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Cross-calibration of Time-of-flight and
Colour Cameras?

Miles Hansard · Georgios Evangelidis · Quentin
Pelorson · Radu Horaud

Abstract Time-of-flight cameras provide depth information, which is complementary to the photo-
metric appearance of the scene in ordinary images. It is desirable to merge the depth and colour
information, in order to obtain a coherent scene representation. However, the individual cameras will
have different viewpoints, resolutions and fields of view, which means that they must be mutually
calibrated. This paper presents a geometric framework for the resulting multi-view and multi-modal
calibration problem. It is shown that three-dimensional projective transformations can be used to align
depth and parallax-based representations of the scene, with or without Euclidean reconstruction. A
new evaluation procedure is also developed; this allows the reprojection error to be decomposed into
calibration and sensor-dependent components. The complete approach is demonstrated on a network of
three time-of-flight and six colour cameras. The applications of such a system, to a range of automatic
scene-interpretation problems, are discussed.

Keywords Camera networks · Time-of-flight cameras · Depth cameras · Camera calibration · 3D
reconstruction · RGB-D data

1 Introduction

The segmentation of multi-view video data, with respect to physically distinct objects of interest,
is an essential task in automatic scene-interpretation. Visual segmentation can be based on colour,
texture, parallax and motion information (e.g. [1,2]). The task remains very difficult, however, owing
to the combined effects of non-rigid surfaces, variable lighting, and occlusion. It has become clear that
depth cameras can make an important contribution to scene understanding, by enabling direct depth
segmentation, based on the measured scene-structure (see CVIU special issue [3]). This approach is
also highly effective for dynamic tasks, such as body tracking and action recognition [4]. Furthermore,
if depth and colour information can be merged into a single representation, then a complete 3-d
representation is possible, in principle. This is clearly desirable, because colour and texture data are
essential to many other aspects of scene-understanding, such as identification and tracking [5].

There are two major obstacles to the construction of a complete scene representation, from a multi-
modal camera network. Firstly, typical depth sensors are unable to capture rgb data [6]. This means
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that the depth and colour cameras will have different viewpoints, and so the raw data are inconsistent.
Secondly, typical tof and rgb cameras have limited fields of view, and so the depth and colour data
are incomplete. This paper addresses both of these problems, by showing how to estimate the geometric
relationships in a multi-view, multi-modal camera network. This task will be called cross-calibration.

In order to constrain the problem, two practical constraints are imposed from the outset. Firstly,
the system will be based on time-of-flight (tof) cameras, in conjunction with ordinary rgb cameras.
The tof cameras are compact, can be properly synchronized, and are industrially specified, e.g., [6].
Secondly, a modular network of tof+rgb units is required. This is so that individual units can be
added or removed, in order to optimize the scene-coverage.

1.1 Overview

Time-of-flight cameras can, in principle, be geometrically calibrated by standard methods [7]. This
means that each pixel records an estimate of the scene-distance (range) along the corresponding ray.
The 3-d structure of a scene can also be reconstructed from two or more ordinary images, via the
parallax (e.g. binocular disparity) between corresponding image points. There are many advantages
to be gained by combining the range and parallax data. Most obviously, each point in a parallax-
based reconstruction can be mapped back into the original images, from which colour and texture can
be obtained. Parallax-based reconstructions are, however, difficult to obtain, owing to the difficulty of
putting the image points into correspondence. Indeed, it may be impossible to find any correspondences
in untextured regions. Furthermore, if a Euclidean reconstruction is required, then the cameras must
be calibrated. The accuracy of the resulting reconstruction will also tend to decrease with the distance
of the scene from the cameras [8].

The range data, on the other hand, are often corrupted by noise and surface-scattering. The spa-
tial resolution of current tof sensors is relatively low, the depth-range is limited, and the luminance
signal may be unusable for rendering and for classical image processing. It should also be recalled that
tof cameras, of the type used here, cannot be used in outdoor lighting conditions. These considera-
tions lead to the idea of a mixed colour and time-of-flight system, as described in [9]. Such a system
could, in principle, be used to make high-resolution Euclidean reconstructions, including photometric
information [10,11].

In order to make full use of a mixed range/parallax system, it is necessary to find the exact
geometric relationship between the different devices. In particular, the reprojection of the tof data,
into the colour images, must be obtained. This paper is concerned with the estimation of these geometric
relationships. Specifically, the aim is to align the range and parallax reconstructions, by a suitable 3-d
transformation.

Fig. 1 A single tof+2rgb system (left), comprising a time-of-flight camera in the centre, plus a pair of ordinary colour
cameras. This paper addresses the problem of simultaneously cross-calibrating many such systems (right), as a foundation
for scene understanding
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1.2 Previous work

Multi-view depth and colour camera-networks, of the kind used here, produce data-streams that are
subject to a variety of geometric relationships [12]. These relationships depend on the calibration state,
relative orientation, and fields of view of the different cameras. It follows that a variety of calibration
strategies can be adopted. These are discussed below, with reference to the literature, and contrasted
with the approach presented here.

