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Abstract. Accurate video-based ball tracking in team sports is important for au-
tomated game analysis, and has proven very difficult because the ball is often
occluded by the players. In this paper, we propose a novel approach to addressing
this issue by formulating the tracking in terms of deciding which player, if any, M
is in possession of the ball at any given time. This is very different from standard
approaches that first attempt to track the ball and only then to assign possession.
We will show that our method substantially increases performance when applied
to long basketball and soccer sequences.

Keywords: tracking, video analysis and event recognition, occlusion reasoning,
behavior analysis, sports video, tracking the invisible

1 Introduction

Accurate ball tracking in sports is of tremendous importance to athletes, referees, coaches,
and fans. However, the size and speed of the ball and prolonged occlusions make ball-
tracking challenging even for trained human observers. Solutions for basketball or soc-
cer have not gained acceptance, and a solution for hockey puck tracking [1]] developed
for a television broadcast network enjoyed only a brief lifespan.

Thus, a Computer Vision-based ball-tracking solution remains valuable and beyond
the state of the art for most sports. Tennis is a rare exception because the ball is rarely
occluded and its color is very different from that of the background, which makes track-
ing comparatively easy. It is far more difficult in team sports because the ball is often
hidden by the players and follows an unpredictable trajectory as it is passed or taken
from one player to another. Furthermore, the amount of image evidence for the ball,
even when it is visible, is dwarfed by that for the players in its vicinity, as shown in
Fig. [[] Frame-to-frame tracking is extremely unreliable in such cases. For example,
even a state-of-the-art algorithm [2] that has been shown to be superior to many other
state-of-the-art trackers for single object tracking and whose code is publicly available
never tracks the ball for more than five consecutive frames in the sequences we present
in this paper. Modern tracking-by-detection approaches that re-detect the object as of-
ten as necessary and aggregate results over several frames increase robustness but can
still easily fail if the object is hard to detect in individual frames.

The contribution of this paper is to turn the common approach of first tracking M
the ball and then deciding which player is in possession of it on its head. In our ap-
proach, we first track the players and decide possession. We then use this as a means
to achieve reliable ball tracking, which lets us turn unreliable image-based informa-
tion into dependable trajectories. This is effective because the trajectory of the ball is
intimately linked to that of the players who pass it to each other or steal it from one
another. Therefore, exploiting this correlation allows for disambiguation and improved
performance.

To this end we define a novel state space explicitly accounts for ball M possession, a
Conditional Random Field (CRF) [3]] model that depends on the ball detections and the
players’ trajectories, and a practical approach to learning the model parameters from
training data. More specifically, we start from video sequences from several synchro-
nized cameras from which both the players’ trajectories can be reliably extracted using
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Fig. 1. Tracking the ball in team sports, such as basketball (a) and soccer (c) is hard due
to the ball’s small size, barely 12x12 pixels in the videos we work with as shown in
upper left corner insets. Furthermore, it is subject to prolonged occlusions even when
multiple views are available. Our key contribution is to overcome these difficulties by
exploiting the contextual relation between the players and the ball, in particular with
respect to ball possession. To illustrate this, we plot in (b) and (d) the accuracy we
would obtain based on the sole knowledge of ball possession if it were given to us
by an oracle, in this case a person looking at the videos. In other words, the “Oracle”
tracker is the one with correct ball possessions, whose performance is the upper-bound
of any tracker that is solely based on contextual information. We also plot the accuracy
results of both a state-of-the-art approach that only looks at the ball and our attempt
to establish ball possession without human input. The latter (red FoS curve) decisively
outperforms the former (blue FoD curve) and approaches human performance levels
(black Oracle curve).

publicly available software [4,5]] and the ball ballistic trajectory can be also be extracted
in consecutive frames when it is clearly visible. Between such frames, when individual
players are M in possession of the ball, its approximate position can be assumed to be
their position up to the reach of their arms or legs. When the ball is passed, we take its
path in the horizontal plane to be a straight line from one player to the next. As shown
in Fig. [T] given perfect knowledge of M ball possession as denoted by the “Oracle”,
this simple approach yields a relatively accurate estimate of the ball location and ob-
taining this knowledge therefore is what must be addressed. We formulate this problem
in terms of assigning possession to a player, or to no-one when the ball is being passed,



by minimizing a global objective function that takes into account players’ positions and
image information when the ball is visible.

We will show that this approach produces very reliable possession assignments and
a final accuracy of the ball trajectory that is close to the best that can be expected over
multiple attack phases and timeouts. This is in stark contrast to most other published
approaches that have only been demonstrated on short sequences.

2 Related Work

This section distinguishes two broad classes of approaches, those whose sole focus is on
ball-tracking, and those that exploit spatio-temporal context to track a hard-to-discern
target.

2.1 Tracking Only the Ball

We first discuss a handful of ball-tracking scenarios where the problem is considered
solved, and off-the-shelf commercial solutions exist. Then we discuss the more broad
class of problems, which are still beyond the reach of the current state of the art.

Ball Tracking in the Commercial World Ball tracking has received considerable at-
tention over the years. In some cases such as tennis, reliable commercial software is
now available [6]]. While the high velocity of the ball poses an engineering challenge, it
is brightly colored and rarely occluded. Even then, achieving the required level of relia-
bility and accuracy requires ten high-speed cameras looking at the scene from different
angles.

The problem becomes substantially harder in team sports. For example in soccer,
the ball can be surrounded by multiple players, who create occlusions in many views.
This is probably why the soccer software sold by the company that developed the tennis
ball tracking system discussed above [|6] only aims at tracking the ball as it is being shot
towards the goal, and therefore unoccluded.

In basketball, the problem is even harder because multiple players compete for the
possession of the ball, generating even more occlusions. Since the basketball may be
guided by hand, its trajectory is also more unpredictable. Lastly, the ball can be of sim-
ilar color as the players’ jerseys, adding yet another level of complexity. Even though
some companies advertise the capabilities of post-game basketball trajectory analysis
the amount of automation is unclear [/7]).

Ball Tracking in the Research World Ball tracking has also been pursued in the
academic world [8H10|] before the advent of the commercial systems. For sports such as
tennis or golf, it is now considered a solved problem. The same cannot be said of team
sports for the reasons discussed above.

In many team sports, the trajectories of the ball and the players overlap in space-
time. Therefore to track the ball one also has to localize the players. However, deriving a
unified formulation for tracking the ball and the moving players is challenging. Typical



approaches [|11}12] to track the players and the ball independently relied on ad-hoc rules
to decide if and when a player handled the ball. The composition and the parameters of
these rules were defined manually rather than with respect to a clearly-defined objective
function.

