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Abstract

The task of a visual landmark recognition system is to identify photographed buildings or objects in query photos
and to provide the user with relevant information on them. With their increasing coverage of the world’s landmark
buildings and objects, Internet photo collections are now being used as a source for building such systems in a fully
automatic fashion. This process typically consists of three steps: clustering large amounts of images by the objects
they depict; determining object names from user-provided tags; and building a robust, compact, and efficient recog-
nition index. To this date, however, there is little empirical information on how well current approaches for those
steps perform in a large-scale open-set mining and recognition task. Furthermore, there is little empirical information
on how recognition performance varies for different types of landmark objects and where there is still potential for
improvement. With this paper, we intend to fill these gaps. Using a dataset of 500k images from Paris, we analyze
each component of the landmark recognition pipeline in order to answer the following questions: How many and
what kinds of objects can be discovered automatically? How can we best use the resulting image clusters to recognize
the object in a query? How can the object be efficiently represented in memory for recognition? How reliably can
semantic information be extracted? And finally: What are the limiting factors in the resulting pipeline from query
to semantics? We evaluate how different choices of methods and parameters for the individual pipeline steps affect
overall system performance and examine their effects for different query categories such as buildings, paintings or
sculptures.
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1. Introduction albums and labels them automatically, saving the user
the effort of manually labeling them. A mobile vi-
sual search system provides a user with information on
an object that they took a picture of with their smart-
phone. Because a large part of the photos in these ap-
plications are typically tourist photos, many of the ob-

jects that such systems need to recognize are landmarks.

Recognizing the object in a photo is one of the fun-
damental problems of computer vision. One generally
distinguishes between object categorization and specific
object recognition. Object categorization means recog-
nizing the class that an object belongs to, e.g. painting

or building, while specific object recognition means rec-
ognizing a specific object instance, such as the Mona
Lisa or the Eiffel Tower. In this paper, we consider the
latter task, i.e., specific object recognition. In particu-
lar, we are interested in two applications, namely photo
auto-annotation and mobile visual search. A photo auto-
annotation system recognizes objects in a user’s photo
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Therefore, the problem is typically referred to as land-
mark recognition. However, many other types of ob-
jects, such as paintings, sculptures or murals, can also
be recognized by such systems.

The first step of building a landmark recognition sys-
tem is to compile a database consisting of one or more
photos of each object that shall be recognized. However,
since the number of objects that can possibly appear in a
user’s photos is virtually infinite, it is impossible to con-
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struct and maintain such a database by hand. An elegant
solution is to build the database from the data it is meant
to be applied to, namely public photos from Internet
photo collections such as Flickr, Picasa or Panoramio.
This approach has several attractive properties: (i) Ob-
jects are discovered in an unsupervised, fully automatic
way, making it unnecessary to manually create a list
of objects and collecting photos for each of them. (ii)
The resulting set of objects is likely to be much better
adapted to the queries a photo auto-annotation or visual
search system might receive than a hand-collected set of
objects. (iii) The level of detail of object representation
is automatically adapted to the demand. The most popu-
lar objects will be represented by the most photos in the
database, increasing their chance of successful recogni-
tion, while only little memory is used on less popular
objects. This approach has gained popularity in the re-
search community [1, 2, 3, 4, 5] and is also being used
in applications such as Google Goggles [6].

Constructing such landmark recognition systems on
a large scale involves three main research problems: (i)
Finding interesting structures in internet image collec-
tions, (ii) automatically connecting them to associated
semantic content by examining user-provided titles and
tags, and (iii) compactly representing them for efficient
retrieval. While each of those problems has already
been studied in isolation, so far there has not been a sys-
tematic evaluation of all three aspects in the context of
a fully automatic pipeline. Image retrieval approaches
like [7, 8] find matching images for a query, but have
no notion of the semantics of the depicted content. Tag
mining approaches [3, 9, 4, 10] try to find a description
of an image cluster, but so far the large effort to eval-
uate tag quality has prevented quantitative evaluations
in a large-scale setting. Landmark object discovery ap-
proaches [1, 11, 4, 5, 6] aim at finding interesting build-
ings and other objects, but no systematic evaluation has
been performed that analyzes what types of objects can
be discovered and how recognition performance varies
with these types. Furthermore, it is still largely unclear
what is the best strategy to determine the identity of the
recognized object based on the set of retrieved database
images (which becomes a non-trivial problem whenever
image clusters overlap and images may contain multiple
landmark objects).

In this paper, we evaluate the whole process of con-
structing landmark recognition engines from Internet
photo collections. To do this in a realistic large-scale
setting we require a dataset containing thousands of ob-
jects. Moreover, in order to create a realistic appli-
cation scenario, the target database objects should not
be specified by hand (as in many other datasets), but

should be mined automatically. Last but not least, the
dataset should not be limited to buildings, but also con-
tain smaller objects, such as paintings or statues.

Our evaluation is based on the Paris 500k dataset
[12] containing 500k photos from the inner city of Paris,
which was mined from Flickr and Panoramio using a ge-
ographic bounding region rather than keyword queries
to obtain a distribution unbiased towards specific land-
marks. Thus, in contrast to other common datasets,
there is no bias on tag annotations or content. In or-
der to evaluate landmark recognition in a realistic set-
ting, we additionally collected a query set of almost
3,000 Flickr images from Paris that is disjoint from the
original dataset. Our evaluation thus mimics the task
of photo auto-annotation where a photo uploaded to a
photo sharing website is automatically annotated with
the object it depicts.

To evaluate the performance of landmark recognition,
we use a recent landmark discovery algorithm [5] to
discover landmarks in the dataset. We created an ex-
haustive ground truth for the relevance of each of the
discovered landmarks with respect to each of the 3,000
queries, which involved significant manual effort. This
is the first ground truth for evaluating landmark recogni-
tion on an unbiased and realistic dataset. To enable the
comparison of other approaches with the ones evaluated
in this paper, the ground truth is publicly available.

To give a detailed performance analysis for different
types of objects, we introduce a taxonomy for the ob-
jects landmark recognition systems are able to recog-
nize. Throughout our evaluation, we report both sum-
mary performances over the entire database and detailed
findings for different object categories that show how
their recognition is affected by the different stages of
the system. As our results show, the observed effects
vary considerably between query categories, justifying
this approach. We give detailed results for each cate-
gory, and use the four use cases of Landmark Buildings,
Faintings, Building Details and Windows as representa-
tives for different challenges. The taxonomy is available
along with the ground truth.

Note that our goal is not primarily to propose novel
methods (although some of the methods evaluated in
Sec. 6 and Sec. 7 are indeed novel), but to provide an-
swers to the following questions:

e How many and what kinds of objects are present in
Internet photo collections and what is the difficulty
of discovering objects of different landmark types
(Sec. 5)?

e How to decide which landmark was recognized
given a list of retrieved images (Sec. 6)?



o How to efficiently represent the discovered objects
in memory for recognition (Sec. 7)?

e Are the user-provided tags reliable enough for de-
termining accurate object names (Sec. 8)?

¢ Given the entire retrieval, recognition and seman-
tic labeling pipeline, what are the factors effec-
tively limiting the recognition of different object
categories (Sec. 9)?

