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Abstract

This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc-
ture from point matches. A new pipeline, dubbed SAMANTHA, is presented, that departs from the prevailing
sequential paradigm and embraces instead a hierarchical approach. This method has several advantages,
like a provably lower computational complexity, which is necessary to achieve true scalability, and better
error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure
allows to process images without ancillary information. Experiments with real data assess the accuracy and
the computational efficiency of the method.
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1. Introduction

The progress in three-dimensional (3D) modeling research has been rapid and hectic, fueled by recent
breakthroughs in keypoint detection and matching, the advances in computational power of desktop and
mobile devices, the advent of digital photography and the subsequent availability of large datasets of public
images. Today, the goal of definitively bridging the gap between physical reality and the digital world seems
within reach given the magnitude, breadth and scope of current 3D modeling systems.

Three dimensional modeling is the process of recovering the properties of the environment and optionally
of the sensing instrument from a series of measures. This generic definition is wide enough to accommodate
very diverse methodologies, such as time-of-flight laser scanning, photometric stereo or satellite triangulation.
The structure-and-motion (a.k.a. structure-from-motion) field of research is concerned with the recovery of
the three dimensional geometry of the scene (the structure) when observed through a moving camera (the
motion). Sensor data is either a video or a set of exposures; additional informations, such as the calibration
parameters, can be used if available. This paper describes our contributions to the problem of structure-
and-motion recovery from unordered, uncalibrated images i.e, the problem of building a three dimensional
model of a scene given a set of exposures. The sought result (the “model”) is generally a 3D point-cloud
consisting of the points whose projection was identified and matched in the images and a set of camera
matrices, identifying position and attitude of each image with respect to an arbitrary reference frame.
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The main challenges to be solved are computational efficiency (in order to be able to deal with more and
more images) and generality, i.e., the amount of ancillary information that is required.

To address the efficiency issue we propose to describe the entire structure-and-motion process as a
binary tree (called dendrogram) constructed by agglomerative clustering over the set of images. Each leaf
corresponds to a single image, while internal nodes represent partial models obtained by merging the left
and right sub-nodes. Computation proceeds from bottom to top, starting from several seed couples and
eventually reaching the root node, corresponding to the complete model. This scheme provably cuts the
computational complexity by one order of magnitude (provided that the dendrogram is well balanced), and
it is less sensitive to typical problems of sequential approaches, namely sensitivity to initialization [I] and
drift [2]. It is also scalable and efficient, since it partitions the problem into smaller instances and combines
them hierarchically, making it inherently parallelizable.

On the side of generality, our aim is to push the “pure” structure-and-motion technique as far as possible,
to investigate what can be achieved without including any auxiliary information. Current structure-and-
motion research has partly sidestepped this issue using ancillary data such as EXIF tags embedded in
conventional image formats. Their presence or consistency, however, is not guaranteed. We describe our
approach to autocalibration, which is the process of automatic estimation from images of the internal
parameters of the cameras that captured them, and we therefore demonstrate the first structure-and-motion
pipeline capable of using unordered, uncalibrated images.

1.1. Structure-and-motion: related work.

The main issue to address in structure-and-motion is the computational complexity, which is dominated
by the bundle adjustment phase, followed by feature extraction and matching.

A class of solutions that have been proposed are the so-called partitioning methods [3]. They reduce
the structure-and-motion problem into smaller and better conditioned subproblems which can be effectively
optimized. Within this approach, two main strategies can be distinguished.

The first one is to tackle directly the bundle adjustment algorithm, exploiting its properties and reg-
ularities. The idea is to split the optimization problem into smaller, more tractable components. The
subproblems can be selected analytically as in [4], where spectral partitioning has been applied to structure-
and-motion, or they can emerge from the underlying 3D structure of the problem, as described in [5]. The
computational gain of such methods is obtained by limiting the combinatorial explosion of the algorithm
complexity as the number of images and points increases.

