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Abstract

We propose a block-based scene reconstruction method using multiple
stereo pairs of spherical images. We assume that the urban scene consists
of axis-aligned planar structures (Manhattan world). Captured spherical
stereo images are converted into six central-point perspective images by cubic
projection and façade alignment. Depth information is recovered by stereo
matching between images. Semantic regions are segmented based on colour,
edge and normal information. Independent 3D rectangular planes are con-
structed by fitting planes aligned with the principal axes of the segmented
3D points. Finally cuboid-based scene structure is recovered from multiple
viewpoints by merging and refining planes based on connectivity and visi-
bility. The reconstructed model efficiently shows the structure of the scene
with a small amount of data.

Keywords:
3D reconstruction, Scene modelling, Spherical imaging, Block world
interpretation

1. Introduction1

3D scene reconstruction from photographic images has been an impor-2

tant research topic for various domains. Applications include visual sets in3

film and game production, 3D map generation, virtual tourism and urban4

planning. There have been many studies into outdoor scene reconstruction5

from multi-view images [1, 2, 3]. Strecha et al. created a benchmarking site6

for the quantitative evaluation of algorithms against ground-truth by LIDAR7
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scanning [4]. However, the quality of pure image-based reconstruction largely8

depends on the capture environment.9

Firstly, real environments include complex appearance causing errors in10

reconstruction from images. Textureless and non-Lambertian surfaces often11

result in errors in matching and reconstruction. Scenes reflected on glass or12

water induce false depth. Moving pedestrians and cars in the scene can be13

occluders in urban scene modelling.14

Another problem is that normal cameras with a limited field-of-view15

(FOV) capture only a partial observation of the surrounding environment.16

Reconstruction of a complete model of the 3D environment requires addi-17

tional views to capture the scene and occluded regions. Reconstruction of18

scene models from multiple images or video acquired with a standard cam-19

era has been the focus of considerable research. However, the limited FOV20

presents a challenging problem to ensure complete scene coverage for recon-21

struction. Agarwal st al.[5] reconstructed full 3D street models from 150,00022

photos from the internet using grid computing. Pollefeys et al.[6] used 3,00023

video frames to reconstruct one building and 170,000 frames for a small town.24

The relatively narrow FOV and low resolution of normal cameras require ac-25

quisition and processing of large image sets for scene model reconstruction.26

Finally, conventional dense reconstruction methods such as LIDAR scans27

or image-based reconstruction result in millions of points with a high-level28

redundancy which do not efficiently represent the scene structure. The task29

of extracting a structured representation for subsequent visualisation is typ-30

ically performed manually. When we applied our previous dense reconstruc-31

tion algorithm [7] for datasets covering areas of 30m diameter surrounded by32

buildings, it produced more than 100 million faces with 60 million vertices.33

This occupies huge amount of system memory and may require out of core34

techniques [8] to visualise and render. Applications such as 3D structure rep-35

resentation and pre-visualisation require scene models in a structured form36

for efficient storage, transmission and rendering.37

Piecewise-planar, plane-based and block-based scene modelling methods38

provide a good solution for the above problems. These approaches start from39

the assumption that man-made environments such as urban areas or building40

interiors are composed of piecewise planar surfaces. Furukawa et al.[9] and41

Gupta et al.[10] used the strong assumption of a piecewise-axis-aligned-planar42

world (Manhattan world).43

We previously presented a dense environment model reconstruction [7]44

and a plane-based reconstruction [11] using a line-scan camera and manual45
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segmentation. In this paper, we propose an automatic block-based envi-46

ronment model reconstruction method based on the same input data. This47

produces a more complete scene model with a compact representation for48

storage and transmission. The geometry can be refined for higher resolution49

mesh models if dense depth information is available. The approach provides a50

compact scene model for hierarchical geometry representation of the detailed51

scene structure.52

The main contributions of this paper are:53

- We propose a 3D block-based scene reconstruction system. This is a54

simple and efficient way to represent the structure of a scene with high55

completeness for transmission and interactive visualization.56

- Spherical stereo imaging enables full scene reconstruction with a small57

number of input images. This saves considerable time in scene capture58

and reconstruction.59

- We propose a façade alignment algorithm to find regions in the scene60

for optimal alignment and cubic projection. Cubic projection decom-61

pose the spherical image into six central-point perspective images. The62

central-point perspective image is advantageous in feature matching63

and 3D plane reconstruction because it is distortion-free and has a64

vanishing point at the centre of the image aligned with the principal65

axes for a Manhattan world.66

- We propose an automatic extraction of plane and cuboid structure67

from colour and depth images. Optimal block-based representation of68

the scene is recovered based on visibility, occupancy, point density and69

physical stability.70

- We provide an optional user interaction to constrain primitive recon-71

struction to keep specific geometrical details or refine erroneous regions.72

- High resolution texture mapping from the original images to the block73

based representation gives a quick rendering of the scene.74

The rest of this paper is organised as follows: Section 2 introduces related75

previous works and Section 3 outlines overview of the proposed method. Sec-76

tion 4 presents capture method and cubic projection with façade alignment.77
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Figure 1: Categories of Simplified scene modelling methods

Depth reconstruction and region segmentation methods are proposed in Sec-78

tion 5. In Section 6, we introduce plane primitives reconstruction and struc-79

tured block reconstruction methods. Experimental results and discussion are80

given in Section 7, and Section 8 makes conclusions of this work. Supplemen-81

tal video is also available at: http://www.cvssp.org/hkim/BlockWorld/82

BlockRecon-CVIU.mov showing results of reconstruction for various scenes.83

2. Related Work84

Simplified scene modelling has been a long-standing area of research.85

Previous approaches can be separated into two categories: interactive and86

fully automatic methods. The automatic method are divided into grammar-87

based and matching-based approaches according to the registration strategy88

and the matching-based approach uses various input modalities as illustrated89

in Fig. 190

The FAÇADE system introduced by Debevec et al.[12] pioneered inter-91

active environment modelling from images. In this approach, a simplified92

geometric model of the architecture is recovered interactively with manual93

correspondence using multiple view geometry. Novel views are rendered us-94

ing view-dependent texture mapping, and additional geometric detail is re-95

covered automatically through stereo correspondence. Their research was96
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commercialised as ImageModeler1.97