Our analysis provides several interesting insights, for
example:

e Semantic annotation is the main bottleneck for sys-
tem performance. In many cases, the correct ob-
ject is visually recognized, but the name of the ob-
ject cannot be determined due to the sparsity and
amount of noise of user-provided image titles and
tags.

o Different bottlenecks exist for different object cat-
egories. For example, Murals are easy to recog-
nize using the standard visual words pipeline, but
reliable semantic information is often missing for
them. For other objects like museum exhibits, the
opposite is the case: While semantic information is
readily available, they are hard to recognize visu-
ally due to their spatial structure and scarce visual
examples.

e When the desired application is building recogni-
tion, a seeding-based clustering method can bring
significant computational savings, since buildings
are already discovered when using few seeds,
while smaller objects require orders of magnitude
more seeds.

e Different techniques for compactly representing
object clusters are optimal for different object

types.

As a result of this evaluation, we can identify several
interesting directions, where progress can still be made.

2. Engine Architecture

The architecture of a typical landmark recognition
engine such as [1, 13, 4, 6] is shown in Fig. 1. Large
amounts of tourist photos are clustered, resulting in a
set of objects. By object, we denote a cluster of images
that show the same entity. We will refer to the images in
each object cluster as its representatives. Since the clus-
ters may overlap, a representative can belong to multi-
ple objects. Each object is then associated with seman-
tics (typically its name), e.g., by mining frequently used
image tags. The set of representatives for each cluster

is often decimated by eliminating redundant images in
order to save memory and computation time. To rec-
ognize the object in a query image, a visual search in-
dex [14, 8, 15] containing all representatives is queried,
producing a ranked list of matches. Based on this list,
objects are ranked w.r.t. their relevance to the query and
the corresponding semantics are returned.

In this paper, we evaluate different choices for the
components of this framework and demonstrate how
they affect the system’s overall performance. Sec. 5
considers the stage of determining a set of objects by
clustering images from internet photo collections and
shows how many objects from which categories can be
discovered. Given a ranking of the representatives for
a query, Sec. 6 analyzes different schemes for deter-
mining the object shown in the query image. In Sec. 7
we consider different ways of speeding up search and
reducing memory requirements by removing redundant
representatives. Finally, in Sec. 8 we analyze the stage
of semantic annotation based on frequent tags and per-
form an end-to-end analysis of the performance of the
whole pipeline from query to semantics.

3. Related Work

We now give an overview how the individual parts of
the pipeline introduced above have been approached in
previous work.

3.1. Datasets

We created our own query set and ground truth for
this paper, because available benchmarks do not support
such an evaluation. Most datasets only cover very few,
mostly building-scale, landmarks (e.g., EUROPEAN CITIES
1M [1], Starut oF LiBERTY, NOoTRE DAME and SaN MaRrco
[16], OxrorDp BuiLpinGs [8], Paris BuiLpings [17]). An-
other problem is that their ground truths are designed
for other tasks. Image retrieval datasets (e.g. OXFORD
Bumpings [8], Paris BuiLbings [17], INRIA HoLipays
[18]) are not suitable for our evaluation, because we
want to evaluate object recognition, i.e. recognizing the
object(s) in a query image, and not image retrieval, i.e.
retrieving images similar to a query from a database.
Image-based localization datasets (AACHEN [19], VIENNA
[20], DuBrovnik and RomE [21]) evaluate how accu-
rately the camera pose of the query image can be es-
timated. While this is more related to our problem, our
goal differs from pose estimation, because camera pose
does not necessarily determine what object the camera
is really seeing (See Sec. 3.3 for more details.) The
SaN Francisco [22] and LanpMarks 1K [23] datasets are
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Figure 1: The architecture of a landmark recognition system. 1. Objects are discovered by visually clustering touristic photos (Sec. 5). We call the
photos in an object cluster its representatives. 2. Semantic annotations are mined from user-provided tags (Sec. 8). 3. The search index is made
more compact by eliminating redundancy (Sec. 7). 4. The object in a query photo is recognized by retrieving similar photos and exploiting the

knowledge of their cluster memberships (Sec. 6).

closest to our requirements, but both of them focus on
large, building-level landmarks while we are explicitly
interested in also evaluating the recognition of smaller,
non-building objects.

3.2. Landmark Discovery

Landmark Recognition Engines are typically based
on a visual search index from objects discovered in
Internet photo collections [1, 13, 4, 6]. The under-
lying landmark discovery approaches perform visual
[24, 16, 25, 4, 5, 26] or geographical [9, 27] cluster-
ing, or a combination of the two [1, 6, 28]. Zheng et
al. [6] show that online tourist guides can be a valuable
additional data source, and Gammeter et al. [13] use de-
scriptions determined from user-provided tags to search
for additional images on the web. In this work however,
we focus on methods based solely on the images from
Internet photo collections and their metadata.

Chum et al. [24] use Min-Hash to find seed images
and grow landmark clusters by query expansion [7].
Philbin et al. [25] over-segment the matching graph us-
ing spectral clustering and merge clusters of the same
object based on image overlap. Gammeter et al. [2]
and Quack et al. [4] perform hierarchical agglomera-
tive clustering in a local matching graph. Avrithis et
al. [1] use Kernel Vector Quantization to create a clus-
tering with an upper bound on intra-cluster dissimilar-
ity. Iconoid Shift by Weyand et al. [5] finds popular
objects at different scales using mode search based on a
homography overlap distance. We choose Iconoid Shift
as our analysis tool, because it produces an overlapping
clustering and discovers landmarks at varying levels of
granularity, thus also discovering, e.g., building details.

3.3. Landmark Recognition

Based on the clusters resulting from landmark dis-
covery, it is now possible to recognize the landmark in

a query image. There are three predominant approaches
for this in the literature: Image Retrieval, Classification
and Pose Estimation.

Image Retrieval. Most Image Retrieval based ap-
proaches use efficient specific object retrieval methods
[14, 8, 15] that allow searching for images matching a
query in a database consisting of potentially millions
of images. Several approaches [4, 6, 2, 8, 15] imple-
ment a best match strategy (Sec. 6.2) where the query
is matched against the database of representatives and
the object cluster corresponding to the best match is re-
turned. While Quack et al. [4] and Zheng et al. [6]
perform a precise but computationally expensive di-
rect feature matching, Gammeter et al. [2] retrieve im-
ages using inverted indexing and bags-of-visual-words
(BoVWs) [8, 15]. Li et al. [16] only want to decide
whether the query image contains a specific landmark.
Given a dataset of photos of one landmark, they perform
image retrieval based on both Gist features and BoVWs
and apply a threshold to the retrieval score to decide if
the query contains the object. Both Avrithis et al. [1]
and Johns er al. [26] compress the images in a cluster
into a joint BoVW representation and perform inverted
file retrieval to find the best matching scene models for
a query image.

Classification. An alternative approach is to view the
task as a classification problem where each landmark is
a class. Gronat et al. [29] learn exemplar SVMs based
on the BoVWs of the visual features of the database im-
ages. Li et al. [27] learn a multi-class SVM and ad-
ditionally use the BoWs (bags-of-words) of the textual
tags of the images as features. Bergamo et al. [30] use
a similar approach, but perform classification using 1-
vs-all SVMs. Instead of using approximate k-Means [8]
for feature quantization, they reconstruct the landmarks
using structure-from-motion and train random forests



on the descriptors of each structure-from-motion fea-
ture track. These random forests are then used for quan-
tizing descriptors. While discriminative methods often
yield higher accuracy than nearest neighbor matching,
they also have disadvantages. For example, they assign
every image a landmark label regardless of whether it
contains a landmark. Moreover, discriminative models
need to be re-trained every time new images and land-
marks are added.