The second strategy is to select a subset of the input images and points that subsumes the entire
solution. Hierarchical sub-sampling was pioneered by [3], using a balanced tree of trifocal tensors over a video
sequence. The approach was subsequently refined by [0], adding heuristics for redundant frames suppression
and tensor triplet selection. In [7] the sequence is divided into segments, which are resolved locally. They are
subsequently merged hierarchically, eventually using a representative subset of the segment frames. A similar
approach is followed in [§], focusing on obtaining a well behaved segment subdivision and on the robustness
of the following merging step. The advantage of these methods over their sequential counterparts lies in the
fact that they improve error distribution on the entire dataset and bridge over degenerate configurations.
In any case, they work for video sequences, so they cannot be applied to unordered, sparse images. The
approach of [9] works with sparse datasets and is based on selecting a subset of images whose model provably
approximates the one obtained using the entire set. This considerably lowers the computational requirements
by controllably removing redundancy from the dataset. Even in this case, however, the images selected are
processed incrementally. Moreover, this method does not avoid computing the epipolar geometry between
all pairs of images.

Within the solutions aimed at reducing the impact of the bundle adjustment phase, hierarchical ap-
proaches include [I0] 11} 12] and this paper. The first can be considered as the first paper where the idea
has been set forth: a spanning tree is built to establish in which order the images must be processed. After
that, however, the images are processed in a standard incremental way. The approach described in [I1] is
based on recursive partitioning of the problem into fully-constrained sub-problems, exploiting the bipartite
structure of the visibility graph. The partitioning operates on the problem variables, whereas our approach
works on the input images.



Orthogonally to the aforementioned approaches, a solution to the the computational complexity of struc-
ture-and-motion is to throw additional computational power at the problem [I3]. Within such a framework,
the former algorithmic challenges are substituted by load balancing and subdivision of tasks. Such a direction
of research strongly suggest that the current monolithic pipelines should be modified to accommodate ways
to parallelize and optimally split the workflow of structure-and-motion tasks. In [14] image selection (via
clustering) is combined with a highly parallel implementation that exploits graphic processors and multi-core
architectures.

The impact of the bundle adjustment phase can also be reduced by adopting a different paradigm in
which first the motion is recovered and then the structure is computed. All these methods start from the
relative orientation of a subset of camera pairs (or triplets), computed from point correspondences, then
solve for the absolute orientation of all the cameras (globally), reconstruct 3D points by intersection, and
finally run a single bundle adjustment to refine the reconstruction. Camera internal parameters are required.

The method described in [I5] solves a homogeneous linear system based on a novel decomposition of
the essential matrix that involves the absolute parameters only. In [I6] nonlinear optimization is per-
formed to recover camera translations given a network of both noisy relative translation directions and 3D
point observations. This step is preceded by outlier removal among relative translations by solving simpler
low-dimensional subproblems. The authors of [I7] propose a discrete Markov random field formulation in
combination with Levenberg-Marquardt minimization. This technique requires additional information as
input, such as geotag locations and vanishing points. Other approaches (e.g. [I8, [I9, 20]) compute trans-
lations together with the structure, involving a significant number of unknowns. The method presented
in [21I] proposes a fast spectral solution by casting translation recovery in a graph embedding problem.
Govindu in [22] derives a homogeneous linear system of equations in which the unknown epipolar scaling
factors are eliminated by using cross products, and this solution is refined through iterative reweighted
least squares. The authors of [23] propose a linear algorithm based on an approximate geometric error in
camera triplets. Moulon et al. [24] extract accurate relative translations by using an a-contrario trifocal
tensor estimation method, and then recover simultaneously camera positions and scaling factors by using an
{s-norm approach. Similarly to [23], this method requires a graph covered by contiguous camera triplets.
The authors of [25] propose a two-stage method in which relative translation directions are extracted from
point correspondences by using robust subspace optimization, and then absolute translations are recovered
through semidefinite programming.

Another relevant issue in structure-and-motion is the level of generality, i.e., the number of assumption
that are made concerning the input images, or, equivalently the amount of extra information that is required
in addition to pixel values. Existing pipelines either assume known internal parameters [26], (27, 19| 28] 29]
15 24], or constant internal parameters [30], or rely on EXIF data plus external information (camera
CCD dimensions) [311, 32]. Methods working in large scale environments usually rely on a lot of additional
information, such as camera calibration and GPS/INS navigation systems [2], 33] or geotags [17].

1.2. Autocalibration: related work.

Autocalibration (a.k.a. self-calibration) has generated a lot of theoretical interest since its introduction
in the seminal paper by Maybank and Faugeras [34]. The attention created by the problem however is
inherently practical, since it eliminates the need for off-line calibration and enables the use of content
acquired in an uncontrolled setting. Modern computer vision has partly sidestepped the issue by using
ancillary information, such as EXIF tags embedded in some image formats. Unfortunately it is not always
guaranteed that such data will be present or consistent with its medium, and do not eliminate the need for
reliable autocalibration procedures.