Perhaps the simplest way to combine rgb and tof data is to perform an essentially 2-d registration
between the images and depth maps, as reviewed in [13]; see also [14,15,16]. This 2-d approach,
however, can only provide an instantaneous solution, because changes in the scene-structure produce
corresponding changes in the image-to-image mapping. Moreover, owing to the different viewpoints, a
complete registration will usually be impossible. If the depth camera also produces a reliable intensity
image, then photo-consistency can be used as a 3-d calibration criterion. For example, Beder et al.
[17] (see also [18,19]) reproject the intensities of the depth data into the colour images, and optimize
the camera parameters with respect to the photo-consistency.

Zhu et al. [20] (see also [21]) present a sensor-fusion framework for the integration of tof depth and
binocular disparity information. This method assumes that a dense disparity map is being computed
on-line, which is not required by the method presented in this paper. Furthermore, the geometric
calibration method [20] requires manual identification of corresponding points, and is based on a weak
perspective camera model. In contrast, our method is automatic, and is based on the more appropriate
perspective camera model. However, [20] is complementary to our method, in the sense that their
sensor-fusion framework (along with a dense stereo-matcher) could be combined with the projective
calibration method described below. Wang and Jia [22] describe a related sensor-fusion framework for
Kinect (rather than tof) depth data and colour images.

Another approach to the multi-modal calibration problem is to apply standard methods, as far as
possible, to the depth cameras. Wu et al. [23] describe an example of this approach. Lindner et al. [9]
analyze the applicability of standard methods to tof cameras, as well as characterizing the accuracy
of the depth data. Mure-Dubois and Hügli [24] describe the Euclidean alignment of multiple tof point
clouds, having calibrated the cameras by standard methods.

Silva et al. [25] describe a cross-calibration methodology that is based on the identification of
3-d lines in the tof data, which are then projected to corresponding 2-d lines in the rgb images.
This method does not require a chequerboard or other calibration pattern; it does, however, require
the existence and detection of straight depth-edges throughout the scene. The approach of Silva et
al. also involves a non-trivial correspondence problem, which in turn influences the calibration accuracy.
Our method uses a standard chequerboard pattern, with a known number of vertices, for which the
correspondence problem is relatively straightforward.

Zhang and Zhang [26] present cross-calibration methodology that is based on plane constraints,
as given in [27]. This has the advantage of not requiring 2-d features to be detected in the (low
resolution) tof images. However, this method cannot address the crucial issue of lens distortion, which
is considerable in typical tof cameras [28]. A related Kinect-based calibration system is described by
Herrera et al. [29], again using the plane-based method of [27]. Herrera et al. give a careful analysis
of the Kinect intrinsic parameters, including lens and depth distortion. The latter is analyzed in more
detail by Teichman et al. [30]. Our method does require features to be detected in the tof images, but
this also makes it straightforward to estimate the lens parameters, using standard techniques.

Mikhelson et al. [31] describe an automatic method for registering a Euclidean point-cloud (ob-
tained from a Kinect device) to its 2-d image-projections. This method, like ours, is based on a
chequerboard target. However, Mikhelson et al. perform Euclidean 2-d/3-d registration, in contrast to
the more general projective 3-d/3-d registration that is described below. Finally, there are methods
that perform 3-d/3-d registration of dense data, subject to pointwise adjustments [32]. This strategy
can achieve very close registrations, but introduces a more complex optimization problem, which is
not fully compatible with the standard calibration pipeline.
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1.3 Paper organization and contributions

This paper is organized as follows. Section 2.1 briefly reviews some standard material on projective re-
construction, while section 2.2 describes the representation of range data in the present work. The chief
contributions of the subsequent sections are as follows: Section 2.3 describes a point-based method that
maps a classical multi-view reconstruction (projective or Euclidean) of the scene onto the correspond-
ing tof representation. The data are obtained from a tof+2rgb system, as shown in figure 1. This
does not require the colour cameras to be calibrated (although it is necessary to correct for lens dis-
tortion). It is established that this model includes a projective-linear approximation of the systematic
tof depth-error.

Section 3 addresses the problem of multi-system alignment, which is necessary for complete scene-
coverage. It is shown that this can be achieved in a way that is compatible with the individual
tof+2rgb calibrations. The complete cross-calibration pipeline, given a collection of chequerboard
images, is fully automatic.

Section 4 contains a detailed evaluation of these methods, using several large data-sets, captured
by three tof+2rgb systems (i.e. a nine-camera network). In particular, section 4.1 extends the usual
concepts of reprojection error [12] to the multi-modal case. Section 4.2 then introduces a new metric
for mixed tof/rgb systems, which measures instantaneous sensor noise, as well as calibration error.
The appropriateness of the 3-d homography transformation, as opposed to a similarity transformation,
is tested in section 4.3. Section 4.4 discusses possible applications of these systems, including some real
3-d reconstruction examples. Conclusions and future directions are discussed in section 5.

The system presented here is based on the approach introduced by Hansard et al. [33,34]. The earlier
work has been improved, and extended to the case of multiple tof and colour cameras. In addition,
a new evaluation methodology has been developed, as described above. The automatic detection of
calibration targets in the low-resolution tof images, which is a pre-requisite for the methods described
here, was developed in a separate paper [7].

2 Cross-calibration

This section describes the theory of projective alignment, using the following notation. Bold type will
be used for vectors and matrices. In particular, points P, Q and planes U, V in the 3-d scene will be
represented by column-vectors of homogeneous coordinates, e.g.