Pose Estimation. The goal of pose estimation is to
determine the camera location and orientation for a
given query image. There are several approaches for
solving this task by matching the query against street
level imagery such as Google Street View panoramas
[22, 31, 32, 33, 34, 35] using local feature based im-
age retrieval [14, 8, 15]. Other approaches are based
on 3D point clouds created by applying structure-from-
motion on Internet photo collections or manually col-
lected photos [36, 37, 21, 23]. Since image retrieval
methods cannot be applied here, these approaches di-
rectly match the query descriptors against the descrip-
tors of the image features that the 3D points were recon-
structed from. After a set of 2D-3D correspondences
has been established, the camera pose is determined
by solving the perspective-n-point (PnP) problem [38].
Since the descriptor matching problem becomes compu-
tationally expensive when matching against very large
3D models, hybrid methods have been proposed that
[39, 20, 19] first perform efficient image retrieval us-
ing inverted files and then solve the PnP problem based
on the relatively small set of 3D points associated with
the 2D features of the retrieved images.

It is important to realize that camera pose does not
necessarily determine what is visible in the image. Even
though the camera is in front of a landmark, the land-
mark might not be visible due to occlusion or the user
might be taking a picture of a non-stationary object or
an event near that landmark. Moreover, pose estimation
relies on either regularly sampled images (e.g. Google
Street View panoramas), which are not available every-
where, or structure-from-motion reconstructions, which
are not always possible to compute robustly.

Because of the disadvantages of Classification and
Pose Estimation based approaches, we focus on Image
Retrieval based approaches in this evaluation.

3.4. Eliminating Redundancy

Several methods have been proposed to reduce the
size of the visual search index. An obvious method is
to apply standard compression techniques [40], which

reduces memory consumption at the cost of computa-
tional efficiency. Instead, we are interested in eliminat-
ing redundancy already before index construction.

Several works have addressed this problem at the im-
age level, i.e. by removing redundant images from the
index. Li et al. [16] summarize the input image col-
lection in a set of iconic images by applying k-means
clustering based on Gist descriptors, and use only these
images to represent a landmark in retrieval. Gamme-
ter et al. [13] identify sets of very similar images us-
ing complete-link hierarchical agglomerative clustering
and replace them by just one image. This step yields
a slight compression of the index without loss in per-
formance. Instead of performing clustering Yang et al.
[41] only determine a set of canonical views by apply-
ing PageRank on the matching graph of the image col-
lection. They then discard all other views and match the
query only against the canonical views.

Other works have addressed the problem at the fea-
ture level. Turcot et al. [42] perform a full pairwise
matching of the images in the dataset and remove all
features that are not at least once inliers w.r.t. a homog-
raphy. They report a significant reduction of the num-
ber of features while maintaining similar retrieval per-
formance. Avrithis et al. [1] and Johns et al. [26] com-
bine the images in a cluster into a joint BoVW repre-
sentation. Auvrithis et al. [1] use Kernel Vector Quan-
tization to cluster redundant features and keep only
the cluster centers. While this method only yields a
slight compression, the aggregation of features into a
Scene Map brings significant improvements in recogni-
tion performance. Johns et al. [26] performs structure-
from-motion and summarize features that are part of the
same feature track. Gammeter et al. [2] estimate bound-
ing boxes around the landmark in each image in a clus-
ter and remove every visual word from the index that
never occurs inside a bounding box. This is reported to
yield an index size reduction of about a third with de-
creasing precision.

There is also work in pose estimation that aims to
eliminate redundancy in the dataset. In their hybrid 2D-
3D pose estimation approach, Irschara et al. [20] gen-
erate a set of synthetic views by projecting the SfM
points onto a set of virtual cameras placed at regular
intervals in the scene. They then decimate the set of
synthetic views using a greedy set cover approach that
finds a minimal subset of views such that each view in
the subset has at least 150 3D points in common with
an original view. Cao et al. [43] use a similar criterion,
but instead of views, they decimate the set of points in
an SfM point cloud used for localization. Instead of set
cover, they use a probabilistic variant of the K-Cover



algorithm.

3.5. Semantic Annotation

The most common approach to perform semantic an-
notation of the discovered landmark clusters is by sta-
tistical analysis of user-provided image tags, titles and
descriptions. In order to remove uninformative tags like
“vacation”, Quack et al. [4] first apply a stoplist and
then perform frequent itemset analysis to generate can-
didate names. These names are verified by querying
Wikipedia and matching images from retrieved articles
against the landmark cluster. Zheng et al. [6] also apply
a stoplist and then simply use the most frequent n-gram
in the cluster. Crandall et al. [9] deal with uninforma-
tive tags in a more general way by dividing the number
of occurrences of a tag in a cluster by its total number of
occurrences in the dataset. Simon et al. [10] addition-
ally account for tags that are only used by individual
users by computing a conditional probability for a clus-
ter given a tag, marginalizing out the users.

Unfortunately, a much larger problem, also observed
by Simon et al. [10], exists for the task of semantic as-
signment that is much harder to fix: For most clusters
accurate tags are simply not available. In our analysis
(Sec. 8), we will show for which clusters these methods
will still result in accurate descriptions and point out the
sources of this problem.

4. Evaluation Setup

4.1. Dataset

Our evaluation is based on the Paris 500k dataset [12]
consisting of 500k images of the inner city of Paris col-
lected from Flickr and Panoramio. In contrast to many
other datasets [16, 8] the images were retrieved using
a geographic bounding box query rather than keyword
queries to ensure an unbiased distribution of touristic
photos.

4.2. Query set, Categories and Evaluation

To collect realistic queries for the task of automatic
annotation of photos uploaded to a photo sharing web-
site, we downloaded 10k images from the same geo-
graphic region as Paris 500k from Flickr and ensured
that they were no (near) duplicates of any image in the
original dataset. Since we consider the task of specific
object recognition, not object categorization, we filtered
out unsuitable queries like food, pets, plants or cars. To
only include objects that have a chance of being recog-
nized based on the Paris 500k dataset, we also exclude
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Figure 3: (a) Number of Iconoid clusters in each category. (b) Average
cluster size. (c) Total number of images in clusters. Categories are in
the same order as in Fig. 2.

queries that do not match any image in Paris 500k, leav-
ing 2,987 queries. We manually grouped the queries
into the categories of Fig. 2 in order to enable an analy-
sis of the recognition performance for each query type.
We summarize non-building objects such as bridges,
fountains or columns under the Landmark Objects cat-
egory. The Artifacts category contains historic objects
such as sarcophagi or ancient tools. Objects that do not
fit into any other category were categorized as Other.
Note that there is a large variance in the number of query
images for each category (given on the bottom right of
Fig. 2). The average scores over all query images we
provide in this paper therefore have a bias towards the
larger categories. This effect is desired, since we want
the query distribution to be representative of a real ap-
plication in a photo auto-annotation system. In addition
to this, however, we will also provide a detailed anal-
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ysis for all 13 categories, focusing on four categories
representative of different use cases, namely Landmark
Buildings, Paintings, Building Details and Windows.