The fact that soccer players interact with the ball in a structured manner was ex-
ploited in [13]]. A set of ball phases was defined—in-possession, rolling, flying—and
for each such phase a physics-based motion model of the ball was introduced. Once
the ball became un-occluded, and its phase was known, the appropriate motion model
could be used for tracking. The in-possession phase was treated as a means to “initial-
ize other phases”, while in our work it is the main focus; thus the two approaches are
complementary.

An approach to jointly track the soccer players and the ball was proposed in [14].
First, players were detected in each frame independently. Next, the ball was tracked
across frames taking into account player detection. Last, player detections were linked
into tracks, while taking into account the location of the soccer ball. Unfortunately, the
ball-tracking formulation was not specified, except for a brief mention of an Adaboost
classifier for scoring the ball trajectories. The validation was performed on sequences
of 150 frames, spanning only a few seconds, making it hard to determine how useful
the approach would be in practice.

Summary Ball tracking in team sports in the presence of prolonged occlusions remains
an unsolved problem. Ball-tracking approaches designed for individual or one-on-one
games [8}/9] only work for long passes and shots on the goal, while approaches that at-
tempt to incorporate player trajectories [14}|15]] rely on ad-hoc rules for ball possession.
Consequently, none of these approaches work on long video sequences. By contrast,
our tracker minimizes a global objective function that not only takes into account im-
age evidence about the ball but also players’ location and the phase of the game.

2.2 Object-tracking and Context

Oftentimes, a target that needs be detected or tracked is correlated in space and/or in
time with its surroundings. We first discuss approaches to model complex individual and
group behavior in ball-centric team sports, and then overview approaches that focus on
a relation between a target and its local spatio-temporal context.

Exploiting the Context of a Ball-Centric Team Sport To the best of our knowledge,
we are the first to develop an effective approach to exploit the highly complex context
of a sports game for ball-tracking. In this section, we mention relevant work on ana-
lyzing the high-level state of a ball-centric game without the benefit of automatic ball
tracking. We view the relation between the two sets of approaches as complimentary:
many of those prior approaches to game analysis rely on a manual labeling of the ball
and would therefore benefit from our formulation. Conversely, our end-to-end demon-
stration system requires an estimate of the phase of the game, which is obtained using
the features of [[16], and which we describe next.



Finding regions of player convergence We first mention two approaches that rely on
players’ trajectories to estimate the regions of convergence. In some cases, these ground-
plane regions happen to contain the ball.

In [15]) the focus was on basketball. It was assumed that in an input video sequence
it was known which team was attacking, and that this team was in the vicinity of the
opponent’s basket. Then, from the velocities of the players on the ground plane, regions
of convergence were computed. It was assumed that each of these regions would be
a candidate for the basketball location, and a Kalman-filter was used to validate ball-
location candidates over time. Because of the strong assumptions on the content of
the input video sequences, the algorithm could only be validated on sequences of up
to ten seconds in length. These test sequences are too short to fully understand the
algorithm’s failure modes and to determine how it could generalize to other basketball
games. Furthermore, attempting to localize the basketball without taking into account
image evidence cannot yield optimal results.

In [17]], velocities of the soccer players in the ground plane were used to compute
ground-plane regions where some interesting event could happen in the future. In some
cases those regions happened to correspond to the future location of the ball, but in
general it was not possible to attribute those regions to known elements of the game.
Since the output of the algorithm could not be used to predict a sport-specific quantity,
such as the location of the ball, the authors compared their regions of interests with the
field of view selected by the “real camera operators” during professional games.

Recognizing elements of the game from player trajectories A system for analyzing
basketball games was described in [16]. The system comprised several components,
including tracking, recognizing which team was attacking, which elements of the play
were being executed, etc. Notably missing from the scope was tracking the basketball
itself, which was explained in the paper by the “state of technology.” However, the
authors of [16] noted that knowing the ball location would “considerably improve the
performance...” of their system.

Systems for analyzing hockey games were described in [[18-20]. Similar to the sys-
tem of [16], the system of [20] comprised components for player tracking, and the
recognition of several elements of the play, e.g., power play shot. The location of the
hockey puck was essential for their recognition algorithm, but the authors relied on the
manual localization of the puck.

The approach to recognizing team-level activity in European handball was proposed
in [21]]. The set of six manually-specified labels included “slowly going into offense,”
“offense fast break”, etc., and the features were based on players’ on the player den-
sity function defined over the whole court (obtained by solving a Poisson equation).
Notably, the location of the ball was not a part of the feature set, which precluded the
recognition of “more complex activity classes.”

An approach to recognize elements of a baseball game was presented in [22]. In that
approach detections of the players in a video segment were automatically labelled with
their roles, e.g., a pitcher, and a causal relations between actions were inferred. Recog-
nition of social roles in field hockey, e.g., attacker, defender was proposed in [23]]. The
formulation integrated per-player location and role cues into a consistent interpretation
via a conditional random field. Inference in such a model was computationally complex



due to the combinatorial number of possible assignments, and furthermore a different
model needed to be initialized depending on the user’s query. The formulation was val-
idated using “ground-truth person locations, as well as those using a simple automated
detector”; it is unclear if in the complete system the ground-truth ball locations were
utilized or if the ball location was ignored altogether.

Recognition of plays in American football was tackled in [24]. Their approach in-
cluded a temporal interaction matrix defined with respect to the trajectories, and a
manifold-based formulation for comparing such interaction matrices. The location of
the ball was excluded from the formulation. The experiments were conducted with an
assumption of “ground-truth data, where tracks for each player are manually labeled.”
Such an assumption does not hold true for our problem.

Summary The approaches such as [[15H17[21}23||24] would benefit from automatic ball
tracking. An effective formulation for achieving this goal is the main contribution of
our paper.

Exploiting the Context of Objects and Parts Models that exploit spatial and spatio-
temporal context for object detection and tracking have been proposed in [25H27].
These models require a target to be surrounded by multiple moving objects or image
patches. The appearance of these contextual objects should be sufficiently distinct so
that they themselves can be reliably detected in novel video frames. To locate the tar-
get, each contextual object is employed as a predictor for its center.

In [25]], which focused on vehicle tracking in aerial imagery, the model for a motion
context captured “...an intuitive observation that the locomotive behavior of an object
(e.g. car) provides information about locomotive behaviors of nearby objects (cars).”
To identify a motion context among many moving objects, a measure of the chaos in
a dynamical system was employed. Given the motion context, the target’s location was
implemented as a linear regression with respect to the motion of the contextual objects.

In [26] it was assumed that “relative position of feature and target is more or less
fixed over short time intervals”. The contextual features were derived from frames with
“good visibility”, and the presence of a feature in a novel frame was probabilistically
estimated. Given the contextual features, the prediction of the target’s location was im-
plemented as generalized Hough transform.