P =

(
PM

P4

)
and U =

(
UM

U4

)
(1)

where PM = (P1, P2, P3)> and UM = (U1, U2, U3)>. The homogeneous coordinates are defined up to a
non-zero scaling; for example, P ' (PM/P4, 1)>. In particular, if P4 = 1, then PM contains the ordinary
space coordinates of the point P. Furthermore, if |UM| = 1, then U4 is the signed perpendicular distance
of the plane U from the origin, and UM is the unit normal. The point P is on the plane U if U>P = 0.
The cross product u× v is often expressed as (u)×v, where (u)× is a 3× 3 antisymmetric matrix. The
column-vector of N zeros is written 0N . Projective cameras are represented by 3 × 4 matrices. For
example, the range projection is

q ' CQ where C =
(
A3×3 | b3×1

)
(2)

is a block-decomposition of the 3× 4 camera matrix. The left and right colour cameras C` and Cr are
similarly defined, e.g. p` ' C`P. Table 1 summarizes the geometric objects that will be aligned.

Points and planes in the two systems are related by the unknown 4 × 4 space-homography H, so
that

Q ' HP and V ' H−>U. (3)

This model encompasses all rigid, similarity and affine transformations in 3-d. It preserves collinearity
and flatness, and is linear in homogeneous coordinates. Note that, in the reprojection process, H can be
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Observed Reconstructed
Points Points Planes

Binocular C`,Cr p`, pr P U
Range C (q, ρ) Q V

Table 1 Summary of notations in the left, right and range systems.

interpreted as a modification of the camera matrices. For example, p` '
(
C`H−1

)
Q, where H−1Q ' P

is the point that would theoretically be reconstructed by triangulation.

The 4×4 homographies H include, as special cases, the rigid transformations that would align a fully-
calibrated Euclidean stereo-reconstruction to the tof measurements. There are two motivations for the
generalization. Firstly, it allows uncalibrated binocular reconstructions to be used, as described above.
Secondly, it has been shown elsewhere [10,20] that tof data are subject to systematic depth biases and
nonlinear distortions. These are difficult to correct, owing to the lack of a complete parametric model,
and to their dependence on the camera settings (e.g. integration time). Nonetheless, the homography
model (3) effectively includes a projective-linear approximation of the depth distortion, which is fitted
along with the other transformation parameters. This model is quite powerful: it includes rational
depth-distortions, with varying parameters, across each bundle of rays. For example, the two-parameter
inverse disparity calibration, as used with Kinect devices [29], is a special case of the homography model
described here. Indeed, even if the rgb cameras are fully calibrated, the 3-d homographies are needed
to account for depth-distortions and residual reconstruction errors, as demonstrated in [33]. This issue
will be explored in section 4.3, below.

2.1 Parallax-based reconstruction

A projective reconstruction of the scene can be obtained from matched points p`k and prk, together
with the fundamental matrix F, where p>

rkF p`k = 0. The fundamental matrix can be estimated auto-
matically, using the well-established ransac method. The camera matrices can then be determined,
up to a four-parameter projective ambiguity [12]. In particular, from F and the epipole er, the cameras
can be defined as

C` '
(
I | 03) and Cr '

(
(er)×F + erg>

∣∣ γer
)
. (4)

where γ 6= 0 and g = (g1, g2, g3)> can be used to bring the cameras into a plausible form. This makes
it easier to visualize the projective reconstruction and, more importantly, can improve the numerical
conditioning of subsequent procedures.

2.2 Range-based reconstruction

The tof camera C provides the range (i.e. radial distance) ρ of each scene-point from the camera-
centre, as well as the associated image-coordinates q = (x, y, 1). The back-projection of this point into
the scene is

QM = A−1
(
(ρ/α) q− b

)
where α =

∣∣A−1 q
∣∣. (5)

Hence the point (QM, 1)> is at distance ρ from the optical centre −A−1b, in the direction A−1q. The
scalar α serves to normalize the direction-vector. This is the standard pinhole model, as used in [35].

The range data are noisy and incomplete, owing to illumination and scattering effects. This means
that, given a sparse set of features in the intensity image (of the tof device), it is not advisable to
use the back-projected point (5) directly. A better approach is to segment the image of the plane in
each tof camera (using the the range and/or intensity data). It is then possible to back-project all
of the enclosed points, and to robustly fit a plane Vj to the enclosed points Qij , so that V>

jQij ≈ 0 if
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point i lies on plane j. Now, the back-projection Qπ of each sparse feature point q can be obtained by
intersecting the corresponding ray with the plane V, so that the new range estimate ρπ is

ρπ =
V>
MA−1b− V4

(1/α) V>
MA−1q

(6)

where |V4| is the distance of the plane to the camera centre, and VM is the unit-normal of the range
plane. The new point Qπ is obtained by substituting ρπ into (5).

The choice of plane-fitting method is affected by two issues. Firstly, there may be very severe
outliers in the data, due to the photometric and geometric errors in the depth-estimation process.
Secondly, the noise-model should be based on the pinhole geometry, which means that perturbations
occur radially along visual directions, which are not (in general) perpendicular to the observed plane
[36,37]. Several plane-fitting methods, both iterative [38] and non-iterative [39] have been proposed
for the pinhole model. However, for tof data, the chief problem is the large number of outliers. This
means that a ransac-based method is the most effective in this context [33].