Hengel et al.[13] proposed an interactive 3D modelling method from video98

frames by tracing the shape of objects in the scene. They used structure from99

motion (SfM), feature point tracking and superpixel segmentation to get 3D100

information from 2D video frames. If users draw 2D primitives such as lines101

and circles on frames, then the system automatically builds 3D primitives102

from the user’s input and reconstructed 3D information. This concept was103

extended by Sinha et al.[14] using feature-matching and SfM methods with104

line detection and vanishing point detection algorithms for interactive 3D105

architectural modelling from photo collections. SketchUp2 provides a simple106

3D reconstruction tool from multiple photos. This is similar to the Sinha’s107

method but it does not use any matching method, just manual vanishing108

point alignment for photo registration to 3D coordinates. This tool is useful109

to build very simple scenes but has limitations in building complex scenes110

because it requires manual matchings for each primitive.111

Automatic scene reconstruction can be divided into two categories: grammar-112

based and matching-based reconstruction. Grammar-based reconstruction113

uses semantic region detection and recognition to compose the world ac-114

cording to pre-defined rules. Gupta et al.[10] proposed block world recon-115

struction from a single outdoor image, inspired by the “Blocks World” work116

in the 1960’s and Hoiem et al.’s “pop up 3D” [15]. They assume that the117

world is composed of blocks and match 2D image regions into 3D block view118

classes. They also estimate the density of each block using visual cues and119

use it to generate 3D parse graphs which describe geometric and mechanical120

relationships between objects within an image. Muller et al.[16] proposed121

a rule-base city modelling method using shape grammar rules from façade122

images, now commercialised as CityEngine3. Xiao et al.[17] proposed an123

automatic approach to generate street-side 3D photo-realistic models from124

images captured along streets at ground level with an assumption that build-125

ing façades have two principal directions. They use a SfM method for the126

initial point cloud reconstruction and apply a multi-view semantic segmenta-127

tion method for classifying regions into semantic models in the hand-labelled128

image database. Then, independent blocks are reconstructed using major129

1ImageModeler, http://usa.autodesk.com/adsk/servlet/pc/index?id=

11390028&siteID=123112
2SketchUp, http://www.sketchup.com/
3City Engine, http://www.esri.com/software/cityengine/
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line structures and the final façade scene is modelled by inverse patch-based130

orthographic composition and structure analysis. This approach generates131

clean façade scenes but is highly computationally expensive, taking 23 hours132

on a cluster of 15 computers for semantic segmentation of 202 building blocks.133

Bellotti et al.[18] proposed an Architectonic Style Area (ASA) algorithm for134

procedural generation of buildings in an urban area, based on the concept135

of “architectonic likelihood”. The algorithm accepts façade pictures from136

sample buildings and statistical description of the elements and styles as in-137

put, and composes façade models by statistically assembling sample images138

of architectonic components. Components are classified in an ontology based139

on the classic principles of architecture. The algorithm relies on rules that140

encode the semantics of the ontology. Simon et al.[19] proposed a grammar-141

based modelling method with basic shapes (roof, wall, window, balcony, floor,142

door, shop, etc.) and deviation tree for the procedural geometry. Mathias143

et al.[20] proposed a similar grammar-driven approach for reconstruction144

of buildings and landmarks, but they used an inverse procedural modelling145

strategy for SfM and image-based analysis. Satkin et. al [21] present a data-146

driven approach using repositories of 3D models to find the identities, poses147

and styles of objects in a scene. However, the grammar-based approach has148

a serious problem because semantic segmentation is not always stable, and149

this approach works only within the given rule and categories. Any object150

or building out of the given categories induces errors in reconstruction.151

Multi-View Stereo (MVS) and SfM reconstruction is the most popular ap-152

proach, not only in full geometry reconstruction, but also in piece-wise planar153

reconstruction. Schindler et al.[22] proposed a novel method for recovering154

the 3D-line structure of a scene from multiple widely separated views. 2D155

lines aligned to major axes are detected by EM-based vanishing point es-156

timation. Those 2D lines are reconstructed as 3D lines to provide guide157

lines for 3D structure reconstruction. Hane et al. [23] proposed a piece-wise158

planar depth map fusion, which formulates an energy term in stereo match-159

ing using patch-based priors to reconstruct piece-wise planar scenes. Sinha160

et al.[24] suggested extracting vanishing directions and fitting point clouds161

into 3D planes reconstructed based on the vanishing directions. Gallup et162

al.[25] proposed a stereo method handling scenes containing both planar and163

non-planar regions by segmentation and planar region detection. The planar164

regions are represented by planes and the non-planar regions are modelled165

by the results of a standard multi-view stereo algorithm. One problem of166

this approach is the lack of completeness due to small independent planes.167
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Toldo et al.[26] proposed planar patch extraction based on photo consis-168

tency from point clouds using the J-linkage algorithm [27] and reconstructed169

the scene with a view clustering tree and hierarchical reconstruction. Some170

research has invoked the stronger Manhattan-world assumption [28] which171

states that the world is piecewise planar and aligned to orthogonal axes.172

Micusik et al.[29] proposed a super-pixel stereo on a Markov Random Field173

(MRF) and aligned surfaces to three dominant directions based on the grav-174

ity vector and vertical vanishing point. Furukawa et al.[9] also built indoor175

and outdoor scenes by axis aligned depth map integration relying on the176

Manhattan world assumption. The approach starts from point clouds gener-177

ated by their Patch-based Multi-view Stereo (PMVS) algorithm [1] and finds178

an optimal minimum volume solution with plane hypotheses. Compensat-179

ing or concealing the occlusion part of the scene is an important problem180

in 3D reconstruction. Chauve et al.[30] used additional ghost primitives to181

fill gaps between detected basic primitives by inducing cell complex. We use182

a similar plane extension technique in this paper to detect intersections of183

reconstructed partial planes. Kowdle et al.[31] proposed an active learning184

technique. They used an energy minimization framework for piecewise pla-185

nar reconstruction but allowed simple user interaction to provide support for186

the uncertain regions.187

Some approaches reconstruct geometry from point cloud datasets gener-188

ated by an active sensor such as LIDAR without the help of image data. City189

modelling from aerial scans is one typical example. Zhouet al.[32] proposed190

a method to produce crack-free models composed of complex roofs and verti-191

cal walls from aerial LIDAR point clouds. Poullis et al.[33] also developed a192

fully automatic method for extracting high-fidelity geometric models directly193

from aerial LIDAR scans using 2D roof boundaries extraction based on GMM194

and camera pose estimation using Levenberg-Marquardt optimisation. Li et195

al.[34] introduced an idea for modelling algorithm from range data that ex-196

ploits a priori knowledge that buildings can be modelled from cross-sectional197

contours using extrusion and tapering operations. Nguatem et al.[35] pro-198

posed an automatic cuboid fitting algorithm using a line sweep to recon-199

struct cuboid-based building model from point clouds. Xiao et al.[36] also200

developed a virtual walkthrough system with regularized texture-mapped 3D201

model using an inverse constructive solid geometry for large indoor scenes202

from ground-level photographs and 3D laser points.203

The use of spherical imaging provides a simple approach to overcome the204

limited FOV of conventional cameras. Sturm[37] suggested a method for 3D205
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plane-based scene reconstruction from a single panoramic image. He used a206