The context model of [27] was developed for detecting a small body part, such as a
hand, in a single image. In this model, the context comprised groups of image features,
sequentially ordered into chains. All chains were constrained to originate from a single
always-visible body part, such as a person’s face.

Summary While the above approaches have demonstrated the importance of context in
tracking, they are not applicable to our problem. The initialization assumptions of [26]
cannot be satisfied, and the requirement of [27] that an easy-to-detect anchor object is
always visible, is inapplicable to our setup. The assumption of [25] and also of [26}]27]]
that the target’s context can be unambiguously re-acquired in a novel video frame does
not hold, since at our image resolution body parts of players tend to look alike.

More importantly, the uncertainty in our context is fundamentally different. In our
case, the spatio-temporal context is clear from the outset since the ball is always passed



among a fixed set of players. The regression function to predict the target location from
its context that was central to [[25)26] is the identity since the player who M is possession
of the ball and the ball are co-located. The real challenge lies in deciding which player is
indeed associated with the ball, and this challenge has not been resolved in prior work.

3 Formulation

Our formulation is general and is applicable to ball-centric team sports with a defined
notion of ball possession. For the sake of simplicity and concreteness, we use the ter-
minology of the sports where the ball may be passed to a teammate or shot on the goal
over the players’ heads. These include basketball, rugby, soccer, and many others.

When a ball undergoes ballistic motion in the air, such as during a long-distance
pass, the resulting trajectory can, ignoring friction, be approximated by a parabola. This
would suggest a second-order motion model for ball-tracking, and indeed, such models
have been applied in prior work to track an unoccluded ball.

However, our focus is on a harder problem, that of tracking the ball while some
player M is in possession of the ball, and also during relatively-short passes when the
ball is in the vicinity of other players. Since a player who is M in possession of the ball
is likely to make abrupt moves in order to confound the opponents, the second-order
model becomes less useful.

In the remainder of this section, we begin by introducing our model in its most
generic form and then specialize it so that its individual components can be learned
from the limited amount of training data, which is often the case. In Sec. E] we will
provide an example of an end-to-end system that can track the ball during long game
sequences, and in that system, the second-order motion model will become useful for
accurately segmenting long passes.

3.1 Conditional Random Field Model

We use the notation of Table [I|to express our model. We represent the state of the ball
attimetasY; € {1,..., K, S}, where K is the number of players. M Either a player k
is in possession of the ball (e.g., player k is dribbling the ball), or the ball is in state &,
meaning it is free (e.g., the ball is being passed or shot at the goal). Inferring the state
of the ball Y; = y; at time ¢ enables us to estimate its ground-plane locations G; = g,
at all times by using a player’s location when M that player is in possession of the ball,
and by interpolation when the ball is in-between; this is shown in Fig.[2]

For a sequence of video frames in the temporal interval ¢ = 1,...,7T our goal
is to infer the most likely state sequence (y1,....,yr) of ¥ = (Y1,....,Yr) given
the image evidence X = (Xj,...., X7). We do so by minimizing a loss function
L(y1,...,yr; X, W), where W represents a set of learned parameters. We express the
loss function £ in terms of a Conditional Random Field (CRF) [3] as

Z U1y X, W) + Z Va(ye, yer1; X, W), ey

t=1..T t=1..T—-1



Table 1. Notation for our formulation

K the number of players

© no-one is in possession of the ball; i.e., the ball is free
Y

T

the state of the ball, Y € {1,..., K, S}
number of frames in a temporal window
te(l, T)

y: the realization of Y at time ¢

r¢ auxiliary random variable derived from y;

G ground-plane location of the ball on a 2D grid

X image evidence for all video frames

11 unary potential of our model

12 pairwise potential of our model

W' parameters of our model

S phase of the game, S € {0, 1,2}

s¢ the realization of S at time ¢
timeout (s = 0) or one of the two teams attacks

p(+) p: k— {1,2,3} group membership of actor k:
referee (p(k) = 3) or one of the two teams

r Te o TTell eeo 1

players' trajectories

X
ball detections in multiple views

ground-plane cells

Fig.2. An application of our approach to a ball-centric team sport. The possession of
the ball Y is inferred from X; afterwards the ground-plane locations of the ball G are
determined either by linking the locations of the corresponding players when Y # ©
(solid lines), and when Y = & by interpolation (dashed lines).

where our image evidence comprises per-view ball detections and the player trajecto-
ries.

Given analytical expressions for 1; and 12, as well as appropriate values for W,
finding an optimal sequence of y’s can be accomplished efficiently with dynamic pro-
gramming. We now turn to deriving and learning these expressions and values.
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In our implementation, v and )5 take the form of negative log-likelihood:
V1 (ye; X, Wh) = —log p(ye; X, W1) and 2
Vo (Ye, yey1; X, Wa) = —log p(yer1lys; X, Wa), 3)

where p(y;) are p(y:+1|y:) are probability distributions.

A naive learning of the potentials in Eq. 2] and Eq. [3] would be quite complicated.
The reason is that monolithic models for p(y;; X, W1) and p(y.i1|y:; X, Wa) would
have to account for all the complexities of a team sport, such as the structure of the
game, roles, and skill level. Instead, we factorize these probability densities to arrive at
several well-defined learning tasks, as discussed in the following two sections.

3.2 Unary Potential

In this section we factorize the unary potential in Eq. 2} derive the features to evaluate
it, and define a method to learn its parameters.

Factorizating the Unary Potential We first factorize the unary potential with respect
to whether or not the ball is free and then with respect to the team that M is in possession
of the ball. Although in practice, the probability densities derived in the factorizations
will all become functions of the image evidence X, our derivations do not require a
particular form of X. We will therefore employ a shorthand notation, such as p(y) =
p(ye; X, Wr).

Factorizing ball possession Frequency and duration of the ball possession tend to be
influenced by the players’ roles and skill levels. Thus, in theory, the knowledge of a
player’s identity can be used to design the ball-possession prior. While our formulation
does not preclude such a prior, in our current implementation we treat all players as
indistinguishable.

When the players’ roles are unknown, the states of Y lose their semantics. This
influences our supervised learning problem since the label y = k cannot be applied
consistently. This is in contrast with, say, learning semantic segmentation, where labels
such as y ="“sky”, y ="“grass” can be defined in a consistent manner.

In principle, one could learn p(y) fory € {1,..., K, ©}. However, the learning task
would have to contend with the fact that the label y = © is semantically different from
the remaining K labels, and as noted earlier, the labels {1,..., K} have no semantic
meaning. We therefore factorize p(y) so that instead of dealing with one complicated
learning task we solve several simpler ones.

We introduce an auxiliary random variable R € {0, 1}, which depends on Y as
follows:

r=11<y<K
r=0sy=0.