2.3 Projective Alignment

It is straightforward to show that the transformation H in (3) could be estimated from five binocular
points Pk, together with the corresponding range points Qk. This would provide 5×3 equations, which
determine the 4× 4 entries of H, subject to an overall projective scaling. It is better, however, to use
the ‘Direct Linear Transformation’ method [12], which fits H to all of the data. This method is based
on the fact that if

P′ = HP (7)

is a perfect match for Q, then µQ = λP′, and the scalars λ and µ can be eliminated between pairs
of the four implied equations [40]. This results in

(
4
2

)
= 6 interdependent constraints per point. It is

convenient to write these homogeneous equations as(
Q4P′M − P ′4QM

QM × P′M

)
= 06. (8)

Note that if P′ and Q are normalized so that P ′4 = 1 and Q4 = 1, then the magnitude of the top half
of (8) is simply the distance between the points. Following Förstner [41], the left-hand side of (8) can
be expressed as

(
Q
)
∧P′ where (

Q
)
∧ =

(
Q4I3 −QM(
QM
)
× 03

)
(9)

is a 6× 4 matrix, and
(
QM
)
×PM = QM × PM, as usual. The equations (8) can now be written in terms

of (7) and (9) as (
Q
)
∧HP = 06. (10)

This system of equations is linear in the unknown entries of H, the columns of which can be stacked
into the 16 × 1 vector h. The Kronecker product identity vec(X Y Z) = (Z>⊗ X) vec(Y) can now be
applied, to give (

P> ⊗
(
Q
)
∧

)
h = 06 where h = vec

(
H
)
. (11)

If M points are observed on each of N planes, then there are k = 1, . . . ,MN observed pairs of points,
Pk from the projective reconstruction and Qk from the range back-projection. The MN corresponding
6× 16 matrices

(
P>
k ⊗ (Qk)∧

)
are stacked together, to give the complete system P>

1 ⊗
(
Q1

)
∧

...
P>
MN ⊗

(
QMN

)
∧

h = 06MN (12)
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subject to the constraint |h| = 1, which excludes the trivial solution h = 016. It is straightforward
to obtain an estimate of h from the SVD of the the 6MN × 16 matrix on the left of (12). This
solution, which minimizes an algebraic error [12], is the singular vector corresponding to the smallest
singular value of the matrix. Note that the point coordinates should be transformed, to ensure that
(12) is numerically well-conditioned [12]. In this case the transformation ensures that

∑
k PkM = 03

and 1
MN

∑
k |PkM| =

√
3, where Pk4 = 1. The analogous transformation is applied to the range points

Qk.
The above procedure effectively computes a projective basis in 3-d, which requires five points, no

four of which may be co-planar. This gives 5×3 numbers, which are equivalent to the 15 parameters of
the homogeneous 4×4 matrix H. In practice, however, we require full detection of 35 vertices per board,
and around 10 boards per homography (depending on visibility constraints). Hence the procedure
operates far from any degenerate cases, which would involve fewer than 15 degrees of freedom in total.

The DLT method, in practice, gives a good approximation HDLT of the homography (3). This can
be used as a starting-point for the iterative minimization of a more appropriate error measure. In
particular, consider the reprojection error in the left image,

E`(C`) =

MN∑
k=1

D
(
C`Qk, p`k

)2
(13)

where D(p, q) = | pM/p3− qM/q3|. A 12-parameter minimization of the reprojection error (13), starting
with the linear estimate C` ← C`H−1DLT, is then performed by the Levenberg-Marquardt algorithm [42].
The result will be the camera matrix C?` that best reprojects the range data into the left image (C?r
is similarly obtained). The solution, provided that the calibration points adequately covered the scene
volume, will remain valid for subsequent depth and range data.

Alternatively, it is possible to minimize the joint reprojection error, defined as the sum of left and
right contributions,

E
(
H−1

)
= E`

(
C`H−1

)
+ Er

(
CrH−1

)
(14)

over the (inverse) homography H−1. The 16 parameters are again minimized by the Levenberg-
Marquardt algorithm, starting from the DLT solution H−1DLT.

The difference between the separate (13) and joint (14) minimizations is that the latter preserves
the original epipolar geometry, whereas the former does not. Recall that C` Cr, H and F are all defined
up to scale, and that F satisfies an additional rank-two constraint [12]. Hence the underlying param-
eters can be counted as (12− 1) + (12− 1) = 22 in the separate minimizations, and as (16− 1) = 15
in the joint minimization. The fixed epipolar geometry accounts for the (9 − 2) missing parameters
in the joint minimization. If F is known to be very accurate (or must be preserved) then the joint
minimization (14) should be performed. This will also preserve the original binocular triangulation,
provided that a projective-invariant method was used [43]. However, if minimal reprojection error
is the objective, then the cameras should be treated separately. This will lead to a new fundamen-
tal matrix F? = (e?r)×C?r(C?` )

+, where (·)+ is the generalized inverse, and C?` , C?r are the optimized
camera-matrices. The epipole in the right-hand image is obtained from e?r = C?rd?` , where the vector d?`
represents the nullspace C?`d?` = 03.