priori constraints on the 3D structure such as: co-planarity of points, per-207

pendicularity of planes and lines, and parallelism of planes and lines. Kang208

et al.[38] also proposed a similar 3D plane reconstruction method using the209

normal vector of plane and vanishing points from a single panoramic image.210

Point Grey developed an omnidirectional multi-camera system, the Lady-211

bug4, consisting of six XGA color CCDs to provide high resolution spherical212

images. Micusik et al.[39] used this camera for piecewise planar city mod-213

elling. They back-projected images to quadrangular planes and applied MRF214

superpixel stereo and depth sweeping algorithms for depth map reconstruc-215

tion. The reconstructed depth maps were fused into surfaces aligned to three216

dominant directions. They assumed that the cameras are pre-calibrated and217

that reference images are also pre-segmented. Google also developed their218

own omnidirectional multi-camera system to reconstruct and render street219

models [40]. They simultaneously utilised range sensor to obtain a base-220

structure of the street scene and refined the model with optical flow esti-221

mation from captured images. In their approach, accurate registration of222

photometric and geometric information is important. Simultaneous sensing223

from different locations requires calibration and registration to align depth224

and image information.225

Instead of omnidirectional or panoramic images, Feldman et al.[41] used226

the Cross Slits (X-Slits) projection with a rotating fisheye camera to generate227

a high quality spherical image and to reduce the dimension of the plenop-228

tic function. In this research we use a similar line-scan camera to capture229

latitude-longitude image which has advantage in stereo matching and 3D230

reconstruction.231

3. Overview of the Proposed System232

In this research, we propose a simple and efficient method to reconstruct a233

simplified structured environment model from spherical image pairs. Figure234

2 shows a block diagram for the whole process.235

A linescan camera captures a full surrounding scene at multiple locations236

as vertical stereo pairs. The captured images are latitude-longitude images.237

They are projected into a unit cube with a novel façade alignment algorithm238

4Pointgrey, http://ww2.ptgrey.com/spherical-vision
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Figure 2: Block diagram of the system

based on the Hough transform. Each face image of the cubic projection is a239

distortion-free central-point perspective image whose three principal axes are240

aligned to vertical, horizontal, and the image centre directions, respectively.241

To reconstruct depth information from stereo pairs, disparity estima-242

tion is performed. For automatic initial region segmentation, we propose a243

graph-based region segmentation extending Felzenszwalb and Huttenlocher’s244

algorithm[42] to perform segmentation based on colour, normal direction and245

detected Hough lines. From the segmentation and disparity maps, inde-246

pendent 3D rectangular planes are constructed by plane fitting. The plane247

structure is refined by merging, expanding, cropping and eliminating planes248

validated against the reliability, visibility and occupancy.249

Finally connected planes are extruded in the counter normal direction to250

construct block models. An optimal block structure is recovered based on251

the point density in each cuboid. The result represents the scene structure as252

a set of cuboids which can be used to render the scene with texture mapping.253

4. Line-scan Capture and Cubic Projection254

4.1. Spherical stereo acquisition255

In this work, we use a commercial off-the-shelf line-scan camera5 with256

a fisheye lens in order to capture the full environment as a high resolution257

spherical image. This camera samples rays on a hemisphere about the centre258

of projection and stitches together from the rotating slits together to form259

a new image. The camera rotates about axis through its optical centre. As260

a result the imaging geometry of the line-scan capture can be regarded as261

conventional perspective projection, and the result is a latitude-longitude262

image like a world map.263

5Spheron, https://www.spheron.com/products.html
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In order to recover depth information from the images, the scene is cap-264

tured with the camera at two different heights. This vertical stereo line-scan265

camera capture has the following advantages:266

(1) Relatively simple calibration is required. Depth reconstruction only re-267

quires knowledge of the baseline distance between the stereo image pair268

and correction of radial distortion in the vertical direction. Radial dis-269

tortion is rectified using a 1D lookup table to evenly map pixels on the270

vertical central line to the [0, π] range. Lens distortion parameters are271

fixed so that this mapping can be calculated for the lens in advance.272

273

(2) Stereo matching can be simplified to a 1D search along the vertical scan274

line as discussed above, while normal spherical images require a complex275

search along conic curves or rectification of the images. In the latitude-276

longitude geometry, the great circles intersecting at the epipoles of the277

spherical geometry become parallel straight lines. Therefore, the con-278

ventional correlation-based matching on an 1D search range can be used279

to compute the disparity of spherical stereo images if they are vertically280

aligned. Error in the alignment can be corrected by rectification using281

the method proposed by Banno and Ikeuchi [43].282

283

(3) High resolution images can be captured by a line-scan camera because284

the sensor array is 1D and the resolution about the axis depends on the285

step size. High resolution images provide more accurate depth estimation286

and high quality texture mapping.287

4.2. Cubic projection and Façade alignment288

The latitude-longitude images can be directly used for 3D reconstruction.289

However, we propose to convert the image into distortion-free perspective290

images via projection of the spherical image to a cube, referred to here as291

cubic projection. The cubic projection projects all pixels on the unit sphere292

to the unit cube in the range [-1, 1] in each axis. The converted image is293

decomposed into six perspective images as illustrated Fig. 3 (a) and (b).294

We set 0◦ of longitude as the x-axis in the cubic projection of Fig. 3 (b)295

and each side face image of the cubic projection has two vanishing points.296

These images have a single-vanishing point if we set the axes of the cubic297

projection to be aligned to the Manhattan world axes, which we refer to as298

façade alignment.299
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(a) Spherical to Cubic projection

(b) Projected image (Cathedral2)

(c) Facade aligned image (Cathedral2)

(d) Facade aligned projection image (Carpark1)

Figure 3: Cubic Projection

Façade alignment is the process of matching the main façades in the300

scene to be perpendicular to the principal axes of the cubic projection by301

rotating the spherical image around the vertical axis. Fig. 3 (c) shows the302

projection result when 126◦ of the longitude is set on the x-axis. Fig. 3 (d) is303

another example of the façade aligned cubic projection. We can observe that304

the horizontal and vertical lines in the scene were aligned to horizontal and305

vertical directions in each images, respectively, and that the lines aligned to306

the depth direction converges to the image centre. Therefore we can consider307

these images as formed by central-point perspective projection. Central-308

point perspective projection has significant advantage for axis-aligned plane309

reconstruction. Most of the current plane-based reconstruction algorithms310
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Figure 4: Block world reconstruction from façade-aligned cubic projection image

use vanishing point and principal directions detection in 3D space [9, 24, 29].311

Cubic projection with the façade alignment can detect 3D principal directions312

in 2D images. Therefore, aligned 3D planes or 3D blocks can be built by313

extruding detected 2D planes in the depth direction as shown in Fig. 4.314

In order to find the most reliable angle shift topt to set the x-axis, we315

considers the number, sparseness, average length and average angle errors of316

image lines resulting from the probabilistic Hough transform [44]. The angle317

shift in longitude is equivalent to the horizontal pixel shift in the line-scan318

image. We detect the following three kinds of Hough lines as aligned among319

all detected lines H : Horizontal Hough lines Hh, Vertical Hough lines Hv and320

Perspective Hough lines (to the depth direction) Hp.321

- Hh = {hh|hh ∈ H, |θ(hh)| < 1◦}322

- Hv = {hv|hv ∈ H, |θ(hv)− 90◦| < 1◦}323

- Hp = {hp|hp ∈ H,D(Ic, hp) < rc}324

where θ is the angle of the line to the horizontal direction, and D(I, L) is325

the distance between the image centre point Ic and the line L. The distance326

threshold rc varies depending on the image resolution. In the above aligned327

Hough lines, Hh are most important to detect the façades of the scene and328

Hv are almost the same over any shift. We estimate the optimal rotational329

shift topt to find the façade direction of the scene by maximising the following330

energy term:331
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(a) Facade energy

