it also shares segmentation errors
with the undirected graph structure (the region below the armpit
of the boy is not correctly segmented, and the face region is impre-
cise). This kind of difficulty can easily be tackled with the help of
user interaction, by prompting the user to submit seed pixels at
critical points. In the last example it will be relevant to mark some
pixels of the boy’s arm as object pixels in order to properly guide
the segmentation.

These results clearly show that directed hypergraph models can
provide a richer model of representation compared to simple undi-
rected hypergraphs and graphs. If the error rate improvement be-
tween INH and DINH models can be considered as slight, this can
be explained by the fact that the DINH is based on the INH, and fur-
ther directed hypergraph models (not necessarily based on previ-
ously existing hypergraph representations) have to be
investigated. In conclusion, our model based on a directed hyper-
graph outperforms the ones based on a different structure, and
particularly the undirected hypergraph case, within our iterative
learning setting. Consequently, we showed that the introduction

(a) (b)

of directed hypergraphs in computer vision and particularly in im-
age representation is relevant, which was the main purpose and
contribution of this paper.

6.2. Comparison with state-of-the-art

Secondly, we compared the performance of our approach with
several state-of-the-art supervised segmentation algorithms. These
results are compiled in Table 2. The first row refer to an algorithm
based on a Gaussian Mixture Markov Random Fields (GM-MRF)
interpretation on a graph [50]. The second row is an algorithm that
exploits the hypergraph random walk matrix [8] based on a hyper-
graph representation of an image generated with superpixels [53].
The third one is not based on a global energy minimization method
like the others, but on a local filtering of the label space [52]. The
fourth row is our proposed approach. The fifth row is Grady’s ran-
dom walker algorithm [33] also exploiting a random walk interpre-
tation of the learning step, but solved by a set of equations
obtained from the Laplacian of the underlying graph. The algo-
rithm on the sixth row also exploits the graph Laplacian, but with
a statistical transductive interpretation [35]. It was also shown in
[35] that this algorithm reduces to Grady’s random walker if a gi-
ven parameter is set to a particular value (which explains that the
two reported error rates are the same). Finally, the seventh and last
row refers to an algorithm again exploiting hypergraphs with a
superpixels generation step, but in a much richer manner than in
[18], since the given hypergraph uses real-valued incidence matri-
ces. Here the learning step is handled by hypergraph interpolation
involving a hypergraph Laplacian computation. All the error rates

(c) (d)

Error rate: 4.25 Error rate: 3.76

Error rate: 4.05 Error rate: 3.88

Error rate: 3.99 Error rate: 3.51

Error rate: 3.93 Error rate: 3.65

Error rate: 6.34

Error rate: 6.87

Error rate: 6.07 Error rate: 5.12

Fig. 2. Comparison of close-up foreground segmentation results from (a) an undirected graph model, (b) a directed graph model, (c) an INH model, and (d) our proposed
directed hypergraph model. The error rates obtained for each result are also displayed. The original images, trimaps and ground truth are shown in Fig. 1 (first three rows).



found in Table 2 are reported on the GrabCut dataset using the ori-
ginal seeds under the same conditions, in [50] for the GM-MRF, in
[18] for the superpixels hypergraph, in [52] for the cost volume fil-
tering, in [35] for the Laplacian regularizer and Grady’s random
walker, and in [14] for the probabilistic hypergraph.

We can see from these results that the error rates obtained with
our approach also compare well to other state-of-the-art image
segmentation algorithms, showing the reliability of our global
framework. The results obtained by the superpixels hypergraph
[18] (despite using a hypergraph representation) can be explained
by the fact that computing a superpixels representation of the im-
age helps at reducing the size of the problem, but also introduces a
hard labeling constraint between the pixels among the same
superpixel. Consequently, the error produced by the segmentation
algorithm for a single superpixel affects all the pixels that the
superpixel represents, and then the error rate increases. If the
method based on probabilistic hypergraph produced way better re-
sults, this can be explained by the fact that the hypergraph model
used is built in a completely different way and exploits real-valued
incidence matrices.

One should note that existing methods such as the Laplacian
regularizer [35] and Grady’s random walker [33] can reach more
satisfactory results. The main reason for this is that these methods
are based on a direct calculation of the labels of the unlabeled pix-
els (instead of approaching the solution with an iterative setting),
generally using powerful tools based on matrix operations and
equations solvers, thanks to the good properties displayed by the
Laplacian matrix. This is also the case for the algorithm exploiting
probabilistic hypergraphs. These methods can provide a solution
that satisfies directly the optimization learning problem, which
can explain the better results, but generally come along with a hea-
vy computational burden [35]. These difficulties are not present in
a label propagation approach. Furthermore, such a Laplacian repre-
sentation has to be symmetric in order to allow a regularization or
an eigen-decomposition. At that time, it does not exist a proper
definition of such a Laplacian matrix for directed hypergraphs,
which can be the subject of future research in this field. Recall that
the primary objective of this work was to judge the reliability of
using directed hypergraphs in the computer vision domain, and
that we did not intend to design a segmentation algorithm outper-
forming the actual best methods in this field. Obviously, our meth-
od is not able to compete in terms of quality of segmentation with
the ones that can directly find a global optimum to the underlying
energy minimization problem. Nevertheless, the error rates of our
algorithm are reasonably close to the better ones, which shows
that our system is reliably efficient, and justifies further research
work for improving its quality.

A visual comparison of results obtained with our approach and
Grady’s random walker [33] can be found in Fig. 3, which displays
close-ups of the segmentation foregrounds for Grady's random
walker and our label propagation approach (both with INH and
DINH models) corresponding to the images in the two last rows

Table 2

Comparison of the average error rates obtained on the GrabCut dataset [32] between
our proposed approach and different state-of-the-art algorithms. The value obtained
by our proposed approach is highlighted in bold.