4.3. Image Retrieval

Because it has become the de-facto standard in land-
mark recognition [1, 2, 13, 3], we use the vector space
model for image retrieval [15, 8]. We extract SIFT
[44] features from each image in the dataset and jointly
cluster them using approximate k-means [8] to gener-
ate a dictionary of 1M visual words. We then vector-
quantize the SIFT descriptors based on this vocabulary
and represent each image as a BoVW histogram. We
build an inverted file index from the BoVW histograms
of the entire database [15] to enable efficient retrieval.
Given a query image, we extract its BOVW as described
above, query the index and rank the retrieved images
by their #f = idf scores w.r.t. the query [15]. For the
top-300 matches we attempt fitting a homography using
SCRAMSAC [45] and consider a match verified if it has
15 or more inliers with the query. We then rank verified
images above unverified images [8].

4.4. Scoring

We would like to evaluate the performance of a land-
mark recognition system in a realistic scenario. In a
photo auto-annotation application, the system should
assign a user’s photos reliable labels without supervi-
sion. A mobile visual search app like Google Goggles
can also give the user a small selection of objects and let
them pick the correct one. Therefore, we consider only
the top-3 objects returned by the system.

For annotating recognition results, we showed the
query and the iconic image of the recognized object to
raters and asked them to rate the object’s relevance to
the query as “good” if it is the exact object in the query
image, “ok”, if it is somewhat relevant to the query, and
“bad” if it is irrelevant. An object should be rated as
“ok”, e.g. if the query image shows a whole building,
but the match only shows a detail of that building, or
vice versa. In case the query is a detail of a building and
the recognized object is a different detail of the same
building, the match should be rated as “bad”. If the
query shows multiple landmarks, and the object is one
of them, the match should still be rated as “good”.

Based on this rating, we define four scores: good-1 is
the fraction of queries with a “good” top-1 match; ok-1
is the fraction of queries with an “ok” or “good” top-1
match; good-3 is the fraction of queries with a “good”
match in the top-3; and ok-3 is the fraction of queries
with an “ok” or “good” match in the top-3.

Category %good-1  %ok-1  %good-3  %ok-3

Landmark Buildings 94.32 98.22 97.62 98.42
Panoramas 87.70 95.15 91.59 95.79
Sculptures 92.15 95.56 94.20 96.25
Interior Views 85.25 89.07 89.07 92.35
Building Details 87.76 91.84 89.80 91.84
Paintings 97.58 98.39 98.39 98.39
Windows 95.38 95.38 95.38 95.38
Landmark Objects 93.75 96.88 96.88 96.88
Murals 100.00  100.00 100.00  100.00
Cafes / Shops 80.56 80.56 83.33 83.33
Artifacts 91.67 91.67 94.44 94.44
Other 92.50 97.50 97.50 97.50
Multiple Objects 98.44 98.44 98.44 98.44
Total 92.74 96.42 95.58 96.92

Table 1: Performance of plain image retrieval using the full dataset.

4.5. Baseline Recognition Performance

For an estimate of the difficulty of the different query
categories, we perform image retrieval against the full
Paris 500k dataset and manually rate the relevance of
the top-3 images for each query according to the above
scheme (Tab. 1). Note that these results only show the
relevance of retrieved images, not recognized objects,
but can serve as upper bounds for the recognition per-
formance for each category. In total, the top-1 match
was “good” for 92.74% and at least “ok” for 96.42% of
the queries. Since images that did not have a match in
the database are not used in the query set, the remaining
3.58% had only false-positive matches in the top-3.

5. Landmark Object Discovery

The first step of building a landmark recognition
system is to cluster the image collection into objects
[24, 16, 25, 4, 5, 26, 9, 27, 1, 6, 28]. A guiding ques-
tion for our evaluation is: What object types can be
discovered by such a clustering? As we motivated in
Sec. 3.2, we choose Iconoid Shift [5] as our analysis tool
to answer this question, since it produces a set of over-
lapping clusters, which can represent “overlapping” ob-
jects, e.g., both the entire facade of Notre Dame and in-
dividual statue groups on it. In addition, it has intuitive
parameters for controlling the granularity and number
of discovered clusters.

5.1. Iconoid Shift

Iconoid Shift [5] is a mode finding algorithm based
on Medoid Shift [46], designed for efficient discovery of
(potentially overlapping) object clusters in large image
collections. Starting from a seed image, the algorithm
performs Medoid Shift in image overlap space until it
converges onto a discovered object, for which it returns
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an iconic image (or Iconoid) as well as a support set
containing all images having a certain minimum over-
lap with the Iconoid. We take this support set as the
cluster. Iconoid Shift alternates between two steps: (i)
Exploration of all images that overlap with the selected
image by recursive image retrieval. (ii) Selection of the
image that has the highest overlap with all the explored
images. Empirically, the returned clusters often corre-
spond to distinctive views of individual objects or build-
ings, with the Iconoid picking out the most central view.
Like Mean Shift [47, 48] and the object discovery ap-
proach of Chum et al. [24, 49], Iconoid Shift is typically
initialized with a set of seed images and is then run un-
til convergence for each seed. A larger number of seeds
therefore results in higher computational demands, but
also causes more objects to be discovered.

5.2. Clusters Discovered per Category

To analyze what objects can be discovered by vi-
sual clustering, we run Iconoid Shift on the Paris 500k
dataset. Following [5], we choose a kernel bandwidth
of § = 0.9, meaning that an image needs to have at least
10% overlap with an Iconoid to belong to its cluster.
We perform several runs of the algorithm using different
numbers of seed images selected randomly from Paris
500k in order to analyze the tradeoff between runtime
and the number of objects discovered.

To examine what kinds of objects the algorithm finds,
we categorize all resulting Iconoid clusters of at least
size 5 using the scheme from Fig. 2. Fig. 3 shows the
number of discovered clusters for each category, their
average size and the number of images covered by clus-
ters. Landmark Buildings are the largest category with
826 clusters covering 71k images. The average clus-
ter size of Building Detail is surprisingly large, because
some clusters include many photos of the full facades
due to our low choice of overlap threshold for Iconoid
Shift. Painting clusters are small on average, while Win-
dows have fewer but larger clusters.
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Figure 5: (a) Cluster size distribution for different numbers of seeds
(Note that both axes are logarithmic.) (b) Comparison of growth rates
for different cluster sizes. (c) Total number of images covered by the
clustering.
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Fig. 4 shows the effect of the number of seeds on
the number of clusters discovered per category. When
using only 1k or 10k seeds, the category distribution
remains relatively constant. The share of Landmark
Building clusters decreases with increasing number of
seeds (Fig. 4b), since more of the smaller objects such
as Paintings or Sculptures are discovered.

5.3. Distribution of Cluster Sizes and Performance Gap

The effect of the number of seeds on the distribution
of cluster sizes is shown in Fig. 5a. As reported by [13],
the cluster sizes are power law distributed. We can ob-
serve that the distribution shifts towards smaller clusters
when more seeds are used. Fig. 5b shows that the num-
ber of large clusters flattens out more quickly than the
number of small clusters when increasing the number of
seeds. This is because large landmark clusters are found
first, but more seeds help find more obscure places and
objects. When using 100k seeds, 12,776 Iconoids are
returned, but only 3,088 of then contain 5 or more im-
ages.