(b) Facade energy (Sum)

Figure 5: Facade energy according to angle shift

topt = argmax
0◦≤t<360◦

EF (t) (1)

EF (t) = λRER(t) + λSES(t) + λLEL(t) (2)

ER =
|Hh ∪Hv ∪Hp|

|H|
ES = σHh

EL =
1

|Hh|
∑
Hh

log(l(hh)/θ(hh) + ε))

In Eq.(2), ER represents the ratio of the number of aligned Hough lines332

to all Hough lines. ES is the standard deviation of average y-position of Hh333

which relates to sparseness of the horizontal Hough lines. We give higher334

priority to sparse features in the scene because dense Hough lines can be335

detected from small areas which have complicate patterns and bias the op-336

timisation. EL represents the magnitude and accuracy of the detected Hh337

where l(h) is the length of the line. The weighting factors λR, λS and λL338

can be adjusted according to the scene characteristics, but we fix λR=1.0,339
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λS=1.0, λL=0.3 throughout our experiments to show that those parameters340

are applicable to general scenes.341

Figure 5 (a) shows EF (t) against all angle shifts from 0◦ to 360◦. The342

Cathedral scene shows four distinctive peaks at around 90◦ intervals, while343

the CarPark scene has an ambiguous peak around 100◦ because the ground344

is slightly slanted and the high frequency texture of the tree and brick walls345

induce many outliers in the Hough transform. Using the assumption that346

façades in each side face are perpendicular to each other based on the Man-347

hattan world assumption, we detect the optimal shift by maximising the348

following energy sum which results in Fig. 5 (b) with a more distinct peak349

point.350

topt = argmax
0◦≤t<90◦

3∑
k=0

EF (t+ k ∗ 90◦) (3)

The façade-aligned cubic projection image is a distortion-free central-351

point perspective image. It has several advantages over alternative projec-352

tions. First, it is easy to extract axis-aligned planes from the image because353

it does not require any vanishing point detection. Second, it is easy to find354

matched features between multi-view images because they do not have dis-355

tortion of the appearance while the spherical images have serious radial dis-356

tortion according to the angle. Finally, multi-view registration is a simple357

3 DOF problem (only translation) because the façades direction is already358

aligned for all views.359

5. Depth Reconstruction and Region Segmentation360

5.1. Depth reconstruction from spherical stereo361

One of the most important problems in depth estimation is locating cor-362

responding points in the images, a process referred to as disparity estima-363

tion. The estimated disparity fields can be converted into depth information364

by camera geometry. Depth reconstruction from images captured by con-365

ventional cameras require a calibration step to extract camera parameters.366

However, the spherical stereo pair and cubic projection pair used in this re-367

search do not require a complex calibration step because pixel positions in368

each image directly correspond to 3D spherical coordinates as described in369

Section 4.1.370
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Figure 6: Spherical and cubic stereo geometry

(a) Disparity map (b) Depth map with cubic projection

Figure 7: Depth reconstruction result for Cath2 image set

The angle disparity d between two image pairs is defined as illustrated371

in Fig. 6. If we assume the angles of the projection of the point P onto372

the spherical or cubic projection image pair displaced along the y-axis are373

θt and θb respectively, then the angle disparity d of point pt(xt, yt) can be374

calculated as d(pt) = θt− θb. The distance of the scene point P from the two375

cameras is calculated by triangulation as Eq. (4), where B is the baseline376

distance between the camera’s center of projection and rt and rb represent377

the distance from P to the top and bottom cameras.378

rt = B/

(
sin θt

tan(θt + d)
− cos θt

)
rb = B/

(
cos θb −

sin θb
tan(θb − d)

)
(4)

Stereo matching can be carried our in either the spherical image pair or379

cubic projection image pairs. In the latitude-longitude image, the epipolar380

line for correspondence search is a vertical scan line. In cubic projection381

images, epipolar lines are vertical lines for side faces, and radial lines from382

15



the centre for the top and bottom face images. Both image types have a383

trade-off according to the disparity estimation method. Disparity estima-384

tion on the latitude-longitude images is good for pixel-base approaches or385

global optimisation, but contains errors in area-based approaches like block386

matching because of the distortion of the image. On the other hand, cubic387

projection images show better results in area-based matching but correspon-388

dence should be independently estimated for each face image and requires389

boundary processing between face image. In any case, disparity estimation390

results can easily be converted between formats by the projection geometry391

in Fig. 6.392

Any disparity estimation algorithm can be used for the proposed system393

as long as it does not produce too many outliers. We use latitude-longitude394

images and a PDE-based variational disparity estimation method previously395

proposed to generate accurate disparity fields with sharp depth discontinu-396

ities for surface reconstruction [7].397

Figure 7 shows the result of the estimated angle disparity field and its398

depth map followed by cubic projection. Depth is mapped to grey scale399

according to their disparity or depth range.400

5.2. Region segmentation for plane reconstruction401

Felzenszwalb and Huttenlocher [42] proposed a simple and intuitive seg-402

mentation concept that: “The intensity differences across the boundary of403

two regions are perceptually important if they are large relative to the inten-404

sity difference inside at least one of the regions”. We modify Felzenszwalb’s405

segmentation method [42] to embrace 3D features such as surface normal406

direction and aligned Hough lines.407

A graph G = (V,E) is constructed for each face image domain, where408

vi ∈ V is the set of pixels and (eij) ∈ E is the edge between neighbouring409

elements (vi, vj) with a weight w(eij). We set the affinity weights according410

to the colour difference Wc, face normal angle difference Wo and edge penalty411

We in Eq. (5).412
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(a) Surface normal (b) Hough lines

(c) Felzenszwalb (d) Proposed

Figure 8: Region segmentation results(Cathedral2 and Carpark1)

W = Wc + λoWo +We (5)

Wc = dist(I(vi)− I(vj))

Wo = |cos−1(O(vi) ·O(vj))|

We =


a if vi is on Aligned Hough lines,
b else if vi is on Canny edge lines,
0 otherwise.