3 Multi-System Alignment

The methods described in section 2.3 can be used to calibrate a single tof+2rgb system; the joint
calibration of several such systems will now be explained. In this section the notation Pi will be used
for the binocular coordinates (with respect to the left camera) of a point in the i-th system, and
likewise Qi for the tof coordinates of a point in the same system. Hence the i-th tof, left and right
rgb cameras (sharing the same physical mounting) have the form

Ci '
(
Ai | 03)

C`i '
(
A`i | 03) and Cri '

(
Ari | bri)

(15)
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where Ai and A`i contain only intrinsic parameters, whereas Ari also encodes the relative orientation
of Cri with respect to C`i. Each system has a transformation H−1i that maps tof points Qi into the
corresponding rgb coordinate system of C`i. Furthermore, let the 4×4 matrix Gij be the transformation
from system j, mapping back to system i (between different physical mountings). This matrix, in the
binocularly-calibrated case, is a rigid 3-d transformation. However, by analogy with the tof-to-rgb
matrices H, each Gij could be a projective transformation in the uncalibrated case; this would allow
Euclidean structure to propagate from the tof measurements, across the entire camera network.

The left and right cameras, in all cases, that project a scene-point Pj in coordinate system j to
image-points p`i and pri in system i are

C`ij = C`i Gij and Crij = Cri Gij . (16)

Note that if a single global coordinate system is chosen to coincide with the k-th rgb system, then a
point Pk projects via C`ik and Crik. These two cameras are respectively equal to C`i and Cri in (15)
only when i = k, such that Gij = I in (16). A typical three-system configuration is shown in fig. 2.

Fig. 2 Example of a three tof+2rgb setup, with tof cameras labelled 1,2,3; cf. fig. 1. Each ellipse represents a
separate system, with system 2 chosen as the reference. The arrows (with camera-labels) show some possible tof-
to-rgb projections. For example, a point P2 ' H−1

2 Q2 in the centre projects directly to rgb view `2 via C`2, whereas
the same point projects to `3 via C`32 = C`3G32.

The transformation Gij can only be estimated directly if there is a region of common visibility
between systems i and j. If this is not the case (as when the systems face each other, such that the
front of the calibration board is not simultaneously visible), then Gij can be computed indirectly. For
example, G02 = G01 G12 where P2 = G−112 G−101 P0. Note that, in all cases, the stereo-reconstructed points
P are used to estimate these transformations This is because they are always more reliable than the
tof points Q, as demonstrated below.

4 Evaluation

The following sections will describe the accuracy of a nine-camera setup, calibrated by the methods
described above. Section 4.1 will evaluate calibration error, whereas section 4.2 will evaluate total
error. The former is essentially a fixed function of the estimated camera matrices, for a given scene.
The latter also includes the range-noise from the tof cameras, which varies from moment to moment
(due to intrinsic noise, changing illumination, and object motion). The importance of this distinction
will be discussed. In section 4.3 we analyze the avantages of using homographies to align the data, as
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opposed to similarity transformations. Finally, in section 4.4 we demonstrate some applications of the
complete system.

The setup consists of three rail-mounted tof+2rgb systems, i = 1 . . . 3, as in fig. 2. The stereo
baselines are 17cm on average, and the tof cameras are separated by 107cm on average. The rgb
images are 1624 × 1224, whereas the Mesa Imaging sr4000 tof images are 176 × 144, with a depth
range of 500cm [6]. The three stereo systems are first calibrated by standard methods [12], returning
a full Euclidean decomposition of C`i and Cri, as well as the associated lens parameters. The lenses of
the tof cameras are also calibrated by standard methods [12]. This removes some of the radial depth
deformation that has been observed in the tof data [32]. The matrices Gij are rigid-body transforma-
tions, which are estimated by the SVD method of Arun et al. [44]. Projective alignment is preferred
for the tof/rgb alignment, for reasons discussed in sections 2 and 10. Hence the transformations H−1j
are 4× 4 homographies, estimated by the method of section 2.3. Specifically, the DLT solutions were
refined by Levenberg-Marquardt minimization of the joint geometric error, as in (14).

4.1 Calibration Error

The calibration error is measured by first taking tof points Qπj corresponding to chequerboard vertices
on the reconstructed calibration plane πj in system j, as described in section 2.2. These can then be
projected into a pair of rgb images in system i, so that the geometric image-error Ecal

ij = 1
2

(
Ecal
`ij+Ecal

rij

)
can be computed, where

Ecal
`ij =

1

|π|
∑
Qπj

D
(

C`ij H−1j Qπj , p`i
)

(17)

and Ecal
rij is similarly defined. The function D(·, ·) computes the image-distance between two inhomog-

enized points, as in (13), and the denominator corresponds to the number of vertices on the board,
with |π| = 35 in the present experiments. The measure (17) can of course be averaged over all images
in which the board is visible. The rgb cameras were calibrated, by standard methods, as described
above. Subpixel accuracy was obtained, which confirms the accuracy of the camera matrices C`i and
Cri, as well as the inter-system matrices Gij , where i, j = 1, 2, 3.