Algorithm Average error rate (%)
GM-MREF [50] 7.9
Superpixels hypergraph [18] 7.3
Cost volume filtering [52] 6.2
Proposed (DINH) 6.15
Grady’s random walker [33] 5.4
Regularized Laplacian [35] 5.4
Probabilistic hypergraph [14] 533

in Fig. 1. The result from the top row clearly shows the advantage
of a direct computation of the label memberships. The boundaries
of the foreground object are correctly located in the case of Grady’s
random walker, as they are very imprecise with our approach. In
fact, the label memberships are slow to converge in these particu-
lar regions where the complex texture in the background makes
the label diffusion difficult. Consequently, the algorithm will be
stopped because it will detect only a slight change in the label
memberships between two iterations, even if their optimal value
has not been reached. But the result in the bottom row shows
the advantage of using our directed hypergraph representation,
where the use of directional penalties allows to obtain a better seg-
mentation of the right (in the image) leg of the sheep, whereas the
two other approaches are unable to compute a proper segmenta-
tion due to the lack of seed pixels in this region.

In addition, our approach has been found to be reasonably effi-
cient in terms of computation time, thanks to the iterative label
propagation behavior we adopted. With our C++ implementation
on an Intel Xeon 2.67 GHz machine, the algorithm takes between
0.85 and 5.35 seconds to converge, depending on the image size,
with the GrabCut [32] dataset. The algorithm is slightly faster in
the graph case, because by construction the number of neighbors
to consider at each iteration for each pixel is higher in the hyper-
graph case. The computation times are way better than those re-
ported for the Laplacian regularizer in [35] and the hypergraph
interpolation in [14], which confirms the fact that powerful learn-
ing tools based on matrix operations or equations solving are com-
putationally intensive. However, these methods can rely on many
optimization solutions [54].

6.3. Multi-label segmentation

Our segmentation approach has also two practical advantages.
First, it computes real-valued label memberships for every pixel

* =

Error rate: 1.49 Error rate: 2.87 Error rate: 2.82

Error rate: 7.43 Error rate: 7.52 Error rate: 5.85
(a) (b) (c)

Fig. 3. Comparison of foreground segmentation results from (a) Grady’s random
walker algorithm [33], and our label propagation approach using (b) an undirected
hypergraph (INH) model and (c) our proposed directed hypergraph (DINH) model.
The error rates are also displayed. The original images, trimaps and ground truth are
shown in Fig. 1 (two last rows).



Fig. 4. Some examples of multi-label segmentation with our proposed approach using a DINH model. (a) Original image with user-supplied seeds. (b) Foreground region of
the segmentation corresponding to the two object labels. (c) Original image with superimposed final labels.

(on the contrary of some algorithms like graph cuts [38] that only
provides labels), that can serve as confidence scores or for alpha
matting. And second, the mathematical formulation of the segmen-
tation method and the development of its update rule (see Sec-
tion 5) has been done by considering the possibility of having
more than two labels (background/foreground), as some algo-
rithms only consider the two-labels case. Consequently, our algo-
rithm is directly applicable to multi-label segmentation.

Fig. 4 presents some examples of such multi-label segmentation
obtained with our label propagation approach and our DINH mod-
el. One can see that with a small amount of user-supplied seeds,
our algorithm is able to achieve perceptually acceptable results,
even if some defects can be observed, especially when looking at
the foreground region of the image at the bottom row, which are
essentially due to the complex texture present in the background
around the statues’ boundaries.

7. Conclusions

In this paper, we investigated the utilization of directed hyper-
graphs in the computer vision domain. We proposed a generaliza-
tion of undirected hypergraphs into directed hypergraphs, and
defined a formulation of a random walk in a directed hypergraph.
We proposed a DINH (Directed Image Neighborhood Hypergraph)
model as a directed hypergraph representation of the image con-
tent, and adapted it to a semi-supervised image segmentation
problem using a transition matrix computed from our random
walk formulation. Experiments on the standard Microsoft GrabCut
[32] datasets showed encouraging results in comparison with algo-
rithms using undirected and directed graphs and undirected
hypergraph-based image representation. In particular, results
show that the introduction of directional information unto a
hypergraph model can help at improving the segmentation results
due to an asymmetric weighting of the hyperarcs. Consequently,
we introduced the directed hypergraph concept in the computer
vision domain and showed its relevance within this context.

Our image segmentation application is the first attempt of using
directed hypergraphs in image analysis problems. If the results
converge to an improvement of the performance compared to algo-
rithms using traditional undirected hypergraphs, our proposition is
an open system and several ways can be imagined to get more sat-
isfying results. The comparison with several state-of-the-art super-
vised segmentation algorithms showed that our iterative approach
cannot compete in terms of quality with methods that are able to

directly compute an optimal solution to the energy minimization
framework, using powerful graph-based tools such as Laplacian
regularization [33,35]. The translation of such tools to the undi-
rected hypergraph case is difficult at the moment, due to the asym-
metric nature of directed hypergraphs and the lack of prior
theoretical work in this field. Proposing coherent definitions of ma-
trix-based representation of directed hypergraphs such as Lapla-
cian matrices can be a direction to explore. Furthermore,
different directed hypergraph models for image representation
have to be investigated, and particularly for the case of color
images. An interesting idea can be to model a video (or an image
sequence) by the means of directed hypergraphs, since directional
features such as the optical flow can easily be computed directly
from the data.

Long-term further work in this direction will include the appli-
cation of directed image hypergraph models in an unsupervised
segmentation framework, for example by adapting existing hyper-
graph-based algorithms like spectral clustering [8] or reductive
clustering methods [15] to the directed case.
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