I(v) is a colour value in (R,G,B) coordinates and O(v) is a surface normal413

vector calculated from the depth map generated in section in 5.1. We experi-414

mentally set λo as 40 and edge penalties a and b as 400 and 200, respectively,415

in all of our experiments. We also set the region size preference parameter k416

in the Felzenszwalb’s algorithm as 1200.417

Figure 8 shows results of region segmentation for the main façade of418

the Cathedral and Carpark scenes. Figure 8 (a) shows the surface normal419

map projected into the (R,G,B) domain and Fig. 8 (b) shows Canny edge420

and Aligned Hough lines. Fig. 8(c) and (d) are results of Felzenszwalb’s421

segmentation algorithm and the proposed algorithm respectively. We can422
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observe that the side walls and objects are clearly segmented by the proposed423

algorithm owing to the integration of surface normal and edge information.424

However, the results are still over-segmented for plane reconstruction. Mi-425

cusik et al.[29] used Felzenszwalb’s segmentation for generating super-pixels426

and refined them iteratively using a 3D MRF. This method is computation-427

ally expensive to refine the super-pixel segmentation into meaningful copla-428

nar regions and is unstable in many cases. Therefore we introduce a method429

to merge segmented regions in the plane reconstruction stage by considering430

their reliability and spatial relationship.431

6. Block World Reconstruction432

3D structured scene is reconstructed from the 2D images, region segments433

and disparity information. First, 3D rectangular plane elements are con-434

structed by projecting segmented regions to 3D with the depth information.435

The resulting 3D planes are merged, eliminated and connected to generate436

the 3D plane structure of the scene. If multiple stereo reconstructions are437

available, they are registered and refined into one complete structure. Finally438

a block world model is generated from the plane structure by fitting cuboids.439

We introduce a scene scale parameter Sc which represents the level of440

detail in the scene reconstruction. Sc defines the minimum size of objects to441

be reconstructed, and also to merge or eliminate less reliable planes. Small442

Sc can reconstruct details of the scene but large coherent area can be divided443

into small planes including erroneous pieces. Large Sc produces rough scene444

structure with less pieces but may lose scene details. We set Sc as 0.8m for445

outdoor scenes and smaller value of 0.2-0.4m for indoor scene according to the446

preference for scene details (Sc values for indoor scenes are given in Section447

7). However, applying a single scale parameter to the whole scene can miss448

important details. We allow user interaction as an option to introduce hard449

constraint to specific regions to keep their properties in reconstruction.450

6.1. Plane reconstruction451

All 2D points Vp ⊂ V in each segment can be projected into 3D space452

with the depth information to form a 3D point cloud. Rectangular planes are453

constructed from the segments and point clouds. Two different approaches454

can be used for plane detection in a point cloud segment: total least squares455

[45] and RANSAC-based [46]. The total least squares fitting is a form of456

linear regression and provides a solution to the problem of finding the best457
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Table 1: Plane classification
Class Constraint

X plane nx ∼ N(0, σ2nx
)

Y plane ny ∼ N(0, σ2ny
)

Z plane nz ∼ N(0, σ2nz
) & t(z) ≥ Tg

Ground plane nz ∼ N(0, σ2nz
) & t(z) < Tg

Arbitrary plane otherwise (eliminated)

fitting 3D plane through a set of points, while the RANSAC-based plane458

detection iteratively selects a small subset of points at random to fit a model459

to that subset and remove outliers. The total least square method is fast and460

converges to a single solution, but the result can be biased by outliers. The461

RANSAC-based method can be more accurate if there are many outliers, but462

it is computationally expensive. In our case, the plane reconstruction is a463

large set of small problems, and the disparity estimation algorithm provides464

smooth and accurate depth fields over the surface except near region bound-465

aries. Therefore, we exclude 10% of points close to region boundaries in the466

segmentation and apply the total least squares (orthogonal regression) fitting467

algorithm [45] and bounding box extraction. If the 3D point cloud is noisy,468

the RANSAC-based approach can be applied as an alternative.469

Once all regions are fitted to planes, they are categorised into five classes470

(X, Y , Z, Ground and Arbitrary ) according to the constraints with their471

normal vectors n and centre point t(x, y, z) as shown in Table 1. Tg, set as472

Sc/2, is a threshold to define Ground planes among Z-planes and σ2
ni

is the473

variation from the ideal normal vector for a particular plane orientation. We474

set σ2
ni

as 0.15 for the block world reconstructions that do not use arbitrary475

planes in our experiments. All reconstructed planes are saved as a vector476

list:477

P = {pi} = {[ni ti wi hi]} (6)

where w and h are the height and width of the plane.478

Plane elements reconstructed from the region segments may include false479

planes and partial planes which can be merged into a larger plane. In order480

to refine those planes, we measure the following reliability factors for each481

plane: reconstruction confidence Rc, plane size Rs, distance from the camera482

Rd, distance between planes Rb and angle to the camera view direction Rθ.483
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Rc(pi) = MSE(pi) (7)

Rs(pi) = wi × hi (8)

Rd(pi) = ‖Oc − ti‖ (9)

Rb(pi, pj) = ‖pi − pj‖d (10)

Rθ(pi) = |cos−1(Octi · ni)| (11)

MSE(pi) is the mean squared error calculated in the plane fitting, Oc is the484

location of the camera that the plane belongs to in the unified coordinate485

system and ‖ · ‖d is the minimum distance between two planes.486

Merging Similar Planes: Two neighbouring planes pi and pj are merged487

into one plane and the bounding box is newly set to cover both regions if488

they satisfy the following conditions.489

- Two planes are in the same category490

- Rb(pi, pj) < Sc491

- {Rs(pi)new < Rs(pi)old} ∩ {Rs(pj)new < Rs(pj)old}492

Rs(p)old is the original area of p and Rs(p)new is the new area to be extended493

to build the merged plane. The third condition keeps structures with a big494

hole such as bridge or door. The position of the new plane is set to the495

position of the old plane with lower Rc(p).496

Elimination of Unreliable Planes: According to the observations in [7],497

we assume that a plane is unreliable if it is too distant from the camera or498

its angle to the camera is too big. Therefore, the plane is eliminated if it499

satisfies the following conditions.500

- {Rs(pi) < S2
c} ∪ {Rd(pi) > dmax} ∪ {Rθ(pi) < θmin}501

dmax is set to 20m for outdoor scenes and 5m for indoor scenes. θmin is set to502

15◦. Figure 9 shows the original planes reconstructed from the segments and503

their refinement results by merging similar planes and eliminating unreliable504

ones.505

Plane Intersection Refinement: All plane-to-plane intersections are checked506

if they have any intersection with each other in the extension range of Sc/2. If507
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(a) Before plane refinement (b) After plane refinement

Figure 9: Plane refinement (Cathedral2, Randomly coloured planes)

any intersection is found, the length of intersection and visibility are checked508

to determine the type of intersection. If the intersection is larger than half509

of the bigger plane, two planes are welded at the intersection to generate510

a corner (Fig. 10 (a)). Otherwise, only the smaller plane stops growing at511

the intersection to generate a T-junction (Fig. 10 (b)). If two planes al-512

ready have an intersection, residual parts are eliminated based on visibility513

constraints [47] (Fig. 10 (c)). If the plane does not meet any intersection514

during the extension in any direction, we keep the original boundary. Figure515

10 (d) illustrates examples of the plane intersection refinement observed in516

the cathedral dataset.517

Filling gaps from self-occlusion: The scene captured from a single fixed518

location inevitably has self-occlusions in the scene as illustrated in Fig. 11519