For the purpose of evaluation, a new set of tof-vertices Qπi were reconstructed, fitted and re-
projected within each system i. This evaluation effectively tests the quality of the H−1i matrices, by
comparing C`iH−1i Qπi to p`i, and analogously to points pri in the other image. Note that all camera
and transformations parameters are now fixed; no optimization was performed with respect to the
evaluation data. The whole experiment was performed on three large data-sets, from different capture-
sessions, and with different camera configurations, labelled A, B and C. Such a configuration leads
to one triplet per system as shown in fig. 3. While an image can be fronto-parallel for one frame, it
may appear very slanted to the other frames. The example of fig. 3 shows a calibration image that is
almost fronto-parallel to the tof frame of the central tof+2rgb unit. Table 2 shows that the average
reprojection error remains subpixel in all three data-sets. The corresponding error-distributions are
shown as histograms in fig. 4.

Set Mean Median Max Count

A 0.59 0.52 1.82 1470

B 0.72 0.58 4.86 1470

C 0.45 0.40 1.48 1470

Table 2 Calibration error (17), measured by projecting the fitted tof vertices Qπi to the left and right rgb images
(1624 × 1224) of the respective systems i = 1, 2, 3. The experiment was repeated three times (A–C), with different
camera configurations. Each statistic was computed from the left and right rgb-reprojections of 35 vertices in 7 views
of the board (total number of 2-d points, per data-set: 3× 2× 35× 7 = 1470).
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Fig. 3 Calibration images from synchronized captures. Each row corresponds to the image triplet of a tof+2rgb system,
while the range images are shown as well. Grayscale images of tof sensors have undergone lens undistortion and contrast
enhancement.

It is also interesting to consider how the above tof-vertices reproject into different systems. The
error 3-d error distribution, for a given pixel (either tof or stereo) is highly anisotropic; the direction
of the corresponding ray is much more reliable than the distance along it [32]. In practice, the different
tof+2rgb systems are distributed around the edge of the room, looking inwards. Hence a given system
is likely to be seen ‘from the side’ by at least one other system. This means that any large depth errors
in the first system will not cancel-out in the re-projection to the other systems. This effect is seen
clearly in figure 5, which shows calibration errors of up to several pixels, from one system to the
others.

4.2 Total Error

The calibration error, as reported in the preceding section, is the natural way to evaluate the estimated
cameras and homographies. It is not, however, truly representative of the ‘live’ performance of the
complete setup. This is because the calibration error uses each estimated plane πj to replace all
vertices Qj with the fitted versions Qπj . In general, however, no surface model is available, and so the
raw points Qj must be used as input to segmentation, meshing and rendering processes.

The total error, which combines the calibration and range errors, can be measured as follows. The
i-th rgb views of plane πj are related to the tof image-points qj by the 2-d transfer homographies
T`ij and Trij , where

p`i ' T`ij qj and pri ' Trij qj . (18)
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Set A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1 → ℓ1, r1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2 → ℓ2, r2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3 → ℓ3, r3

Set B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Set C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error

Fig. 4 Calibration error (17), measured by projecting the fitted tof points Qπi to the left and right rgb images (1624×
1224) of the respective systems i = 1, 2, 3. The experiment was repeated three times (A–C), with different camera
configurations. Each histogram contains 1470 points, as in table 2.

These 3×3 matrices can be estimated to subpixel accuracy, by using the DLT algorithm [12] to obtain
initial homographies, and then applying area-based alignment [45] to produce the final estimates T`ij
and Trij .

Let Πj be the 2-d hull (i.e. bounding-polygon) of plane πj as it appears in the tof image. Any
pixel qj in the hull (including the original calibration vertices) can now be re-projected to the i-th rgb
views via the 3-d point Qj , or transferred directly by T`ij and Trij in (18), as shown in figure 6. In
other words, we are able to isolate the image-to-image error that is incurred by mapping via the 3-d
reconstruction, in relation to the direct 2-d to 2-d mapping defined by T`ij and Trij .

The total error is the average difference between the reprojections and the transfers, Etot
ij = 1

2

(
Etot
`ij+

Etot
rij

)
, where

Etot
`ij =

1

|Πj |
∑

qj∈Πj

D
(

C`ij H−1j Qj , T`ij qj
)

(19)

and Etot
rij is similarly defined. The view-dependent denominator |Πj | � |π| is the number of pixels in

the hull Πj . Hence Etot
ij is the total error, including both calibration errors and range-noise, of tof

plane πj as it appears in the i-th rgb cameras.
If the rgb cameras are not too far from the tof camera, then the range errors tend to be cancelled

in the reprojection. This is evident from table 3, in which the total errors, on average, are not much
greater than the calibration errors in table 2. It is, however, clear from fig. 7, that the tails of the total
error distributions are greatly increased by outliers in the tof data-stream. Although errors up to 3
pixels are shown in distributions for the sake of clarity, maximum errors of more than five pixels are
common (see table 3).

When the raw tof points are reprojected to a different system, a high total error is expected,
because the sensor’s range-noise may be viewed ‘from the side’. Indeed, fig. 8 shows that a substantial
proportion of the tof points reproject with total errors in excess of ten pixels. These kind of gross
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A

0 2 4 6 8 10

2 → ℓ1, r1

0 2 4 6 8 10

2 → ℓ3, r3

B

0 2 4 6 8 10 0 2 4 6 8 10

C

0 2 4 6 8 10
pixel error

0 2 4 6 8 10
pixel error

Fig. 5 Calibration error (17), measured by projecting the fitted tof points Qπ2 to the left and right rgb images (1624×
1224) of two different systems, i = 1, 3. Each histogram combines left-camera and right-camera measurements from 7
views of the calibration board.