A great deal of published methods rely on equations involving the dual image of the absolute quadric
(DIAQ), introduced by Triggs in [35]. Earlier approaches for variable focal lengths were based on linear,
weighted systems [36], [37], solved directly or iteratively [38]. Their reliability has been improved by more
recent algorithms, such as [39], solving super-linear systems while directly forcing the positive definiteness
of the DIAQ. Such enhancements were necessary because of the structural non-linearity of the task: for this
reason the problem has also been approached using branch and bound schemes, based either on the Kruppa
equations [40], dual linear autocalibration [41I] or the modulus constraint [42].

3



The algorithm described in [43] shares, with the branch and bound approaches, the guarantee of conver-
gence; the non-linear part, corresponding to the localization of the plane at infinity, is solved exhaustively
after having used the cheiral inequalities to compute explicit bounds on its location.

1.3. QOverview

Resection/
Intersection
—
‘ Keypoint ’ Matching Matching Clustering Auto - (local)
detection broad phase narrow phase w/ balancing D| Stereo model calibration BA >
Matching
Merge models

Structure-and-motion

Figure 1: Simplified overview of the pipeline. The cycle inside the structure-and-motion module corresponds to dendrogram
traversal. Autocalibration can be switched on/off depending on circumstances. Bundle adjustment (BA) can be global or local
and include, or not, the internal parameters.

This paper describes a hierarchical and parallelizable scheme for structure-and-motion; please refer to
Fig. [1| for a graphical overview. The front end of the pipeline is keypoint extraction and matching (Sec. ,
where the latter is subdivided into two stages: the first (“broad phase”) is devoted to discovering the
tentative topology of the epipolar graph, while the second (“narrow phase”) performs the fine matching and
computes the epipolar geometry.

Images are then organized into a dendrogram by clustering them according to their overlap (Sec. . A
new clustering strategy, derived from the simple linkage, is introduced (Sec. [5|) that makes the dendrogram
more balanced, thereby approaching the best-case complexity of the method.

The structure-and-motion computation proceeds hierarchically along this tree, from the leaves to the root
(Sec. . Images are stored in the leaves, whereas partial models correspond to internal nodes. According
to the type of node, three operations are possible: stereo modeling (image-image), resection-intersection
(image-model) or merging (model-model). Bundle adjustment is run at every node, possibly in its “local”
form (Sec. [6)).

We demonstrate that this paradigm has several advantages over the sequential one, both in terms of
computational performance (which improves by one order of magnitude on average) and overall error con-
tainment.

Autocalibration (Sec.[7)) is performed on partial models during the dendrogram traversal. First, the loca-
tion of the plane at infinity is derived given two perspective projection matrices and a guess on their internal
parameters, and subsequently this procedure is used to iterate through the space of internal parameters
looking for the best collineation that makes the remaining cameras Euclidean. This approach has several
advantages: it is fast, easy to implement and reliable, since a reasonable solution can always be found in
non-degenerate configurations, even in extreme cases such as when autocalibrating just two cameras.

Being conscious that “the devil is in the detail”, Section [8| reports implementation details and heuristics
for setting the parameters of the pipeline.

The experimental results reported in Sec. [J] are exhaustive and analyze the output of the pipeline in
terms of accuracy, convergence and speed.

We report here on the latest version of our pipeline, called SAMANTHA. Previous variants have been
described in [44] and [I2] respectively. The main improvements are in the matching phase and in the
autocalibration that now integrates the method described in [45]. The geometric stage has been carefully
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revised to make it more robust, to the point where — in some cases — bundle adjustment is not needed
any more except at the end of the process. Most efforts have been made in the direction of a robust and
automatic approach, avoiding unnecessary parameter tuning and user intervention.

2. Keypoint detection and matching

In this section we describe the stage of SAMANTHA that is devoted to the automatic extraction and
matching of keypoints among all the n available images. Its output is to be fed into the geometric stage,
that will perform the actual structure-and-motion recovery. Good and reliable matches are the key for any
geometric computation.

Although most of the building blocks of this stage are fairly standard techniques, we carefully assembled
a procedure that is fully automatic, robust (matches are pruned to discard as many outliers as possible) and
computationally efficient. The procedure for recovering the epipolar graph is indeed new.