Therefore, we can write p(y = 6lr =1) =0, p(1 <y < K|r=0)=0,p(y = S|r =
0) =1, and

“

p(y) =plylr =1)p(r =1) + p(y|lr = 0)p(r =0),
——
Eq.[q]

&)
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where the computation of p(y|r = 0) follows from Eq. 4]

Factorizing the phase of the game We now factorize the first term of Eq. [5| with respect
to the phase of the game. Such a factorization will make it practical to track the ball
throughout an entire game period.

Let s = 0 denote timeout and s € {1, 2} denote which of the two teams is attacking.
When y # ©, i.e.,, 7 = 1 we have:

ply=klr=1)= > ply==kls,r=1)p(s|r =1)
s€{0,1,2} 6)

— ply = kls = p(k),r = D)p(s = p(k)) + —=p(s = 0),

where all the probability densities are functions of X and W;. In deriving Eq.[6| we ap-
proximated p(s|r = 1) by p(s) which we found to be appropriate. However, if required,
one could include the knowledge of the teams’s relative strengths into the estimate of the
phase of the game. During the timeouts we model the ball M possession as uniformly
distributed among the two teams and the referees, i.e. p(y = k|s=0,r=1) = 1/K.

Summary of Factorization We have reduced the problem of learning p(y) to the prob-
lem of learning the distributions p(r) and p(y = k|s = p(k),r = 1), the latter being
the probability that a player holds the ball given his team is in possession of the ball.
Our factorization also requires learning p(s), which can be accomplished using known
approaches; our implementation is presented in Sec. [4.1]

Learning the Unary Potential In deriving the factorized unary potential in Eqs.[5|and|[6]
we did not make any assumptions about the particular form of the image evidence X.
Therefore, one has the freedom to derive features from X that are compatible with the
envisioned application. For the sake of demonstration, we define geometric features
based on projections of the monocular ball detections on the ground plane.

We accumulate multi-view evidence for the ball in a sparse ground-plane represen-
tation called the Ball Occupancy Map (BOM), and we have one such BOM for each
time instant. The details of constructing the BOM are presented in Sec. {.2] Briefly,
monocular detections give rise to likely 3D locations of the ball, and these locations
are then projected onto the ground plane, yielding peaks in the BOM; the geometric
construction is shown in Fig.[3

Given the BOM at time ¢, let di’k be the distance between peak j and player k, see
Fig.|4} and let CZ be the peak’s score as defined in Sec. We will use d{’k and CZ M
as primitives for deriving feature vectors, which will make it practical to learn p(r) and

p(y).

Learning p(y = k|s = p(k),r = 1) For a player k we define a feature vector
Xplayer(K; 1) € R2”, where n specifies the number of BOM peaks that are used to con-
struct this vector. This feature vector takes the form of Xpjayer(k; 1) = [c, d]. The first
component of Xplayer(k‘; n) is ¢ € R™, a vector of sorted BOM scores corresponding to
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Ball Occpancy Map ( BOM )

player k

(b)

Fig. 3. The Ball Occupancy Map (BOM) is a sparse ground-plane representation of the
image evidence. (a) For every ball detection in every view a ray is cast from the camera
center. Two rays, each from a different view, cross within distance §. (b) Projections of
these crossing on the ground plane define peaks of the BOM. Each BOM peak has a
score that is derived from the confidences of its corresponding monocular detections.
Three peaks, each with a different score, are shown as circles of different color intensity.

peak 1 PS peak 2
2° P o TN ok
player 2 \(71,2 62,1’1
player 1 [l ! \.
(a) (b)

Fig. 4. Given the locations of the players and BOM at time ¢ and ¢ + 1, we define a set
of geometric primitives. These primitives will then be used to derive the features for
learning v and 1)5. (a) We define d} ¥ as the distance between peak j and player k at

time ¢. (b) We define df K as the distance between player k and player £’ at time ¢, cii ok

as the distance between peak j at time ¢ 4+ 1 and player k at time ¢, and J{’j " as the
distance between peak j at time ¢ and peak ;' at time ¢ + 1.

the n peaks. The second component of Xpjayer(; 1) is d, which comprises a sorted set
of distances d?*.

We train a probabilistic classifier to predict if a player k£ has the ball; in our im-
plementation this classifier takes the form of a random forest. Classifier training is ac-
complished using examples of the form (Xpiayer(k; 1), 1(y* = k)), where 1(-) is an
indicator function, and y& # © is the ground-truth label. During prediction we ob-
tain K predictions «ay, one for each player, and set p(y = k|s = p(k),r = 1) =
k- (Liepery )
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Learning p(r) We define a feature vector Xpossess() € R™ K+ where n specifies
the number of BOM peaks used to construct this vector, and which takes the form of
Xpossess() = [¢, d?, ..., d™]. The first component of Xpossess(12) is ¢ € R™, a vector of
sorted BOM scores. The remaining components of Xpogsess(72) are 1 vectors di € RE,
Each such dJ comprises a sorted set {d‘tj’k},ﬁ;l. An example of constructing Xpossess (72)
for n = 2 is shown in Fig. 4| Our intuition for this feature is that if one observes a BOM
peak with a high score, and that peak is distant from any player on the ground, then it
is more likely that the ball is free, i.e., 7 = 0.

In our implementation, p(r) takes the form of a random forest classifier. The classi-
fier is trained in a standard fashion on a set of pairs of the form (Xpossess(72), 7).

3.3 Pairwise Potential

In this section we factorize the pairwise potential in Eq.[3] derive the features to evaluate
it, and define a method to learn its parameters.

Factorization of the Pairwise Potential In the previous section we derived a factor-
ized form of the unary potential with respect to R and .S, which in turn made it practical
to learn this potential from the training data. M We factorize the pairwise term with
respect to teams’ tactics and spatial context. The tactics defines a team’s behavior such
as frequency of passes, which is independent of players’ locations, while the spatial
context models the temporal evolution of the ball conditioned on image evidence. In
other words, the pairwise term encodes both empirical knowledge and contextual infor-
mation. Formally, we write

p(yt+1 |yt§ X, WQ) = plactics(ytJrl |yt; W2) pcontext(yt+1 |yt; X, W2)7
Eq.[§]

)

Mwhere pectics and peontext Model teams’ tactics and spatial context respectively. In the
next section we show our features derived from geometric primitives defined on the
BOM, and how we apply these features to learn Eq.

Learning of the Pairwise Potential We define d~f’k/ as the distance between player &k
and player £’ at time ¢; d} ¥ as the distance between peak j at time ¢ + 1 and player £ at

time ¢; and cﬁ’j " as the distance between peak j at time ¢ and peak j' at time ¢ + 1. An
example of these primitives is shown in Fig.