(a). We adopt the minimum volume solution proposed by Furukawa et al.[48]520

based on the Manhattan World assumption. The plane occluded at the rear521

of the front plane is extended to the boundary of the orthogonal line-of-522

sight (LOS) from the surface normal direction as shown in Fig. 11 (b).523

The occluded region perpendicular to the orthogonal LOS is compensated524

by other viewpoints or the block reconstruction presented in the following525

subsections as demonstrated in Fig. 11 (c).526
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(a) Welding (b) T-junction (c) Cropping

(d) Examples (Cathedral2, Randomly coloured planes)

Figure 10: Intersection refinement

6.2. Multiple-view plane structure reconstruction and texture mapping527

The spherical camera is more advantageous in environment capture than528

normal camera with a limited FOV as mentioned in Section 1. However,529

spherical imaging does not capture the complete scene due to self-occlusion.530

Simple cases can be compensated by the minimum volume solution, but there531

is no way to get information for occluded regions behind any object from a532

single viewpoint. Another problem of the single-view spherical capture is the533

fact that the accuracy of the depth estimation is inversely-proportional to534

the distance and the angle of surface normal. These problems can be over-535

come by captures from multiple viewpoints. Merging reconstructions from536

multiple stereo pairs can be integrated into a common 3D scene structure.537

Kim and Hilton[7] proposed a mesh-fusion algorithm for dense meshes by538

mesh registration and reliable surface selection by considering surface visi-539

22



(a) Self-occlusion (b) Filling the gap

(c) Example for the Cathedral scene

Figure 11: Occlusion filling

bility, orientation and distance. They calculate 3D rigid transforms between540

viewpoints using 2D feature matching.541

We propose a similar but much simpler and faster method based on the542

observations that: 1) the mesh registration is not optimised for rotation and543

translation (r, s), but only for translation s because the façade direction is544

already aligned for all viewpoints; 2) the surface reliability test is not applied545

for each vertex on the surface, but for the whole plane.546

We use SURF feature matching [49] between captured images for different547

stereo pairs. The resulting 2D matches are projected into 3D space with the548

estimated depth field. However, these points are not reliable enough to be549

used in registration because of SURF matching and depth estimation errors.550

We use a RANSAC-based least square minimisation for the following error,551

where i and j are corresponding matching points in the model set m and552

reference set M , respectively.553

Et(s) =
∑
(i,j)

‖mi − (Mj + s)‖2 (12)

Once all viewpoints are registered into a unified coordinate system, plane554
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(a) Multiple capture

(b) Reconstructed planes

(c) Texture mapping

Figure 12: Multiple-view plane reconstruction

primitives are reconstructed independently for each viewpoint. All planes in555

the X, Y , and Z classes are then refined by the same method as the single556

view reconstruction.557

UV mapping [50] is used for texture representation. If texture mapping558

is required, all planes are subdivided into small regular triangles with their559

corresponding vertices in the texture image so that the mapped texture is560

not distorted. If the plane is merged from multiple viewpoints, the dominant561

viewpoint is decided by comparing their camera view direction Rθ in Eq. (11)562

and the texture is obtained from the dominant view image. Multiple blending563

is not used because the blending result can be blurred or result in ghosting564

artefacts due to the simplified geometry.565

Figure 12 shows the result of plane reconstruction from multiple pairs566

of spherical stereo. The Cathedral scene was captured at three different567

locations and each reconstructions is merged into the central viewpoint. All568

major objects in the scene are reconstructed.569
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(a) Primitives (b) Min volume (c) Max volume

Figure 13: Cuboid reconstruction from two planes

(a) Primitives (b) Possible volumes

Figure 14: Cuboid reconstruction from three planes

6.3. Block-world reconstruction570

Plane-based reconstruction describes simplified scene structure. How-571

ever, block-based visualisation can provide better perception of the scene572

with surface normal orientations motivated by Gupta et al.[10]. This pro-573

vides a model with higher completeness and an efficient representation of the574

scene because each block has only six degrees of freedom (3D location and575

dimensions).576

Here we propose a cuboid fitting method starting from plane primitives577

reconstructed in Section 6.2. As mentioned in Section 4.2, cuboid recon-578

struction can be considered as an outward extrusion process (counter surface579

normal direction) of each cubic projection face.580

If a plane primitive is connected to other perpendicular plane primitives581

whose extrusion directions overlap and they have different boundary lengths582

in the weld junction, the volume of the cuboid is decided by the original583

3D point density in the primitive regions. We define an discrete objective584

function Do(P ) as the density of 3D points belonging to the region as in Eq.585

(13).586
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(a) Plane primitives (b) Reconstructed cuboids

Figure 15: Examples of cuboid reconstruction (Cathedral, partial view)

Do(P ) =
Number of 3D points inP

Area of region P
(13)

We start from the minimum volume for connected planes and check all587

possible volumes made up from planes upto the maximum volume. The588

objective function Do(P ) is calculated for each volume and the volume with589

the maximum value is the optimal cuboid.590

Let us consider a simple example as illustrated in Fig. 13. From the591

two plane primitives, we can consider two cases of cuboid reconstruction:592

Minimum volume in Fig. 13 (b) based on the regions B and C, and Maximum593

volume in Fig. 13 (b) based on the regions A, B and C. We compare Do(B∪594

C) and Do(A ∪ B ∪ C) to choose the volume with the higher density. In595

the more complex case with three planes in Fig. 14, there are 18 different596

cases between minimum and maximum volumes. We calculate Do(P ) for597

all possible volumes in the same way, and choose the case with the highest598

Do(P ).599

If the planes are isolated, they are extruded to an initial depth dinit. In600

case of multi-view reconstruction, planes are extruded in the counter normal601

direction. In the extrusion process, cuboids can intersect each other. If any602

intersection is detected, the original plane primitives and larger objects take603
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(a) SC=0.4 (b) SC=0.8

Figure 16: Cathdral main building reconstructed with different scene scale parameters

priority over limiting the extrusion of the smaller object.604

Finally the block structures are refined based on their physical stability605

[10]. There may be floating blocks which do not meet the ground plane606

due to occlusion or disparity errors in the automatic reconstruction. These607

blocks are physically unstable, violating the law of gravity. If any block is608

not supported by other stable blocks and is close to the ground plane, the609

block is extended to the ground to retain the physical stability.610

Figure 15 shows examples of the cuboid reconstruction from plane prim-611

itives in the Cathedral scene.612

6.4. Optional user interaction to constrain primitive reconstruction613

The proposed pipeline is a fully automatic method from the image input614

to the block world reconstruction. However, there are two possible problems615

in applying this automatic pipeline to various environments. First, automatic616

plane primitives reconstruction can fail to build meaningful coplanar regions617

due to the errors in disparity estimation or region segmentation. Second,618

applying a single scene scale parameter SC can miss important details in the619

scene geometry.620

Geometrical details can be preserved by adjusting the scene scale param-621

eter SC in reconstruction, but this may result in an over segmented scene622

with cluttered geometry. Figure 16 shows the Cathedral main building re-623

constructed for different scale parameters SC . The smaller SC in Fig. 16624

(a) includes geometric details such as the sculptures and window regions in625

the main façade, and the eaves of the side wings. However, it can not fully626

resolve the steps and there are holes in the façade.627

In order to overcome these problems, we implemented a simple user in-628

terface as an option to constrain the segmentation step. The user can merge629

or split regions by scribbling and assign X,Y and Z-plane class to specific630

regions as a hard constraint so that these regions are not affected by the631
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(a) Cathedral