2.1. Keypoint detection.

First of all, keypoints are extracted in all n images. We implemented the keypoint detector proposed by
[46], where blobs with associated scale levels are detected from scale-space extrema of the scale-normalized
Laplacian:

ViormL(@,y,8) = s V2 (g(z,y:8) * f(z,y)) . (1)

We used a 12-level scale-space and in each level the Laplacian is computed by convolution (in CUDA) with
a 3 x 3 kernel.

As for the descriptor, we implemented a 128-dimensional radial descriptor (similar to the log-polar grid
of GLOH [47]), based on the accumulated response of steerable derivative filters. This combination of
detector/descriptor performs in a comparable way to SIFT and avoids patent issues.

Only a given number of keypoints with the strongest response overall are retained. This number is a
multiple of n, so as to fix the average quota of keypoints per image (details in Sec. .

2.2. Matching: broad phase.

As the images are unordered, the first objective is to recover the epipolar graph, i.e., the graph that tells
which images overlap (or can be matched) with each other.

This must be done in a computationally efficient way, without trying to match keypoints between every
image pair. As a matter of fact, keypoint matching is one of the most expensive stages, so one would like
to reduce the number of images to be matched from O(n?) to O(n).

In this broad phase we consider only a small constant number of descriptors for each image. In particular,
we consider the keypoints with the highest scales, since their descriptors are more representative of the whole
image content.

Then, each keypoint descriptor is matched to its approximate nearest neighbors in feature space, using
the ANN library [48] (with € = 0.5). A 2D histogram is then built that registers in each bin the number of
matches between the corresponding images.

Consider the complete weighted graph G = (V, E) where V are images and the weighted adjacency
matrix is the 2D histogram. This graph is — in general — dense, having |V| = O(n?). The objective is to
extract a subgraph G’ with a number of edges that is linear in n.

In the approach of [49], also followed in [44], every image is connected (in the epipolar graph) to the m
images that have the greatest number of keypoint matches with it. This creates a graph with O(mn) edges,
where the average degree is O(m) (by the handshaking lemma).

When the number of images is large, however, it tends to create cliques of very similar images with
weak (or no) inter-clique connections. On the other hand, one would like to get an epipolar graph that is
strongly connected, to avoid over-fragmentation in the subsequent clustering phase. This idea is captured
by the notion of k-edge-connectedness: In graph theory, a graph is k-edge-connected if it remains connected
whenever fewer than k edges are removed. So, the graph produced by the original approach has a low k,
while one would like to have k as high as possible (ideally k¥ = m), with same edge budget.
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We devised a strategy that builds a subgraph G’ of G' which is “almost” m-edge-connected by construc-
tion.

1. Build the maximum spanning tree of G: the tree is composed of n — 1 edges;
2. remove them from G and add them to G’;
3. repeat m times.

In the hypothesis that m spanning trees can be extracted from G, the algorithm produces a subgraph G’
that is m-edge-connected (a simple proof of this is given in . Please note that by taking the
maximum spanning tree we favor edges with high weight. So this strategy can be seen as a compromise
between picking pairs with the highest score in the histogram, as in the original approach, and creating a
strongly connected epipolar graph.

If the hypothesis about G is not verified, a spanning forest will be obtained at a certain iteration, and G’
will not be m-edge-connected. However, when m < |E| one could expect that “almost” m spanning trees
can be extracted from G without disconnecting it.

2.83. Matching: narrow phase.

Keypoint matching follows a nearest neighbor approach [50], with rejection of those keypoints for which
the ratio of the nearest neighbor distance to the second nearest neighbor distance is greater than a threshold
(see Sec. . Matches that are not injective are discarded.

In order to speed up the matching phase we employ a keypoint clustering technique similar to [51].
Every keypoint is associated with a different cluster according to its dominant angle, as recorded in the
descriptor. Only keypoints belonging to the same cluster are matched together (in our implementation we
used eight equidistant angular clusters): this breaks down the quadratic complexity of the matching phase
at the expense of loosing some matches at the border of the clusters.