Set Mean Median Max Count

A 0.74 0.71 6.07 39859

B 1.48 0.98 20.69 32159

C 0.63 0.54 6.51 29442

Table 3 Total error (19), measured by projecting the raw tof points Qi to the left and right rgb images (1624× 1224)
of the respective systems i = 1, 2, 3. These figures characterize the raw data that is produced by the live system. This
data includes all outliers in the tof data-stream, which gives rise to at least one error of 20 pixels here.

errors are characteristic of the tof data, owing to the inevitable presence of absorbing and scattering
surfaces in a typical scene.

In fact, calibration error and total error are both influenced by surface orientation. For example,
the higher errors in Set B of the data (see tables 2 and 3) are due to the presence of some very slanted
boards, in both the fitting and evaluation data-sets; this causes two problems, as follows. Firstly, the
images of these boards are very foreshortened in some systems. This leads to increased calibration
error, because the vertices are hard to detect in the corresponding tof images. Secondly, the strength
of the reflected IR signal is reduced whenever the surface is oblique to a given tof camera. If the
surface is also absorbent (like the black squares of the board), then the total error is greatly increased,
due to the combined effects of scattering and absorption.
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Fig. 6 The 2-d transfer homography T` describes the chessboard mapping from the tof frame to the left frame. In
principle, this mapping should be equivalent to a mapping via the range data, i.e. from the tof frame to the measured
3-d plane, and back to the left frame.

Set A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1 → ℓ1, r1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2 → ℓ2, r2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3 → ℓ3, r3

Set B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Set C

0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error
0.0 0.5 1.0 1.5 2.0 2.5 3.0

pixel error

Fig. 7 Total error (19), measured by projecting the raw tof points Qi to the left and right rgb images (1624 × 1224)
of the respective systems i = 1, 2, 3. These distributions have longer and heavier tails than those of the corresponding
calibration errors, shown in fig. 4.

It is possible to understand these results more fully by examining the distribution of the total error
across individual boards. Figure 9 shows the distribution for a board reprojected to same/different
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A

0 5 10 15 20

2 → ℓ1, r1

0 5 10 15 20

2 → ℓ3, r3

B

0 5 10 15 20 0 5 10 15 20

C

0 5 10 15 20
pixel error

0 5 10 15 20
pixel error

Fig. 8 Total error (19), measured by projecting the fitted tof points Qπ2 to the left and right rgb images (1624× 1224)
of two different systems, i = 1, 3. The range errors are emphasized by the difference in viewpoints between the two
systems. Average error is now around five pixels, and the noisiest tof points reproject with tens of pixels of error.

systems (i.e. part of the data from figs. 7 & 8). There is a relatively smooth gradient of error across the
board, which is attributable to errors in the fitting of plane πj , and in the estimation of the camera
parameters. In addition to these effects, it is clear that the gross errors are correlated with the black
squares of the board, which reflect too little of the tof signal. For instance, in the bottom example
of figure 9, the mean reprojection error associated with the black squares is 10.05 pixels, whereas the
white squares are associated with a mean error of 3.55 pixels. The effect is particularly noticeable, as
expected from the histograms, when reprojecting to different camera systems.

4.3 Comparison of homography and similarity transformations

It was argued in section 2 that the 3-d homography model is an appropriate way to compensate
for miscalibrations of the tof and stereo systems (and indeed it allows the stereo system to be left
uncalibrated, if preferred [33]). This claim is tested in the following experiments, using data images
from two new data sets.

The most obvious alternative to the homography is a rigid motion and scaling; i.e. a 3-d similarity
transformation. Specifically, the 4×4 matrix H in (3) can be replaced by the similarity transformation

S =

(
σ R t
0 1

)
(20)
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Fig. 9 3-d tof pixels on an example calibration board, projected into an RGB camera in the same (top) and in a
different (bottom) system. Each pixel is colour-coded according to the relative total-error (19) in each case (larger errors
are shown in yellow). Black crosses mark the detected vertices in the rgb image. The black squares of the board are
associated with larger reprojection errors, particularly after reprojecting to a different system (mean error in the bottom
example is 10.05px for black squares, and 3.55px for white).

where σ is a (positive) scalar, R is a 3 × 3 rotation matrix, and t is a 3 × 1 translation vector. Hence
there are only seven degrees of freedom, in contrast to the fifteen of the homography. Geometrically,
the similarity model can be interpreted as a rigid transformation between the tof and stereo systems,
where the baseline distance of the latter is unknown.

In principle, a homography should always result in equal or lower error, because it includes the
similarity transformation as a special case. In particular, a homography can always be written as
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H = SD where the deformation D is composed of an affinity and an elation [12]. However, there are
two practical issues to consider. Firstly, the quality of the actual estimate in each case; and secondly,
the possible danger of over-fitting with the homography.

It was argued in section 2 that the 3-d homography model is an appropriate way to compensate for
miscalibrations of the tof and stereo systems (and also allows the stereo system to be left uncalibrated,
if preferred [33]). In particular the deformation D can help to account for locally linear depth bias in
the tof camera [46]. Hence the additional eight degrees of freedom in the homography model allow for
an overall approximation to the per-pixel corrections performed by Cui et al. [32].