Learning peontexte M To learn the spatial context term, we apply a truncated zero-mean
Laplace distribution &(- ; A) with parameter A € R? specifying its bandwidth and the
truncation threshold. Note that, this distribution is a radius basis function whose proba-
bility depends only on distances. Since all our features for learning peontex: are derived
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based on distances, this simple model serves our purpose well. We write,

pcontext(yt+1 = kllyt = k/’) = C;'_ll
X ﬂ(min{lﬂ’jl — Wpat|} .75 A1) =0 e =0)

3,3’ ) ’
X "(mjmﬂdik — Vpat| }j5 Ag) T =0 e =) ®
X “(min{hﬁ’j — Upan| } 53 >\3)1(”:1)'1(”“:0>

J

> K(Jf,k/ ;A4)1(7't:1)~1(m+1=1)’

Mwhere C, 1 is a normalization constant, vy, is the average speed of the ball in flight,
1(-) is an indicator function, and X and W5 are implicit. Note that, peontex; is modeled as
a product of four zero-mean Laplace distributions, and the indicator variable guarantees
that only one distribution can be selected. The four distributions model the following
four scenarios:

1. The ball being free at time ¢ and ¢ + 1. In this case, the min operator operates
on the distances between BOM peaks at time ¢ and ¢ + 1, and selects the one that
is closest to the average speed of the ball. With the Laplace distribution (- ; A),
the probability is peaked when the distance is equal to the average ball speed. In-
tuitively, the fact that two ball detections whose distance approximates the average
speed of the ball, is an evidence of the ball being free.

2. Player k receiving the ball at time ¢ 4+ 1. With the min operator, we select the
BOM peak at time ¢ whose distance to player k at time ¢ + 1 best approximates
the average speed of the ball. When they are equal, it is an evidence of a player
receiving the ball, in which case the probability is peaked.

3. Player k shooting the ball at time ¢. It is semantically symmetric to to last case:
we select the BOM peak at time ¢ + 1 whose distance to player k at time ¢ best
approximates the average speed of the ball. When they are equal, it is an evidence
of a player shooting the ball, in which case the probability is peaked.

4. Players in possession of the ball at time ¢ and ¢ + 1. In this case, the probability
decreases as the distance between players increases. This term encodes that, the
probability of ball transition between players is high when the players are closed,
and vice versa.

Note that, in all the above cases, when the distance is larger than the truncation threshold
of k(- ;A\), the probability collapses to zero. This corresponds to the fact that, a ball
cannot physically transit to a distant place within one frame given sufficient frame rate.

We learn the A’s by minimizing the classification error on a training sequence
(y%l7 RN y%f ). In our experiments we have found it sufficient to use a single X for all the
terms in Eq.[8] and perform a grid search with fewer than ten values in each dimension.

Learning piaciics We learn puciics (Y:+1|y¢) by decomposing it into two multinomial dis-
tributions with respect to the two possible outcomes for 7;. The first distribution takes
the form of p(£21|r; = 0), where 21 = {ys+1 = ©,y++1 # ©}. The second distribu-
tion takes the form of p(£22|y:, 7+ = 1), where 25 = {yt11 = ©,Ys+1 = Vs, (Yt41 #
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y) A (p(Ye+1) # p(Ye)), i1 # ye) A (p(Yes1) = p(ye))}. We learn the parameters
of these multinomial distributions using maximum-likelhood estimation. M In other

words, we learn the following empirical frequencies: 1) the ball being free, 2) the ball
received by a player, 3) the ball shot by a player, 4) a player in possession of the ball,
5) the ball being stolen by a player from the other team and 6) the ball given to a player
in the same team.

4 Complete System

To validate our approach we implemented a complete system for tracking a ball in team
sports over an extended period of time. Because the system, summarized in Alg. 1,
exploits knowledge about the scene, we will refer to it as Focus on the Scene (FoS).

The input to our system comprises multi-view video sequences in the temporal in-
terval ¢t € [1, T], and W, the parameters of for the unary and the pairwise potential.
In Step 1 players and referees are tracked, and labeled according to their team mem-
bership. In Step 2, the phase of the game, i.e., S = {p(s¢)}, is estimated. In Step 3,
B = {BOM;} is obtained for ¢t € [1, T]. In Step 4, the algorithm performs temporal
segmentation by detecting long pass segments T and labelling the rest as T ; this step
is defined in Sec [d.2] In Step 5, for every time index ¢ € T, the algorithm assigns y;
the © label. In Step 6, the algorithm finds the y;’s for ¢ € T, that minimizes the loss in
Eq.[1} given that y» = © for ¢’ € Ty. The optimal sequence of ball states 1, . .., §r
computed in Step 6 is transformed into a sequence of ground-plane cells g1, . .., g by
indexing player locations in X when y # © and linearly interpolating between player
locations for y = ©.

In the remainder of this section we state the algorithm’s main components. We then
describe the parameter settings.

Algorithm 1: Focus-on-the-Scene (FoS) ball tracking

Input: Multi-view video sequences for ¢ € [1, T and

W = {parameters of ¢, and 1, (Sec[3.2]and[3.3)}.

track players and assign team labels (Sec.

estimate S, the phase of the game (Sec.

compute B = {BOM, } for ¢ € [1, T (Sec.[4.2)

segment [1, T| = ToUT;, where ToNT; = @, and T corresponds to long passes
(Sec.[.2)

sety; < o fort € Ty

6. let X = (player tracks, B, S) and

set Y1, ...,Yr arggér;;%T Ly1,...,yr; X, W)

b

e

Output:
a1, - .-, gr < linearly interpolate (g1, ..., 9r)
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4.1 Game phase and player trajectories

Our implementation of player-tracking and trajectory-estimation takes advantage of
known approaches and publicly-available software.

Inferring the phase of the game Our set of features Xpnas is inspired by [16], except
that in our case player trajectories and team membership are determined automatically,
and referees are also tracked. Our feature vector Xphase comprises: 1. locations of play-
ers, sorted along the court length within their own team; 2. velocities of all players,
sorted within their own team; 3. locations of centroids of each team; 4. velocities of
centroids of each team.

We learn a random forest to infer the phase of the game. Our training set comprises

pairs (Xphase; 5)-

Player tracking To track the players on the ground plane, we apply the Multi-Commodity
Network Flow proposed in [28]], which relies on the publicly-available software [4}|5].
We obtain people tracks with team memberships from the two teams and the referees.

4.2 Ball detection and ballistic trajectory estimation

Our monocular ball detection relies on standard methods described in Sec[4.2] These de-
tections are accumulated in BOM, a novel data structure which is described in Sec.