Homographies and fundamental matrices between pairs of matching images are then computed using
M-estimator SAmple Consensus (MSAC) [52], a variation of RANSAC that gives outliers a fixed penalty
but scores inliers on how well they fit the data. This makes the output less sensitive to a higher inlier
threshold, thereby rendering less critical the choice of the threshold, at no extra computational cost with
respect to RANSAC. The random sampling is done with a bucketing technique [53], which forces keypoints
in the sample to be spatially separated. This helps to reduce the number of iterations and provide more
stable estimates. Since RANSAC and its variants (like MSAC) have a low statistical efficiency, the model
must finally be re-estimated on a refined set of inliersﬂ

Let e; be the residuals of all the N keypoints after MSAC, and let S* be the sample that attained the
best score; following [54], a robust estimator of the scale is:

5
F=1.4826(14+ —v—— de2. 2
o 86( +N—S*|) /gég*ez (2)

The resulting set of inliers are those points such that
lei] < 007, (3)

where 6 is a constant (we used 2.5).

The model parameters are re-estimated on this set of inliers via least-squares minimization of the (first-
order approximation of the) geometric error [55] 56].

The more likely model (homography or fundamental matrix) is selected according to the Geometric
Robust Information Criterion (GRIC) [57]:

GRIC = Z p(e?) 4+ ndlog(r) + klog(rn) (4)
p(z) = min(z/0 2(r —d))

41t is understood that when we refer to MSAC in the following, this procedure is always carried out.
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where o is the standard deviation of the measurement error, k is the number of parameters of the model, d
is the dimension of the fitted manifold, and r is the dimension of the measurements. In our case, k = 7,d =
3,7 = 4 for fundamental matrices and k = 8,d = 2,7 = 4 for homographies. The model with the lower
GRIC is the more likely.

Figure 2: Tracks over a 12-images set. For the sake of readability only a sample of 50 tracks over 2646 have been plotted.

In the end, if the number of remaining matches n; between two images is less than 20% of the total
number of matches before MSAC, then they are discarded. The rationale is that if an excessive fraction of
oultliers have been detected, the original matches are altogether unreliable. A similar formula is derived in
[49] on the basis of a probabilistic model. As a safeguard, a threshold on the minimum number of matches
is also set (details in Sec. [§).

After that, keypoint matching in multiple images are connected into tracks (see Figure|2]): consider the
undirected graph G = (V, E) where V are the keypoints and E represents matches; a track is a connected
component of G. Vertices are labeled with the image the keypoints belong to: an inconsistency arises when
in a track a label occurs more than once. Inconsistent tracks and those shorter than three frames are
discardedﬂ A track represents the projection of a single 3D point imaged to multiple exposures; such a 3D
point is called a tie-point.

3. Clustering images

The images are organized into a tree with agglomerative clustering, using a measure of overlap as the
distance. The structure-and-motion computation then follows this tree from the leaves to the root. As a
result, the problem is broken into smaller instances, which are then separately solved and combined.

Algorithms for image clustering have been proposed in the literature in the context of structure-and-
motion [I0], panoramas [49], image mining [58] and scene summarization [59]. The distance being used and
the clustering algorithm are application-specific.

In this paper we deploy an image affinity measure that befits the structure-and-motion task. It is com-
puted by taking into account the number of tie-points visible in both images and how well their projections
(the keypoints) spread over the images. In formulae, let S; and S; be the set of visible tie-points in image
I; and I; respectively:

1SN S| | 1CH(S;) + CH(S)) 5)
TS US T2 A+ A

where C'H(-) is the area of the convex hull of a set of image points and A; (A;) is the total area of image
I; (I;). The first term is an affinity index between sets, also known as the Jaccard index. The distance is
(1 —aj;), as a; ; ranges in [0,1].

The general agglomerative clustering algorithm proceeds in a bottom-up manner: starting from all
singletons, each sweep of the algorithm merges the two clusters with the smallest distance between them.
The way the distance between clusters is computed produces different flavors of the algorithm, namely the
simple linkage, complete linkage and average linkage [60]. We selected the simple linkage rule: The distance
between two clusters is determined by the distance of the two closest objects (nearest neighbors) in the
different clusters.

5There is nothing in principle that prevents the pipeline from working also with tracks of length two. The choice of cutting
these tracks is a heuristics aimed at removing little reliable correspondences.
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Simple linkage clustering is appropriate to our case because: i) the clustering problem per se is fairly
easy, ii) nearest neighbors information is readily available with ANN and iii) it produces “elongated” or
“stringy” clusters which fits very well with the typical spatial arrangement of images sweeping a certain
area or building.