Fig. 5c shows the total number of database images
covered for different numbers of seeds. Using 100k
seeds, a total of 137,291 images (27.4% of the dataset)
are covered by the clustering. The remaining images
are either irrelevant or missed by the clustering. To



estimate how many and which objects the clustering
missed, we compare the retrieval performance using this
reduced set of images to the full set (c¢f. Tab. 1). The
result (Fig. 6) shows in which categories performance
is lost and gives an upper bound on what a landmark
recognition system can achieve based on this clustering.
While for some categories, such as Landmark Buildings
or Windows, the loss in performance is small, other cate-
gories like Paintings, Landmark Objects or Cafes show
a strong decrease, because their clusters are small and
thus more likely to be missed by the seeding process.
This effect is the main cause of the total performance
gap of 17.05% between the full database and the cluster
images.

5.4. Discussion

Since often-photographed objects are discovered
first, seed-based clustering can be computationally
much more efficient than computing the whole match-
ing graph. To sufficiently cover seldom photographed
objects such as museum exhibits, a larger number of
seeds is necessary. The coverage of such objects could
also be increased by seeding strategies that avoid the
bias to large clusters. Small object discovery ap-
proaches [49, 50] or approaches that crawl tourist guide
websites [6] might also help cover these objects better
and close the above performance gap further. What-
ever strategy is chosen, the results in Fig. 6 show that
such additional steps are necessary if Landmark Ob-
jects, Cafes / Shops or Artifacts shall be recognized. For
most of the following experiments, we choose to use
100k seeds to ensure good coverage of details and small
objects.

6. Landmark Object Recognition

By clustering a large collection of tourist photos, we
have discovered numerous interesting objects and deter-
mined a set of representative images for each of them.
To now recognize a new object in a query image, a
landmark recognition system performs retrieval in the
set of discovered object representatives (Fig. 1). The
open question here is: Given a ranking of representa-
tives, how to rank the objects they belong to by their rel-
evance to the query? To this end, we compare five object
scoring methods and evaluate their respective tradeoffs
of performance vs. database size and their suitability for
different object categories.

6.1. Ground Truth Generation

For this evaluation, we introduce a new ground truth
containing relevance ratings (Sec. 4.4) of the Iconoids

discovered with 100k seeds w.r.t. the query set. An ex-
haustive relevance annotation of the 12,776 Iconoids for
each of the 2,987 query images would require about 883
person-days of human work, assuming 2s of annotation
effort per query-Iconoid pair. Therefore, we took two
measures to reduce the amount of manual labor. (1) We
summarized queries showing exactly the same view into
2,042 groups, since the same Iconoids are relevant for
them. For this, we computed a pairwise matching of
the queries and manually inspected each pair of match-
ing images, discarding all pairs that do not show ex-
actly the same view. We then constructed a matching
graph from the verified edges and computed its con-
nected components. During annotation, each group was
represented by one image, and annotations for it were
transferred to all other members of the group. (2) We
automatically rated an Iconoid as irrelevant for a group
of queries if none of the Iconoid’s representatives were
spatially verified at least once when querying an image
retrieval system with each query in the group. To avoid
false negatives in image retrieval, we performed an ex-
act spatial verification by establishing correspondences
using matching SIFT features that pass the SIFT ratio
test [44]. Since the landmark with the largest number of
images in the Paris 500k dataset is the Eiffel Tower with
about 20k images, any query can have at most 20k rele-
vant images. To leave some room for ranking errors, we
performed spatial verification for the top-30k retrieved
images ranked w.r.t. their #/*idf scores. The 26.8k re-
maining pairs of query groups and Iconoids were man-
ually annotated according to the rating scheme intro-
duced in Sec. 4.4. Annotations were performed by 28
people over a period of 8 weeks. Each pair was shown
to 3 people who were asked to rate it as good, ok or
bad according to the scoring scheme we introduced in
Sec. 4.4, and the final annotation was decided by major-
ity voting. In the 1.8k cases where all three annotations
were inconsistent, the image pair was passed to a fourth
annotation for a definite annotation.

This ground truth, including the query images, the
Iconoid clusters, the query-Iconoid relevance annota-
tions, and the query category annotations is publicly
available under '. We believe that this ground truth
will be useful to the landmark recognition community,
since (i) so far, there is no landmark recognition dataset
at this scale (3k queries, 13k clusters and 137k repre-
sentative images) (ii) this is the first dataset where the
clusters were produced by an actual landmark cluster-
ing algorithm instead of keyword searches on Internet

"http://www.vision.rwth-aachen.de/data/paris500k/
paris-dataset
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photo collections (iii) the category annotations allow a
detailed performance analysis for different use cases,
e.g., paintings or statues, while existing datasets only
focus on buildings.

6.2. Methods

We evaluate five object scoring methods:

Center represents objects only by the cluster center
(i.e., Iconoid) of each object and discards all other rep-
resentatives, as done in Yang et al. [41]. The object
ranking is then simply the same as the representative
ranking.

Size returns all objects with at least one matching rep-
resentative, and scores them by their cluster size, i.e., by
the number of times they were photographed.

Voting lets each matching representative cast a vote
for each object it belongs to (note that clusters can over-
lap). Objects are then ranked by their number of votes.

Best Match returns the object with the highest scor-
ing representative, as done in, e.g., [4, 6, 13, 2]. A differ-
ence in our case is that we are using a soft clustering, so
a representative can belong to multiple objects. In this
case, we return the object with the largest cluster size.
This method can therefore also be viewed as a variant
of the Size method that only uses the best matching rep-
resentative.

Overlap uses Homography Overlap Propagation [5]
to compute the overlap of the query with each Iconoid.
The method first computes the overlap region of the
query with the matching representative and then prop-
agating this region into the Iconoid via the shortest path
in the Iconoid cluster’s matching graph. This is done
using the homography overlap propagation (HoP) algo-
rithm from [5]. If a query matches multiple representa-
tives of the same Iconoid, the overlap is computed for
each of them and the largest overlap is used. Objects
are then ranked in decreasing order of their Iconoids’
overlaps with the query.

Note that, while Center and Best Match evaluate
strategies used in the literature, Overlap is a novel strat-
egy. We now first compare the above methods using the
objects discovered with 100k Iconoid Shift seeds and
then show the effect of the number of seeds on their per-
formance.

6.3. Results

We evaluated the five approaches based on the ground
truth introduced in Sec. 6.1. To estimate the error intro-
duced by the SIFT matching pre-filter we used to re-
duce annotation effort (Sec. 6.1), we performed a small
control experiment. We manually rated the relevance
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Figure 7: Top-scoring objects for different object scoring methods.
“X” means that no objects were recognized.

of the top-3 Iconoids retrieved for each query using the
Voting method (Sec. 6.2) and found that 0.7% of the
Iconoids rated “good” or “ok” were filtered out. We
believe this small false-negative rate is still acceptable,
since the simplified annotation procedure significantly
reduced the amount of manual labor.