The procedure to estimate the optimal similarity (20) is analogous to that used to estimate the
homography in section 2. Instead of DLT, an initial estimate is obtained from the Procrustes algo-
rithm [47,48], using three or more correspondences. The reprojection error is then minimized using
the Levenberg-Marquardt procedure, as with the homography. Note that the rotation R in (20) is
appropriately parameterized by the Rodrigues formula.

The results of these experiments are shown in figure 10. In every tof+2rgb system, and in both
capture sessions, the homography results in lower error than the similarity. The mean reprojections
errors (in pixels) were 0.22 vs. 0.65, and 0.46 vs. 1.06, for the respective capture sessions. The generally
higher figures from the second set are due to a broader distribution of board-poses in the evaluation
data-set.

These experiments show that the 3-d homography transformation is a suitable model for tof/rgb
alignment, as argued in section 2. It may also be noted that the homography is effectively easier to
estimate than the similarity, as there is no need to maintain the orthogonality of R during the final
minimization.
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Fig. 10 Calibration error (17), measured by projecting the fitted tof points Qπi to the left and right rgb images
(1624× 1224) of the respective systems i = 1, 2, 3. The tof/stereo alignment was computed via a 3-d homography (top),
or a similarity transformation (bottom). It is clear that the former is superior, as described in section 4.3. The left and
right 2× 3 blocks represent different capture-sessions, as described in the text.

4.4 Cross-calibration for 3-d reconstruction and rendering

The proposed cross-calibration methodology also allows a fully-textured 3-d model to be segmented
and rendered. This is because the depth-data are automatically assigned to pixels in the rgb images.
Figure 11 shows reconstruction instances with and without texture from a 360◦ reconstruction, obtained
from the cross-calibration of four tof+2rgb systems. Meshing was performed by the standard Poisson
reconstruction method [49], followed by simple triangle-based texture mapping.

More dense reconstruction can be achieved by exploiting the full resolution of stereo cameras, as
described elsewhere [11]. Figure 12 shows the difference between the raw reconstruction obtained from
the cross-calibration of a tof+2rgb system, and that obtained after using the tof data in a subsequent
stereo algorithm [11]. A high-resolution depth map is produced, making full use of the high-resolution
rgb cameras.
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Fig. 11 Examples of a segmented 360◦ reconstruction, after Poisson meshing, with and without rgb texture.

5 Conclusion

It has been shown that 3-d projective transformations can be used to cross-calibrate a system of
tof and stereo reconstructions. A practical method for computing these transformations, based on
geometric principles, has been introduced. This calibration procedure has been extended to a nine-
camera network of six rgb and three tof cameras, and evaluated in detail.

A clear distinction has been made between calibration error, which is due to imperfect camera
and image models, versus total error, which incorporates tof-specific noise and biases. It has been
shown that these errors can be separated geometrically, and used to characterize the performance of
a tof/rgb camera network. The overall performance of the system has been visualized in segmented
360◦ 3-d reconstructions. This type of reconstruction is challenging to compute, and shows that the
system is more than adequate as a basis for scene-segmentation tasks.

The accuracy of the method presented here is somewhat limited by the relatively poor localization
of points, even when spatially interpolated, in the tof images. The detection of standard chequerboard
patterns, in tof images, has been discussed elsewhere [7]. The design of more convenient calibration
patterns, for tof cameras, would be a worthwhile direction for future research. Meanwhile, in mitiga-
tion, the spatial resolution of tof cameras will continue to increase.
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Fig. 12 Cross-calibration for 3-d reconstruction. Left: The raw mesh, with textured edges, obtained directly from our
tof+2rgb cross-calibration method. Right: The textured high-density point cloud, obtained after applying the tof-stereo
fusion method of [11] to the cross-calibration results.

Future work should also consider the distribution of range-errors in 3-d, and how this can be
used to design custom meshing and surface reconstruction algorithms for time-of-flight data. This, in
conjunction with the rgb textures provided by the present method, would lead to a comprehensive
approach to 3-d reconstruction, rendering and scene-understanding.
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19. R. Koch, I. Schiller, B. Bartczak, F. Kellner, K. Köser, MixIn3D: 3D mixed reality with ToF-camera, in: Proc. DAGM
Workshop on dynamic 3D imaging, 2009, pp. 126–141.

20. J. Zhu, L. Wang, R. Yang, J. Davis, Z. Pan, Reliability fusion of time-of-flight depth and stereo geometry for high
quality depth maps, IEEE Trans. on PAMI 33 (7) (2011) 1400–1414.

21. J. Zhu, L. Wang, R. G. Yang, J. Davis, Fusion of time-of-flight depth and stereo for high accuracy depth maps, in:
Proc. CVPR, 2008, pp. 1–8.

22. Y. Wang, Y. Jia, A fusion framework of stereo vision and kinect for high-quality dense depth maps, in: ACCV 2012
Workshops, 2012, pp. 109–120.

23. J. Wu, Y. Zhou, H. Yu, Z. Zhang, Improved 3D depth image estimation algorithm for visual camera, in: Proc. In-
ternational Congress on Image and Signal Processing, 2009, pp. 1–4.
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