Monocular ball detection To detect the ball from a single view, we first conduct eigen-
background subtraction [29] to extract the foreground pixels. M We obtain the template
color-histogram of the ball from our training sequence as follows: for each training
image, we obtain the histogram of the Hue, Saturation and Value channels separately,
and then we concatenate them into one single histogram; finally we average all such his-
tograms from all training images and obtain the template histogram of the ball. Then we
scan all the foreground pixels in a sliding-window manner, obtain the color-histogram
of the current window and compute the inner-product between the template histogram
and the current histogram. Thus, we get a confidence for each pixel being the center of
the ball. We also apply the hough circle transform to detect round objects. For each de-
tected circle, we increase the confidence by ;. Moreover, we increase the confidence
of pixels that are not part of players by 5. This is because we conduct detection by
background subtraction, moving object that is not part of players is likely to be the ball.
In our implementation, we obtain the per-view projections of the players, and then in-
crease the confidence of the ball detections that fall outside of the players’ projections.

Constructing the Ball Occupancy Map (BOM) Monocular image evidence for the
ball can be quite noisy due to the small apparent size of the ball and frequent occlusions.
Reconciling this noisy information across multiple views is therefore non-trivial. Since
our inference is performed in terms of the ground-plane player locations we accumulate
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evidence for the ball in a sparse ground-plane representation called the Ball Occupancy
Map (BOM), which was introduced in Sec. 3} which we now define precisely.

Starting with the per-view detection results, we apply triangulation to reconstruct
the 3D ball detections in a pair-wise manner. In other words, for any two detections
from two views, we cast the lines of sight. Only those pairs of lines that cross within
a threshold ¢ are kept, from where a 3D position of the point closest to both lines is
recovered. The score of such 3D detection is set to be the product of per-view detections.
In case there are more than two views, we project the obtained 3D detection on other
views, and multiply the corresponding scores. Once we compute the scores, we project
the 3D intersections onto the ground plane. We refer to these projections as BOM peaks,
and we set the scores of BOM peaks to be the scores of the corresponding 3D detections.
In Fig. 3] we show an example of BOM, where players are denoted by squares and the
peaks of BOM are denoted by circles.

Temporally segmenting long passes As mentioned in Sec. |3 we consider long passes
as evidence for the ball being free. The approaches of [[13}30]] and others have addressed
the problem of finding segments of parabolic trajectories. However, our objective is to
only temporally segment the long pass, rather than smoothing those track segments with
the second-order model. In the basketball case, our algorithm grows parabolic segments
from detections and stops when the coefficient of determination is below a threshold; in
the soccer case, our algorithm detects segments whose distance to the nearest player is
larger than a distance threshold.

4.3 Parameters

Our parameter settings are as follows. For the monocular ball detection, we set §; = 0.2
and B2 = 0.1. For long passes detection, we set the coefficient of determination to be
0.95 for temporal segmentation in the basketball case, and distance threshold to be
1.5 m in the soccer case. We use M a publicly-available implementation [31]] of the
random forest classifier with default parameters and 1,000 trees. For the peopeext term in
Eq.[8| we set A = (103,300 cm) and XA = (1073, 800 cm) for basketball and soccer
respectively.

S Experiments

We validate our approach on challenging basketball and soccer video sequences, de-
scribed below. M For all datasets, we provide videos with our tracking results. They are
available from: http://cvlab.epfl.ch/research/balltracking.

5.1 Datasets

We have used two sequences of the FIBAW (women’s championship at Karlovy Vary)
dataset captured at the 2010 women’s world championship: 1. Mali vs. Senegal match
(FIBAW-1), 8,480 frames; 2. Czech Republic vs. Belarus (FIBAW-2), 2,850 frames.
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Fig. 5. Comparison of FoD and FoS tracking. The performance of FoS approaches that
of the oracle and is decisively better than FoD, particularly in the accuracy range of
< 100 cm. The results are obtained by fixing n = 1. From left to right: results on
FIBAW-1, FIBAW-2, APIDIS and ISSIA dataset.

The matches are captured by ten stationary synchronized 25-frame-per-second cameras
with resolutionM of 1294 x 964. For the two matches, the cameras are placed at different
places around the court. We use three cameras for FIBAW-1 and four for FIBAW-2 with
overlapping fields-of-view; these cameras are sufficient for having a coverage of at least
two different views for the entire court. We have manually annotated one out of every
ten frames for FIBAW-1 and 500 consecutive frames for FIBAW-2, and we perform the
quantitative comparison using these frames.

The APIDIS dataset is presented in [32]. It comprises a basketball match sequence
captured by seven stationary unsynchronized 2-megapixel 22-frames-per-second cam-
eras placed above and around the court. The authors also provide a pseudo-synchronized
sequence and we conduct tracking on it. The APIDIS dataset is challenging for ball
tracking because the camera locations are not optimized for capturing the ball and the
lightning conditions are far from optimal, as there are many direct light sources which
are reflected on the court while some other regions are shaded. Especially when the
ball is near the basket, the ball is completely merged with the background. We use two
cameras with overlapping fields-of-view and choose a sequence of an attacking phase,
whose length is much longer than other ball-based work on the same dataset, such
as [115].

The ISSIA dataset comprises a multi-view soccer sequence [33] of 3,000 frames
captured by six full-HD 25-frames-per-second cameras placed in two sides of the soc-
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APIDIS FIBAW-2 ISSIA

Fig. 6. Projection of FoS tracking results (in black circles) and the ground truth (in
red stars) overlaid on an orthographic view of the court. The real and the recovered
trajectories are almost superposed. (left) Results on the APIDIS dataset, frames [1 400]
(middle) FIBAW-2 dataset, frames [975 1354] (right) ISSIA dataset, frames [880 1399].

cer field. We use all the cameras for our experiments. However, the camera settings are
designed specifically for player tracking, and thus they do not provide a complete con-
verge of the ball when it is flying in the air. We conduct tracking on a sequence of 2,000
frames where the ball is mostly in sight.

5.2 Baseline methods

Because our FoS approach is novel and our testing sequences are challenging, there
is no closely related baseline that we can use for comparison. As mentioned in the
introduction, the state-of-the-art approach of []Z[], which has been shown to be successful
in single object tracking, never tracks the ball for more than five consecutive frames. We
therefore compare our approach both to a detection-linking tracker operating in a batch-
smoothing framework and to a version of our approach that does not use the features
that we derived from BOM and the player trajectories. We describe the two baselines
below.

Focus on Detection (FoD) We implement a detection-linking approach that we call
Focus on Detection (FoD). The baseline FoD ball tracker involves three steps: ball
detection in each camera view using the same detector that was defined in Sec. 2]
generation of the candidate ball locations in 3D using the same approach as defined in
Sec. but without projecting these candidates into BOM in the ground plane, and
linking the 3D detection candidates. Similarly to the FoS tracker, we use two motion
models: a second-order model during long passes and a first-order model otherwise.