4. Hierarchical structure-and-motion

Before describing our hierarchical approach, let us set the notation and review the geometry tools that
are needed. A model is a set of cameras and 3D points expressed in a local reference frame (stereo-model
with two cameras). The procedure of computing 3D point coordinates from corresponding points in multiple
images is called intersection (a.k.a. triangulation). Recovering the camera matrix (fully or limited to the
external parameters) from known 3D-2D correspondences is called resection. The task of retrieving the
relative position and attitude of two cameras from corresponding points in the two images is called relative
orientation. The task of computing the rigid (or similarity) transform that brings two models that share
some tie-points into a common reference frame is called absolute orientation.

Let us assume pro tempore that the internal parameters are known; this constraint is removed in Sec. [7}

Images are grouped together by agglomerative clustering, which produces a hierarchical, binary cluster
tree, called a dendrogram. Every node in the tree represents a partial, independent model. From the
processing point of view, at every node in the dendrogram an action is taken that augments the model, as
shown in Figure [3]

Three operations are possible: When two images are merged a stereo-model is built (relative orientation
+ intersection). When an image is added to a cluster a resection-intersection step is taken (as in the standard
sequential pipeline). When two non-trivial clusters are merged, the respective models must be conflated by
solving an absolute orientation problem (followed by intersection). Each of these steps is detailed in the

following.

| A

Fﬁ | rlw

Figure 3: An example of a dendrogram for a 12 image set. The circle O corresponds to the creation of a stereo-model, the
triangle A corresponds to a resection-intersection, the diamond ¢ corresponds to a fusion of two partial independent models.

>

While it is useful to conceptually separate the clustering from the modeling, the two phases actually
occur simultaneously: during the simple linkage iteration, every time a merge is attempted the corresponding
modeling action is taken. If it fails, the merge is discarded and the next possible merge is considered.
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4.1. Stereo-modeling.

The parameters of the relative orientation of two given cameras are obtained by factorization of the
essential matrix [6I]. This is equivalent to knowing the external parameters of the two cameras in a local
reference frame, and since the internal parameters are already known, the two camera matrices are readily
set up. Then tie-points are obtained by intersection (see Sec. ahead) from the tracks involving the two
images, and the model is refined with bundle adjustment [62].

It is worth noting that in order for this stereo-modeling to be successful the two images must satisfy two
conflicting requirements: to have both a large number of tie-points in common and a baseline sufficiently
large so as to allow a well-conditioned solution. The first requirement is implemented by the affinity defined
in , but the second is not considered; as a result, the pairing determined by image clustering is not always
the best choice as far as the relative orientation problem is concerned. Since in our pipeline the clustering
and the structure-and-motion processing occurs simultaneously, these pairs will be discarded by simple
sanity-checks before and after attempting to perform the stereo-modeling. The a-priori check requires that
the relationship between the two images is described by a fundamental matrix (instead of a homography),
according to the GRIC score. The a-posteriori check considers the residual error and the cheirality check of
the points before and after the bundle adjustment.

4.2. Intersection.

Intersection (a.k.a. triangulation) is performed by the iterated linear LS method [63]. Points are pruned
by analyzing the condition number of the linear system and the reprojection error. The first test discards
ill-conditioned intersections, using a threshold on the condition number of the linear system (10%, in our
experiments). The second test applies the so-called X84 ruleﬁ [64], that establishes that, if e; are the
residuals, the inliers are those points such that

le; — mjt_sdej\ < 5.2mled le; — mjedej\. (6)

A safeguard threshold on the reprojection error is also set (details in Sec. .

In general, the intersection module obeys the following strategy. As soon as one track reaches length
two in a given model (i.e. at least two images of the track belongs to the model), the coordinates of the
corresponding tie-point are computed by intersection. If the operation fails (because of one of the sanity
checks described above) the 3D point is provisionally discarded but the track is kept. An attempt to compute
the tie-point coordinates is undertaken every time the length of the track increases within the model.

4.8. Resection

The tie-points belonging to the model that are also visible in the image to be added provides a set of
3D-2D correspondences, that are exploited to glue the image to the partial model. This is done by resection,
where only the external parameters of the camera are to be computed (a.k.a. external orientation problem).
We used the PPnP algorithm described in [65] inside MSAC, followed by non-linear minimization of the
reprojection error at the end.

After resection, which adds one image to the model, tie-points are updated by intersection, and bundle
adjustment is run on the resulting model.