(b) Highstreet

Figure 17: Hard-constrained primitive reconstruction introduced by user interaction. In
both the Cathedral and Highstreet scene user-interaction required < 1 minute to introduce
constraints on the reconstruction (Left: Fully-automatic, Right: With hard constraints)

region refinement step. It takes less than a minute for each image to de-632

fine semantic constraints which are kept as independent clusters in the scene633

reconstruction.634

Figure 17 illustrates results of introducing hard constraints on primitive635

reconstruction with user interaction. We observe that the eaves and steps are636

reconstructed regardless of the large scene scale parameter in the Cathedral637

scene. The cluttered background is also simplified by adding constraints. In638

the Hightstreet scene, the cluttered fence region and erroneous shop window639

regions are reconstructed by similar user interaction.640

The inclusion of simple user-interaction to constrain the reconstruction is641

left as an option according to the application requirements for full or semi-642

automatic scene modelling. All experimental results in the following sections643
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are produced by the fully automatic process without user interaction.644

7. Experimental Results645

All scenes presented in this section were captured with a Spheron commer-646

cial line scan camera introduced in Section 4.1. We attached a Nikon 16mm647

f/2.8 AF fisheye lens to the system and captured vertical stereo pairs with a648

baseline of 60cm for outdoor scenes and 20cm for indoor scenes, respectively.649

The resolution of spherical images is 3143 × 1414.650

7.1. Evaluation against LIDAR ground-truth651

The goal of our proposed approach is to reconstruct an approximate rep-652

resentation of the scene structures. Evaluation of geometric accuracy against653

ground-truth scene geometry therefore only provides a partial measure. In654

this section, we evaluated reconstruction results from test scenes against655

ground-truth models from LIDAR scans to show how close the proposed ap-656

proach can represent the scenes. We compared accuracy and completeness of657

representation with a dense reconstruction method represented in Kim and658

Hilton[7].659

Figure 18 shows the ground-truth from multiple LIDAR scans and the660

reconstructed models from three viewpoints using the proposed algorithm.661

The “Gate” scene has a width of 9m and a height of 6m. Stereo pairs are662

captured with a baseline of 60cm and the scene scale parameter Sc is set to663

0.2m. The reconstructed plane primitives represent the approximate struc-664

ture of the scene. Figure 19 also shows the ground-truth model from seven665

LIDAR scans and reconstructions of the main building for the “Cathedral”666

outdoor scene in Fig. 12. The main building has a width of 30m and a height667

of 20m.668

Accuracy (how close the reconstruction is to the ground-truth) and com-669

pleteness (how much of the ground-truth is modelled by the reconstruction)670

are measured based on the evaluation methodology proposed in Seitz et671

al.[51]. Both ground-truth and reconstructions are incomplete, therefore672

we considered only subset regions of the target model in measuring error673

distance. The reconstruction and ground-truth are registered in the same674

coordinate frame . Then Hausdorff distance from each vertex in the source675

model to the closest point in the target model is calculated. Accuracy is676

measured by the RMS error from the reconstruction to the ground-truth,677

and completeness is measure by the ratio of vertices in the ground-truth678

29



(a) Captured images (b) LIDAR ground-truth

(c) Plane reconstruction (d) Block reconstruction

Figure 18: Gate scene

whose closest points to the reconstruction exist within an allowable distance679

dc. The plane and block reconstructions have vertices only at the corners of680

each plane. In order to measure the accuracy and completeness, all planes681

are regularly sampled on a 2cm×2cm grid. The block reconstruction includes682

redundant planes to complete cuboid structure. Therefore we use plane re-683

construction results for the accuracy test and block reconstruction results for684

the completeness test.685

Overlapped models and accuracy maps of the plane primitives against the686

ground-truth are illustrated in Fig. 20. Table 2 shows comparison of accu-687

racy and completeness with dense reconstruction results from the same data688

sets using Kim and Hilton[7]. In measuring completeness, we set the allow-689

able distance dc as 0.25m for the Gate scene and 1.0m for the Cathedral scene690
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(a) LIDAR ground-truth

(b) Plane reconstruction (c) Block reconstruction

Figure 19: Cathedral scene (main building only)

considering the scene scales and the range of errors. The dense reconstruction691

shows better results in the accuracy test, but the proposed block reconstruc-692

tion also shows competitive accuracy especially with the Gate scene whose693

scene scale factor is set small. The proposed method also shows higher com-694

pleteness with the Cathedral scene because occluded regions are covered in695

block reconstruction. Although the proposed algorithm cannot reconstruct696

geometric details in the scene, the reconstructed plane primitives are reliable697

and provide an efficient approximation of the scene structure.698

7.2. Scene reconstruction results699

We evaluated the proposed algorithm on four outdoor and one indoor700

scenes. The capture points and spherical images are shown in the first and701

second columns of Fig. 21. The Cathedral scene has a complex structure702

with many self-occlusions, there is sufficient overlap between views to re-703

construct the complete cathedral façade. The Carpark scene was captured704

in a relatively small but complex area of 20m×25m including occlusions by705
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(a) Gate

(b) Cathedral

Figure 20: Accuracy maps of plane reconstruction results (Left: Overlaid reconstruction
with ground-truth, Right: Accuracy map)

cars. There are relatively few overlapping regions between view 1 and 3. The706

Highstreet scene covers a street of 80m with four image pairs and includes707

many small and non-planar objects such as benches and trees. The Plaza708

scene covers a large and relatively complex area of 60m×80m with five image709

pairs. The Reception is an indoor scene captured in three locations. It covers710

an area of 20m×7m and the main area is connected to other corridors and711

rooms. The scene scale parameter Sc for the reception scene is set as 0.4m.712

In the captured spherical images, most horizontal straight lines are dis-713

torted and it is hard to understand the structure of the scenes from the714

images. The columns 3-5 in Fig. 21 show automatically façade aligned cubic715

projection images for the spherical captures. We can observe that all hor-716

izontal and vertical lines in the scenes are aligned to x and y axes in the717

image planes and the vanishing point is located at the centre of each image.718
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Table 2: Accuracy and completeness evaluation of the dense reconstruction [7] and pro-
posed reconstruction methods against ground-truth