The recognition performance of the different methods
is compared in Tab. 2. Fig. 7 shows the top scoring ob-
jects for typical queries. Center finds images closely re-
sembling the query, but often fails to find any matching
objects, because the cluster centers are not sufficient to
recognize all objects under different viewing conditions
due to the limited invariance of the matching process.
However, since it only requires one image per object, it
is by far the fastest and most memory efficient method.
Because Size chooses the largest cluster, it often finds
a viewpoint more popular than the query (popular land-
marks are often represented by multiple clusters from
different viewpoints). Sometimes this effect is desired
since the largest cluster usually depicts the object best,
but it can also cause drift (Fig. 7b-f), i.e. instead of
the query object, a nearby object is recognized. Vot-
ing finds the clusters with the most matching represen-
tatives. This makes it less prone to drift (Fig. 7b,e.f) and
causes it to achieve higher performance than Size. De-
spite being simpler than Size, Best Match outperforms it.
The reason is that Best Match considers only the clos-
est matching representative to the query, making it less
prone to drift than Size that also looks at farther away
matches (Fig. 7c,e). Overlap has the best good-1 per-
formance, because it computes the actual overlap of the



% good-1 % ok-1 % good-3 % ok-3

Centers 39.60 45.56 42.99 46.03
Size 57.11 73.32 66.42 76.26
Voting 59.42 76.00 69.80 77.64
Best Match 60.40 75.39 67.26 77.10
Overlap 63.71 75.93 71.78 77.13

Table 2: Performance of different object scoring methods.
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Figure 8: Performance of object scoring methods by query type.

query image with each cluster’s iconic image and selects
the iconic whose view is closest to the query (Fig. 7a-f).

The good-1 performances by query type are shown
in Fig. 8. Size compares well to the other methods
on Landmark Buildings and Cafes / Shops, where the
largest cluster is often the correct one (e.g., the full view
of a facade). On Paintings, all methods including Cen-
ter have similar performance, because Paintings are flat
objects and are usually photographed under the same
viewing conditions. Since this makes painting retrieval
very easy, multiple representatives do not bring an ad-
vantage, explaining the relatively good performance of
Center. Size performs worse than Voting and Best Match
on Panoramas (Fig. 7e), because it tends to drift to more
popular nearby views, moving the query object out of
the field of view. The same effect occurs on Build-
ing Details (Fig. 7b), where Size tends to return views
of the whole building instead. Overlap has a particu-
lar advantage on classes where other methods tend to
drift (Panoramas, Building Details, Multiple Objects),
since it usually finds the iconic image that best matches
the photographed part (Fig. 7a-f). Center works rela-
tively well for Windows and Murals, because, like Paint-
ings, they are only photographed from a limited range of
viewing angles, making them easy to match.
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Figure 9: (a) good-1 performance of object scoring methods for differ-
ent numbers of Iconoid Shift seeds. (b) good-1 performance by query
type using the Voting method.

6.4. Effect of the Number of Seeds

We now analyze the effect of the number of object
clusters (which depends on the number of seeds) on the
performance of the five methods and compare object re-
trieval performance by category. As Fig. 9a shows, the
performance of the methods does not differ much for 1k
and 10k seeds, except that Center consistently performs
worst for the reasons explained above. The differences
become slightly more pronounced at 100k seeds, where
the density of objects is very high and methods that are
less prone to drift to nearby objects gain an advantage.
Conversely, this shows that simpler methods are suffi-
cient if the object density is low. Fig. 9b shows the per-
formance for different query types when using the Vot-
ing method. Sculptures, Paintings, Windows and Mu-
rals show the steepest improvement since they require
more seeds to be sufficiently covered by the clustering,
while Landmark Buildings can already be recognized
when using a smaller number of seeds since they form
large clusters that are discovered early. Surprisingly,
Windows have the highest recognition rate overall. The
reasons for this are that (i) they are easy to recognize
since they are flat, highly textured objects, and (ii) they
get discovered already with few seeds, since Window
clusters are almost three times the size of Painting clus-
ters (Fig. 3b).

6.5. Discussion

The ideal choice of method varies by application:
Center provides high performance for flat objects at low
computational and memory cost. Voting has high accu-
racy across all categories and its speed makes it appli-
cable, e.g., for mobile visual search. The popular Best
Match method has similar performance and efficiency,
but is outperformed by Overlap, which has the high-
est performance overall but also the highest computa-
tional cost. Overlap is therefore better suited for offline
applications requiring high accuracy, e.g., photo auto-
annotation.



Even when looking at the best performing method,
Overlap, there is still a difference of 11.98 percent
points between the good-1 performance of object re-
trieval (63.71%) and the good-1 performance of 75.69%
of plain image retrieval (Fig. 6). The cause for this clus-
tering gap could be either a too coarse clustering or im-
precise object ranking. If we consider that the differ-
ence between good-1 and good-3 for Overlap (8.07%)
is larger than the gap of 3.91 percent points between the
good-3 performance of Overlap and the good-1 perfor-
mance of plain image retrieval, it becomes apparent that
the main part of the clustering gap is due to the object
ranking. Hence, there is still room for improved object
ranking methods to close this gap.

Fig. 9a shows diminishing returns in performance
when the number of clusters increases (note the loga-
rithmic x-axis), since the most popular queries are cov-
ered first and the long tail of queries requires exponen-
tially more effort.

The performance gap between Center and other
methods shows that the representatives are necessary
for ensuring invariance to different viewing conditions.
However, it is desirable to reduce the set of representa-
tives, since it determines the memory use and speed of
the retrieval index. This is examined more closely in the
following section.

7. Efficient Representations for Retrieval

Since the discovered landmark representatives are
highly redundant, subsampling them can save memory
and computation time. The goal here is to reduce the
set of representatives in a way that still preserves as
much visual variability as possible in order to ensure
good retrieval performance. The methods we present in
the following work by summarizing groups of similar
images, as in e.g. [1, 13], which can be done efficiently
by exploiting the similarity information that is already
available from the matching graph constructed during
clustering [1, 13, 4, 5, 6]. In this graph, every match-
ing pair of images is linked by an edge whose weight
is their matching score. We evaluate four approaches
and compare them against a random baseline. Follow-
ing [1, 13, 4] we use the number of homography inliers
as edge weights.

7.1. Methods

We compare the following five methods for reducing
redundancy in the sets of representatives:

Complete-Link (Gammeter ef al. [13]) performs hi-
erarchical agglomerative clustering and replaces each
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complete link component containing at least 3 images
by its image with the most neighbors.

Kernel Vector Quantization (KVQ) [51] is a clus-
tering method that selects a minimum number of points
such that each point in the dataset is within radius r of
at least one selected point. It is used by Avrithis et al.
[1] to reduce the set of features in a cluster after project-
ing features from all images into a single iconic image,
called Scene Map. Applying the same idea on the image
level, we use it to find a minimal subset of representa-
tive images such that each image in a cluster has a given
minimum matching score with at least one image in the
subset.

Dominating Set chooses a subsample such that each
representative is adjacent to at least one image in the
original cluster. This subset is found by solving the cor-
responding set cover problem using the greedy set cover
algorithm [52].

Fine Iconoids performs a second, finer Iconoid Shift
[5] clustering at bandwidth 8 = 0.7 that covers the im-
age collection at a very fine granularity. The represen-
tatives for each (coarse) cluster are then chosen to be all
the fine Iconoids in it. This is similar to the approach of
Raguram et al. [53] that represents objects by a set of
iconic images found by clustering Gist descriptors.

Random is the baseline method that simply draws a
random subsample of the representative images.