FoS with Non-Conditioned Potentials We implement 1 and 13 that are not conditioned
on X. The non-conditioned 7 follows Eq.[5|as does 1)1, but we now set p(r = 0) to
a constant learned from the data, and we set p(y|r = 1) to be (1 — p(r = 0))/K.
The non-conditioned 13 follows Eq. [7] but since now pcontext does not depend on X, it
becomes a uniform distribution. This baseline is useful in evaluating the contribution of
the novel features we derived from BOM and the player trajectories. In particular, we
will evaluate the contribution of 1)1 vs. 1] and 3 vs. 13 to the overall accuracy of our
algorithm. M In addition, we also test the CRF model with only the unary term in Eq.[]]
to judge the importance of the pairwise potential.
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5.3 Performance Metrics

For experimental validation we compute the tracking accuracy score (TA), which is
defined as

TA(7) = & Zt:m TP(t; 7) 9)

and summarize the quality of the tracker as a non-negative score in [0, 1], the higher
the score the better. The TA curve is also known as the “precision plot” in [34]. When
the output of the tracker is within a distance threshold 7 centimeters from the annotated
ground truth location, we define the detection as a True Positive TP(¢; 7) detection.
Rather than picking a 7 value arbitrarily, we present our results for a range of 7 as a
monotonically increasing curve, e.g. 7 € [5..125] cm for basketball. With a fixed 7, the
True Positive rate over all frames is known as the Success Rate (SR) [2].

To provide a complete summary of performance, we also use the Center Location
Error (CLE) metric [34], which is defined as the distance between the tracking result
and the ground truth on the ground. A small CLE indicates accurate tracking. The mean
of CLE (i.e. MCLE), defined as the average CLE over a sequence, is also used in our
evaluation.

5.4 Results

For basketball, we train classifiers for the unary potential using the FIBAW dataset, test
on the APIDIS dataset, and vice versa. For soccer, due to there being only one sequence
available, we are not able to learn a unary potential conditioned on image evidence.
Therefore, we apply FoS with a non-conditioned unary potential. We set n = 1 for
basketball sequences and fix the parameters as specified in Sec. [d.3] We compute the
TA curve and the MCLE for each test sequence. If the ball is not detected as part of a
long pass and is inferred to be free, we conduct the following processing for better vi-
sualization: first, we obtain the BOM peak whose distance is closest to the interpolated
location on the ground, then we find the corresponding 3D ball detection, and last we
project the 3D ball detection on each camera view.

Min Fig.[8] we show the performance of long pass segmentation using the approach
discussed in Sec. We take the segmentation accuracy to be the number of frames
that are correctly classified as long passes, over the number of frames whose ground
truth are long passes or classified as long passes. As can be seen, the segmentation
does not perform well by itself, due to the noisy ball detections. However, our proposed
approach is able to take advantage of these noisy input and produce dependable ball
tracking as shown in Fig. [5] In Fig.[6] we show ball trajectories on an orthogaraphic
view of the court. We observe that on all datasets, our obtained trajectories and ground-
truth trajectories are almost superposed.

FoS tracking vs. FoD tracking In Fig.[5] we show the comparison of tracking perfor-
mance by TA curve. We compare three approaches: FoD, FoS and oracle, which corre-
sponds to a human observer specifying which player, if any, is in possession of the ball.
Our FoS tracker significantly improves over the baseline FoD tracker and approaches
the oracle tracker on all sequences. For the APIDIS dataset, the huge improvement sug-
gests that with such bad lighting conditions and occlusions of the players it is difficult
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Fig. 7. Tracking performance with different settings of n, i.e. the number of BOM peaks
used for training the unary potential.
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Fig. 8. Accuracy of long pass segmentation. We apply the approach as described in
Sec.[#.2] and show the resulting accuracy on the four datasets.

to track the ball relying only on direct ball detections. The same trend is observed on
the other datasets.

Parameters of FoS In Fig.[]} we show the tracking accuracy of our FoS tracker for
different settings of n, trained on FIBAW-1 and tested on APIDIS. The obtained results
are similar. We have also trained on APIDIS and tested on both FIBAW-1 and FIBAW-
2, where the same trend is observed.

Performance of classification tasks M We learn classifiers to estimate p(s), p(r) and
p(y|s,r = 1). Here we show performance of classification using random forest, trained
on FIBAW-1 and tested on APIDIS dataset. We apply the approach as described in
Sec. to learn p(s), and we obtain a resulting accuracy of 0.81, where the accuracy
is defined as the number of frames whose phase is correctly classified over the total
number of frames. Recall that this classification task is a 3-class classification problem
(i.e., each team attacking and time-out) and each frame is classified independently. We
found that most classification errors happen in frames that are temporally close to the
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Fig.9. Contribution of the pairwise term and conditioned unary/pairwise terms. (left)
Results on the FIBAW-1 dataset (middle) Results on the FIBAW-2 dataset (right) Re-
sults on the APIDIS dataset. We compare FoS tracker against three baselines: the one
without pairwise term (i.e., Unary Only), the one with non-conditioned unary (i.e., Non-
cond. Unary) and the one with non-conditioned pairwise (i.e., Non-cond. pairwise).

phase transitions, such as from one team attacking to time-out. For example, when a ball
falls into the basket, we consider it as the start of a time-out. However, by looking at the
players’ locations alone, it is even challenging for a human observer to tell whether such
frame is time-out or not. On learning p(r), we obtain a recall of 0.71 and a precision
of 0.53. The recall and precision are defined as the number of frames where the ball is
correctly classified as being free, over the total number of frames that the ball is indeed
free, and the total number of frames that the ball is classified as free, respectively. On
learning p(y|s,” = 1), we obtain a resulting accuracy of 0.45 where the accuracy
is defined as the number of frames where ball possession is correctly classified over
the total number of frames where someone is in possession of the ball. Note that, the
classifiers do not perform very well on their own, however our CRF model corrects the
part of errors with the help of the pairwise term and produces reliable ball trajectories.

Contribution of image evidence As Fig.[9]indicates, using our proposed conditioned po-
tentials yields decisive improvement. In particular, when the non-conditioned pairwise
potential is used, the accuracy is significantly lower, particularly for 7 > 60 cm. The
effect of the non-conditioned unary potential exhibits the same trend for both datasets,
roughly following the curve for the non-conditioned pairwise term, and below the ac-
curacy for the model that uses X in both terms. M When only the unary term is used,
the tracking accuracy drops significantly on all the datasets, which indicates that the
pairwise potential plays an important role in improving the tracking results.

In Table[2]and Table [3| we show the Success Rate (SR) of all algorithms, at distance
thresholds of 30 cm and 100 cm respectively. On all the datasets, FoS yields an SR over
50 percent at a threshold of 30 cm and over 78 at a threshold of 100 cm, which are
significant higher than other trackers.