Dataset
Accuracy (RMSE) Completeness (%)
Gate Cathedral Gate Cathedral

Dense 0.11 0.32 90.18 74.43
Proposed 0.17 0.57 82.28 88.37

Following automatic façade alignment and cubic projection the direction of719

the principal axis for Manhattan world plane reconstruction is easily found720

from the image axis.721

Figure 22 and 23 show the reconstructed block-based structure of the722

scenes and their texture mapped results. The Cathedral set in Fig. 22723

(a) clearly shows main structure of the scene though details such as narrow724

steps and awnings in the main building are not reconstructed. The Carpark725

scene in Fig. 22 (b) is more complicated but is efficiently represented with726

cuboids. This shows some errors in structure around cars and the wrong727

texture in some regions because of occlusions between objects and walls. The728

Highstreet scene in Fig. 22 (c) consists of a long street with many windows729

on buildings. Some buildings or parts of buildings are missing because they730

have large windows where reconstructed depth information is unreliable due731

to the reflection and transparency of the windows. Small windows can be732

reconstructed with the proposed algorithm because the plane location for the733

surrounding region is estimated in the refinement process. The Plaza scene in734

Fig. 23 (a) also includes large reflective regions and produces a few erroneous735

planes dominated by the scenes reflected on the glass, but they are removed736

in the refinement process. In the Plaza scene, viewpoints 3 and 4 do not have737

sufficient overlap in the images. Manual feature matching is performed for738

multiple view registration. The Reception scene in Fig. 23 (b) demonstrates739

how the proposed system works for an indoor environment. Textureless walls740

in the scene may cause serious distortion and errors in dense reconstruction.741

However, the majority of the walls are reconstructed in correct positions by742

the proposed system. Free-viewpoint video rendering of the scenes is available743

from: http://www.cvssp.org/hkim/BlockWorld/BlockRecon-CVIU.mov.744

From the examples above, we can see that the proposed method generates745

a coarse approximation of the scene structure. Texture mapping produces746

natural rendering results.747

Table 3 shows an analysis of runtime for the Cathedral dataset. We748

assume that we already have scanned spherical stereo image pairs and their749
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Table 3: Running time analysis (Cathedral dataset)

Step Time (sec)

Data loading 0.29
Façade alignment 19.56

Region segmentation 3.91
Plane primitives reconstruction 4.12

Multi-view plane refinement 6.51
Cuboid reconstruction 2.58

Total 36.97

disparity maps. The proposed algorithms were run on a Intel Core i7 3.40GHz750

Windows machine with 32GB RAM. In the table, steps from data loading751

to plane primitives reconstruction were performed for individual pairs in752

parallel. It takes approximately 40 seconds per datasets.753
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(a) Cathedral

(b) Carpark

(c) Highstreet

(d) Plaza

(e) Reception

Figure 21: Test datasets (First column: Capture points on maps (from
http://maps.google.com), Second column: Spherical capture from three selected points
(top image of captured stereo pairs), Three right columns: Façade aligned cubic projec-
tion of the selected images
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(a) Cathedral

(b) Carpark

(c) Highstreet

Figure 22: Reconstructed structure and texture mapping result 1
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(a) Plaza

(b) Reception

Figure 23: Reconstructed structure and texture mapping result 2
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Table 4: Comparison with dense reconstruction method [7]

Dense reconstruction Proposed method
Dataset # of Data file # of Plane data # of Cuboid data

triangles size planes file size cuboids file size

Cathedral 792,512 81.9MB 34 4.52KB 25 2.65KB
Carpark 480,644 52.7MB 43 5.69KB 35 3.55KB

Highstreet 987,220 108.2MB 45 5.95KB 38 3.82KB
Plaza 1,254,356 132.5MB 48 6.34KB 34 3.46KB

Reception 325,780 40.5MB 50 6.60KB 43 4.27KB

7.3. Comparison with other methods754

We compared the amount of data produced for the scene reconstruction755

with dense geometry reconstruction using the approach of Kim and Hilton[7].756

We used the same input images and disparity estimation methods for both re-757

constructions. The dense reconstruction results were saved in the obj format758

with vertex positions, vertex normals, UV texture and triangle information.759

The plane primitive information was saved as an ASCII file with the format760

in Eq. (6) with headers. The cube information was also saved as an ASCII761

file with the position and length in each direction. Texture index numbers762

are also included to identify the correct texture for rendering. In Table 4,763

we see that the size of data required to represent the scenes is reduced by764

three to four orders of magnitude. The block world provides a compact rep-765

resentation of the scene as a set of 3D cuboid proxies for rendering. Detailed766

geometry is not represented, but texture mapping enables rendering of the767

appearance of detailed geometry suitable for scene visualisation.768

We also compared visualisation quality, processing time and data file size769

including texture information for the Cathedral scene with other methods770

in Fig. 24 and Table 5. The dense reconstruction method [7] produced a771

huge amount of data. It recovered fine details of the scene but shows geo-772

metrical errors in the occluded or ambiguous regions such as the ceiling and773

windows. The LIDAR model was created from 7 LIDAR scans and dozens774

of reference stills using MAYA software6 by a professional CG designer. It is775

a clean model with high accuracy but it took one full day even by the spe-776

cialist to build the mesh model and generate textures from the raw sources.777

The SketchUp result was modelled from nine photographs using the Google778

6Autodest MAYA, http://www.autodesk.co.uk/products/maya/
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(a) Final model (From Left: Dense recon., CG from LIDAR, SketchUp and Proposed)

(b) Rendering results (From Left: Photograph, Dense recon., CG from LIDAR, SketchUp
and Proposed)

Figure 24: Comparison with other methods (Cathedral)

Table 5: Processing time and volume comparison with other methods (Cathedral)

Method Dense recon.[7] CG from LIDAR SketchUp Proposed

Processing Time 12 mins 1 day 3 hours 37 secs
File size (inc. texture) 84 MB 12.9 MB 12.5 MB 1.33 MB

SketchUp tool. It took about 3 hours to align vanishing points and geometri-779

cal primitives to the original photographs. Blending of multiple photographs780

for texture mapping resulted in incorrect or blurred textures in some regions.781

The proposed method is the fastest in building geometry and shows relatively782

clear structure and texture with the minimum amount of data.783

8. Conclusions784

In this paper, we propose a block-based simplified 3D scene reconstruction785

method from spherical stereo image pairs. Vertical spherical stereo pairs are786

captured at multiple locations in the scene and converted into cubic projec-787

tion images which are aligned to principal axes. A façade alignment algorithm788

is proposed which automatically generates central point perspective images789
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aligned with the principal building faces. This is advantageous in 3D struc-790

ture reconstruction as it is free from spherical distortion and has a vanishing791

point at the centre of the image aligned with the principal axes. From the792

captured images and estimated disparity maps, planar regions are segmented793

and reconstructed. Reconstructed planes from multiple capture locations are794

merged and refined to obtain a more complete scene reconstruction. Finally,795

optimal cuboid structures are reconstructed based on the density of plane796

primitives.797

Results show that the proposed algorithm produces a simplified struc-798

tured representation of the scene requiring several orders of magnitude less799

storage compared with dense scene reconstruction. The resulting scene rep-800

resentation provides a compact 3D proxy for visualisation of the scene. Po-801

tential future extensions of this research include: 1) Simplified scene recon-802

struction with arbitrary planes not aligned to the principal axes and various803

type of 3D structure primitives; 2) Bundle adjustment for large scale loop804

closure and precise registration; 3) Texture blending and occlusion mapping805

from multiple viewpoints.806
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