7.2. Results

We now compare the tradeoffs between the number
of representatives and recognition performance of these
methods using the Voting method (Sec. 6.2) for object
scoring (Fig. 10). The number of representatives that
the Complete-Link, KVQ and Dominating Set methods
return can be controlled by first deleting edges below
a certain edge weight threshold to make the matching
graph sparser and then running the algorithm. We gen-
erated 3 sets of representatives with each method by ap-
plying thresholds of 15, 30 and 50 inliers.

As reported in [13], Complete Link only slightly
reduces the representative set while maintaining high
recognition performance. Dominating Set and KVQ
yield comparable results since they optimize similar cri-
teria. They represent a good tradeoff, allowing for a
reduction to about 40% while still achieving a 60.9%
good-1 performance (at threshold 50). An interesting
result is that Fine Iconoids performs well on Paintings
and Building Details, but lower than Random on Land-
mark Buildings. Visual inspection showed that Iconoids
do not cover the more obscure viewing conditions nec-
essary for robust recognition, since the algorithm is de-
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Figure 10: Performance / index size tradeoff of cluster summarization methods using edge weight thresholds of 15, 30 and 50.

signed to converge to popular views. It therefore per-
forms higher on categories with a limited range of pos-
sible viewing conditions.

7.3. Discussion

In this evaluation, we focused on reduction meth-
ods that work on the image level. We have shown
that in particular KVQ and Dominating Set methods can
achieve high compression at only a small loss in preci-
sion. Some recent approaches also perform this reduc-
tion on the feature level, usually combined with offfine
query expansion, i.e., projecting features into matching
images, which is reported to even improve precision
over baseline retrieval [1, 42]. An evaluation of these
methods would be an interesting task for future work.

8. Interfacing Images with Semantics

To find suitable descriptions for the discovered ob-
jects, and thus to enable linking them with informa-
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tion on the web, the usual method is to perform statis-
tical analysis of the tags and titles that users provided
for the photos in a cluster [9, 4, 10, 6]. Quack et al.
[4] mine frequent itemsets in all tags of a cluster to
generate candidate names. The top-15 candidates are
then used to query Wikipedia, and the retrieved arti-
cles are verified by matching the images occurring in
them against the images in the cluster. In a small infor-
mal experiment we found that frequent itemsets returns
many noisy and non-descriptive names like “vacation”,
“photo”, “canon”, or “europe”, which need to be filtered
by a comprehensive stoplist. Furthermore, tags that are
frequently used by the same user like “summer vaca-
tion 2008 can be ranked higher than correct but less
frequent terms.

The method of Simon e al. [10] is specifically de-
signed to handle both of these problems. It probabilis-
tically computes a score score(c, t) for each pair of tag
t and cluster ¢. This score is based on the conditional
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Figure 11: Tag quality as a function of the number of individual users
in the cluster. Left: top-1 tag, right: top-3 tags

probability of cluster ¢ given tag ¢, resulting in tags that
mainly occur in cluster c. By marginalizing over the
users, tags that are frequent in the cluster, but used by
only few users are ranked low. We use the method of
Simon et al. [10] in our evaluation since we found that
it yields more reliable tags than the method of Quack
et al. [4]. We analyze for which objects we can reli-
ably find semantics and examine the performance gap
between object retrieval and semantic annotation.

8.1. Data Preparation

We first need to define a set of tags for each image
based on the metadata provided by the respective photo
sharing website. The Paris 500k dataset consists of im-
ages from Flickr and Panoramio. Since images on Flickr
have both tags and a title, we treated the title as an addi-
tional tag. Since images on Panoramio have no tags, we
used the titles as their sole tag. We preprocessed image
tags by applying a very small stoplist containing terms
such as “Paris” and “France” and removing filenames
like “DSC002342.JPG”.

8.2. Tag Quality Annotation

In order to analyze tag quality, we manually rated the
quality of the top 3 tags for each object cluster contain-
ing 6 or more images. On average, annotation of a single
object-tag pair took about 30-60 seconds, since often a
web search was necessary to verify the correctness of a
tag. This annotation was performed by six people who
annotated a total of 2,536 objects. The annotators were
asked to rate each image-tag pair as “good” if the tag
accurately describes what is visible in the iconic image
(e.g., the full name of a building, the title and painter
of a painting) and as “ok” if it provides at least some
helpful information, such as the creator of a sculpture,
but not its name, or if the tag is accurate, but contains
noise terms like “me in front of Notre Dame”. This an-
notation allows us to re-use the evaluation measures we
used for object retrieval in Sec. 6.
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Figure 12: Tag quality of different object categories for Iconoid clus-

ters of size 6 and higher.
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Figure 13: Different spellings of “Musée d’Orsay” encountered in the
dataset.

8.3. Tag Mining

We first analyze the influence of the number of users
contributing photos to a cluster on the reliability of auto-
matic semantic annotation. Simon et al.’s method [10]
outputs a ranking of potential names for each cluster,
allowing us to examine the accuracy of the top-1 and
the top-3 tags. Fig. 11 shows that tag reliability clearly
increases with more users. In particular, over 80% of
clusters with over 1k users have a good top-1 tag. With
increasing user count, descriptions also become more
precise, since the fraction of ok tags decreases. Fig. 12
shows the tag quality for different categories. The tags
determined for Landmark Buildings, Landmark Objects
and Cafes / Shops are most reliable, since their names
are typically well-known. Cafes / Shops are particularly
easy to tag since their name is usually directly visible.
Murals, Windows, Sculptures and Building Details are
usually lacking proper annotations since photographers
often do not know their names and only label them with
generic tags. For example, Building Details are often
tagged with the name of the entire building. This causes
the large difference in the good-1 and ok-1 scores of
these categories.

8.4. Discussion

While for most large clusters suitable semantics can
be found, for small and medium sized clusters the dif-
ference in ok-1 and good-1 scores (Fig. 11) suggests
that better tag ranking could greatly help the recogni-
tion of less popular objects. Significant improvements
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Figure 14: Quality of good (left) and ok (right) semantics assigned to
queries, compared to the quality of the objects retrieved.

can likely be made by increasing robustness w.r.t. dif-
ferent languages, spelling errors and tag noise. For ex-
ample, Fig. 13 shows a selection of different spellings
of “Musée d’Orsay” from our dataset that would all be
treated as separate tags by current methods. Mining
Wikipedia [4] or tourist guide websites [6], or perform-
ing specialized per-category metadata mining as done
by Arandjelovi¢ et al. [54] for sculptures might also
help in naming the less popular objects.

9. End-to-End Analysis

In Sec. 6, we analyzed different methods for assign-
ing objects to queries and measured accuracy on a vi-
sual level. In this section, we perform this analysis on a
semantic level, based on the labels assigned in the pre-
vious section.

9.1. Setup

To evaluate the system from end to end, we cluster the
Paris500k dataset with Iconoid Shift using 100k seeds
and mine semantics for the clusters using the method
of Simon et al. [10]. We use the Voting object scoring
method (Sec. 6) to rank objects w.r.t. a query. Subsam-
pling (Sec. 7) is not used. We then rate the relevance
of the top-scoring tag of the top-scoring object for each
query as either good, ok or bad (Sec. 8.2).