In Fig. [T3] we show the performance of different trackers using MCLE. The FoS
agains yields significant improvement. On the FIBAW-1 dataset, the MCLE is around
100 cm for FoS and >300 cm for FoD. This means that on average, our tracking result
is as close as 100 cm to the ground truth, which is reasonably satisfactory given the size
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of basketball court is 28 m x 15 m. The same trend is also observed on the APIDIS
dataset: the MCLE is less than 40 cm for FoS and around 75 cm for FoD. On the ISSIA
dataset, the MCLE is 162.7 cm for FoS and 272.3 cm for FoD. Note that the MCLE we
obtained for soccer is larger than that of basketball. This can be explained in part by the
definition of ball possession in soccer: when players dribble the soccer ball, they may
let it roll on the ground ahead of them. Therefore, the distance between the player and
the ball is larger than that of basketball.

We show CLE versus frame and the corresponding tracking results on the APIDIS
dataset in Fig.[T0] We observe that the CLE of FoS is less than 30 cm in most frames
and is never larger than 200 cm. From frame 205 to 275, the CLE of FoS is large, as it
tracks a player who M is not in possession of the ball. FoS makes such errors because
the tracked player and the player who is indeed M in possession of the ball are of the
same team and close to each other. From frame 260 to 400, there is a significant diver-
gence of the non-conditioned unary tracker, as it incorrectly assigns the ball to a player
who is far from the ground truth. From frame to frame, the CLE of non-conditioned
pairwise tracker fluctuates widely. This is because we ignore X by assuming peontext as
a uniform distribution, and the distances between players are not encoded in the tran-
sition probability. Therefore, the transition between two players who are far apart does
not get penalized, which results in the fluctuation in tracking results and the CLE.

Table 2. Success Rate (SR) at the threshold of 30 cm

Algorithm FIBAW-1|FIBAW-2|APIDIS
FoD 0.544 0.426 | 0.354
Non-cond. Unary 0.558 0.320 | 0.323
Non-cond. Pairwise|| 0.456 0.372 0.258
FoS 0.684 0.506 | 0.613

Table 3. Success Rate (SR) at the threshold of 100 cm

Algorithm FIBAW-1 |FIBAW-2|APIDIS
FoD 0.665 0.604 | 0.532
Non-cond. Unary 0.697 0.626 | 0.436
Non-cond. Pairwise|| 0.572 0.634 0.403
FoS 0.828 0.784 | 0.839

Analysis of Failures Our proposed FoS tracking approach decisively improves on the
state-of-the-art. However, given the ambiguous image evidence and close proximity of
the players in our datasets, the FoS tracker may sometimes yield incorrect results. We
show some cases where the estimated ball location differs from the ground truth in
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Fig. 10. (top) Center Location Error (CLE) versus time, (center) obtained ball states, and
(bottom) example tracking results on the APIDIS dataset. The temporal range evaluated
is frames [1 400], which is an attacking phase that contains interesting cases such as
shot-passes and FoS failures. In the obtained ball states, we show the frames where the
ball is predicted to be free by purple, and possessed by blue. We use different markers
to represent different players in possession of the ball. In (a)-(f), the FoS tracker assigns
the ball to the correct player. The non-conditioned unary tracker succeeds in (a)-(c) but
fails in (d)-(f); the non-conditioned pairwise tracker succeeds only in the case of (f); the
FoD tracker fails in all the cases.

the example tracking results. In Fig. [I0[c) and Fig. [I2[d), the tracker assigns incorrect
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Fig. 11. Example tracking results on the FIBAW-1 dataset. FoS assigns the ball to the
correct player in (a), (b) and (c) during attacking phases, and in (d) during timeout. In
(b), although FoS assigns the ball to the correct player, the tracking is less precise than
FoD, which tracks the ball itself.

player M possession. In Fig. [[T(b), because the ball detection is close to a player, FoS
assigns the ball to that player, while the FoD maintains the correct 3D location.

One approach to preventing these types of mistakes is to refine the model of ball M
possession. In particular, the tactics and the context terms of Eq.[7]could be guided by a
more nuanced knowledge of the particular sport. In applications where post-processing
of the ball trajectories is feasible, such post-processing can be guided by a higher-order
model of the tactics.

Summary of Experiments Our FoS approach decisively outperformed the state-of-the-
art FoD on all of our datasets as measured by the standard tracking-performance met-
rics. This outcome was obtained by automatically learning the parameters of our model,
and keeping all other parameters of our complete system fixed across all experiments.

In addition to higher accuracy, FoS is computationally-efficient. On a Quad-Core
2.50 GHz CPU running MacOS, given pre-computed monocular ball detection M and
excluding the frame rate,the throughput of FoS is 8-10 frame/sec.
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Fig. 12. Example tracking results on the FIBAW-2 dataset. FoS assigns the ball to the
correct player in (a), (b) and (c) during attacking phases, yet fails in (d) during timeout:
a player in a white jersey is in possession of the ball, while FoS tracks a nearby player
in a red jersey.
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Fig. 13. Performance comparison using the Mean Center Location Error (MCLE) met-
ric. The MCLE of FoS is lower than other trackers on all datasets.
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Fig. 14. Example tracking results on the ISSIA dataset. FoS tracks the correct player in
(a) and (c), but tracks the incorrect one in (d). In (b), the ball is detected as part of a
long pass. In (c), the player dribbles the ball by letting it roll. In this case, although the
player is in possession of the ball, the distance between the ball and the player is large
compared with that of basketball.

6 Conclusion

We have presented a novel approach for tracking the “invisible” ball in team sports,
which works in contrast to the common ball-tracking approaches. In our approach, we
first track players, decide M who is in possession of the ball and then utilize players’
trajectories to achieve reliable ball tracking. By introducing state space that explicitly
accounts for the ball M possession, we define our loss function as a CRF, whose unary
and pairwise potentials are conditioned on image evidence. We factorize the unary po-
tential with respect to whether the ball is free or not as well as the phase of the game,
and then learn the potentials using properly trained classifiers. We factorize the pairwise
potential with respect to tactics and context.

We have applied our proposed tracker to challenging basketball and soccer se-
quences up to 8,480 frames. Our approach compares favorably to the state-of-the-art
using all evaluation metrics. We also demonstrates the contribution of conditioned unary
and pairwise potentials using the same evaluation metrics.

In future work we plan to jointly learn parameters of the unary and the pairwise
terms. We also look forward to applying our technique to other sports, such as hand-
ball and volleyball. M Finally we ran an informal experiment at the CVPR’13 con-
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ference [35]]. It showed convincingly that given well-defined team formations, domain
experts and even some amateur players can predict the location of the basketball. We
expect to include such sport-specific prior knowledge into the framework in our future
work.
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