9.2. Results

Fig. 14 shows the results of semantic annotation and
compares it to the plain object recognition performance
(yellow bars in Fig. 8). Landmark Buildings have the
highest performance, because their large cluster size
enables robust recognition and semantic assignment.
The reason semantic assignment has even higher per-
formance than plain object recognition is that semantic
assignment sometimes corrects errors of object recog-
nition: It often happens that the query image shows
the whole building, but the matching object is a detail
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of the building, e.g. a door of Notre Dame or a leg of
the Eiffel Tower. This occurs, e.g., because the detail
is most prominent in the query due to perspective, or
because large parts of the building are occluded, but the
detail is still visible. However, photos of building details
are often labeled with the name of the whole building,
since photographers do not know, e.g., the name of a
particular door of Notre Dame. Therefore, the query is
correctly assigned the name of the whole building even
though the recognized object was a detail.

For categories with smaller clusters, there are differ-
ent bottlenecks: Artifacts and Landmark Objects are
hard to recognize, because they are compact objects
and form only small clusters. However, they typically
have high quality tags (Fig. 12). In other cases, a rele-
vant object can reliably be retrieved, but low tag quality
prevents successful semantic annotation. This problem
is most prominent for Windows and Murals (Fig. 14).
They are flat and photographed under a limited range
of conditions, making them easy to recognize, but they
suffer from low quality semantics, since information
on them is not easily available. In total, 51.8% of the
queries could be assigned good semantics, while for
59.4% a good object was retrieved; 61.9% of queries
were assigned ok tags, while for 76.0% an ok object was
retrieved. In the following, we summarize the causes of
this gap and discuss possible solutions.

10. Discussion and Conclusion

We now sum up the findings of our evaluation by an-
swering the questions posed in the introduction and dis-
cuss the areas where improvements can still be made.

How many and what kinds of objects are present in In-
ternet photo collections and what is the difficulty of dis-
covering objects of different object categories?

The question how many objects there are cannot be
answered based directly on the number of clusters, be-
cause there can be multiple clusters of the same object
showing different views, and clusters of non-objects,
e.g. party photos, pictures of animals and food, or
photo bursts. We performed an annotation experiment
(Sec. 5.2) and labeled the 3,088 clusters containing five
or more images discovered in the Paris500x dataset.
2,585 (83.7%) clusters were labeled as objects and 503
(16.3%) were labeled as non-objects (Note that this ra-
tio will shift more strongly towards non-objects when
also considering clusters containing less than 5 images.)
Approaches for detecting and removing such non-object
clusters could be a direction for future work, since they



unnecessarily increase the size of the retrieval index and
increase the chance of recognition errors. The distri-
bution of object categories (Fig. 3a) shows that, not
surprisingly, Landmark Buildings from the largest cat-
egory, followed by Sculptures, Panoramas and Paint-
ings. Seed-based object discovery algorithms [5, 24, 49]
find the most photographed objects first, because when
drawing a random image from an Internet photo collec-
tion, the likelihood of drawing an often photographed
object is higher. Therefore, much more effort is required
to also discover objects in the long tail of the size distri-
bution. This could be addressed in future work, e.g. by
seeding methods that avoid the bias to large clusters, or
methods that explicitly mine for small objects [49, 50].

How to decide which landmark was recognized given a
list of retrieved images?

We analyzed five methods for this task (Sec. 6). Our
experiments clearly showed that having a set of repre-
sentative images for each cluster is necessary to recog-
nize it under difficult conditions such as extreme view
differences, occlusion, lighting changes, blur, etc. (first
two rows of Fig. 15). This can be viewed as a form
of offline query expansion. However, like query expan-
sion, this method is also prone to drift (Fig. 16, top row),
which can cause confusion between nearby objects.
While the often used Best Match method [4, 6, 13, 2]
avoids drift better than some other methods, we found
that by using a method that explicitly maximizes the
Overlap between the query and the object’s iconic im-
age, even higher precision can be achieved. However,
the ranking gap (good-1 vs. good-3 performance) re-
mains relatively large, suggesting that there is potential
for more accurate object ranking methods.

How to efficiently represent the discovered objects in
memory for recognition?

We analyzed four image level techniques for elimi-
nating redundancy in the database (Sec. 7). Our analy-
sis revealed that it is important to keep representatives
showing obscure views and extreme lighting conditions.
Therefore, representing the object by a set of popular
views (as done in our Fine Iconoids method or in [53])
did not perform better than random subsampling. We
proposed two methods that achieve an acceptable trade-
off between database size and recognition performance,
but observed that there is still potential for better meth-
ods. A comparative analysis of methods that eliminate
redundancy at the feature level [1, 2, 42] would also be
an interesting future direction.
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Figure 15: Examples of successful recognition and annotation.

Are the user-provided tags reliable enough for deter-
mining accurate object names?

The largest room for improvement of the overall per-
formance of landmark recognition is in semantic anno-
tation. We determined two reasons for the performance
loss at this step (Sec. 8): (1) User-provided tags come
in different languages, have spelling errors and contain
noise terms (Fig. 13). Methods robust to these factors
could provide more reliable semantics even for small
clusters. (2) Often, insufficient information is available
to photographers, causing non-descriptive tags (Fig. 16,
bottom right). This might be addressed by crawling rel-
evant encyclopedia [4] or tourist guide articles [6] or
using image search engines [54]. However, sometimes,
the presence of accurate tags in small clusters can also
lead to surprisingly accurate results (Fig. 15, rows 3 and
4).

What are the factors effectively limiting the recognition
of different landmark types?

Our end-to-end analysis (Sec. 9) showed that the fac-
tors that limit recognition performance are quite varied
and strongly depend on the object category. Some ob-
jects like Windows or Murals are easy to recognize vi-
sually, but often lack accurate tags, which prevents se-
mantic assignment. This could be addressed using the
methods mentioned above. Other objects such as Ar-
tifacts or Landmark Objects do have accurate tags, but
are harder to recognize due to their spatial structure and
small cluster size. Their recognition could be improved



by mining more photos of them from the web [13]. Fi-
nally, improvements to image retrieval and matching,
e.g. improved feature representation [55], improved fea-
ture quantization [18, 56], or ranking methods robust to
problems like repeated patterns [57] (Fig. 16, bottom
left), will directly benefit both landmark clustering and
recognition.

10.1. Limitations

While our evaluation has brought to light several op-
portunities for progress, its scope could still be broad-
ened in future work. Due to our choice of dataset
our taxonomy of queries is certainly biased towards the
landmarks of Paris. A larger dataset from several cities
would increase the generality of the evaluation. Our
query set was collected from Internet photo collections
and is therefore representative for the task of photo auto-
annotation. While this bias only affects the score aver-
age and not the per-category scores, a second query set
for the task of mobile visual search would make it pos-
sible to identify problems specific for that task. The set
of methods we analyzed was carefully chosen, but an
analysis of other approaches (e.g., for clustering or se-
mantic annotation) may bring further insights into how
the component choices affect overall performance.

10.2. Conclusion

In this work, we have evaluated the automatic con-
struction of visual landmark recognition engines from
Internet image collections. We used a large-scale
dataset of 500k photos from Paris, collected a set of
3k typical query images, and created a ground truth
for evaluating large-scale photo auto-annotation that we
made publicly available. For each component of the
pipeline, we evaluated how different methods and pa-
rameters affect overall performance as well as the per-
formance for individual query categories. We proposed
several novel methods for various sub-tasks, some of
which outperform literature approaches. In our analy-
sis, we have identified areas where such a system per-
forms well, as well as areas where improvement is still
possible.
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