4.4. Merging two models.

When two partial independent (i.e., with different reference systems) models are are to be conflated into
one, the first step is to register one onto the other with a similarity transformation. The common tie-points
are used to solve an absolute orientation (with scale) problem with MSAC.

Given the scale ambiguity, the inlier threshold for MSAC is hard to set. In [66] a complex technique for
the automatic estimation of the inlier threshold in 3D is proposed. We take a simpler but effective approach:

6This rule is consistently used in the following stages to set data-dependent thresholds whenever required.
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instead of considering the length of the 3D segments that connect corresponding points as the residuals, we
look at the average length of their 2D projections in the images; in this way a meaningful inlier threshold in
pixels can be set easily. The final transformation, computed with the Orthogonal Procrustean (OP) method
[67, [68], minimizes the proper geometric residual, i.e. the sum of squared distances of 3D points.

Once the models are registered, tie-points are updated by intersection, and the new model is refined with
bundle adjustment.

This hierarchical algorithm can be summarized as follows:

1. Solve many independent relative orientation problems at the leaves of the tree, producing many inde-
pendent stereo-models.

2. Traverse the tree; in each node one of these operations takes place:

(a) Update one model by adding one image with resection followed by intersection;

(b) Merge two independent models with absolute orientation.

Steps 1. and 2.(a) are the resection-intersection steps of classical sequential pipelines, as Bundler. Step
2.(b) summons up the photogrammetric Independent Models Block Adjustment (IMBA) [69], where for
each pair of overlapping photographs a stereo-model is built and then all these independent models are
simultaneously transformed into a common reference frame with absolute orientation.

If the tree reduces to a chain, the algorithm is the sequential one, whereas if the tree is perfectly balanced,
only steps 2.(b) are taken, and the resulting procedure resembles the IMBA, besides the fact that our models
are disjoint and that models are recursively merged in pairs.

Compared to the standard sequential approach, this framework has a lower computational complexity, is
independent of the initial pair of images, and copes better with drift problems, typical of sequential schemes.

4.5. Complexity analysis.

The hierarchical approach that has been outlined above allows us to decrease the computational com-
plexity with respect to the sequential structure-and-motion pipeline. Indeed, if the number of images is n
and every image adds a constant number of tie-points £ to the model, the computational complexityﬂ in
time of sequential structure-and-motion is O(n%), whereas the complexity of SAMANTHA (in the best case)
is O(n%).

The cost of bundle adjustment with m tie-points and n images is O(mn(m + 2n)?) [7], hence it is O(n*)
if m = In.

In sequential structure-and-motion, adding image i requires a constant number of bundle adjustments
(typically one or two) with ¢ images, hence the complexity is

Zog‘*) =0(n®). (7)

In the case of the hierarchical approach, consider a node of the dendrogram where two models are merged
into a model with n images. The cost T'(n) of adjusting that model is given by O(n?) plus the cost of doing
the same onto the left and right subtrees. In the hypothesis that the dendrogram is well balanced, i.e., the
two models have the same number of images, this cost is given by 27(n/2). Hence the asymptotic time
complexity T in the best case is given by the solution of the following recurrence:

T(n) = 2T(n/2) + O(n?) (8)

that is T(n) = O(n*) by the third branch of the Master’s theorem [70].
The worst case is when a single model is built up by adding one image at a time. In this case, which
corresponds to the sequential case, the dendrogram is extremely unbalanced and the complexity drops to

O(n?).

"We are considering here only the cost of bundle adjustment, which clearly dominates the other operations.
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Figure 4: An example of the dendrogram produced by simple linkage (left) and the balanced rule on a 52-images set. An
example of the dendrogram produced by [44] (left) and the more balanced dendrogram produced by our technique (right) on
a 52-images set, with £ = 5.

5. Dendrogram balancing

As demonstrated in precedence, the hierarchical framework can provide a provable computational gain,
provided that the resulting tree is well-balanced. The worst case complexity, corresponding to a sequence of
single image additions, is no better than the standard sequential approach. It is therefore crucial to ensure
a good balance during the clustering phase. Our solution is to employ a novel clustering procedure, which
promotes the creation of better balanced dendrograms.

The image clustering procedure proposed in the previous section allows us to organize the available
images into a hierarchical cluster structure (a tree) that will guide the structure-and-motion process. This
approach decreases the computational complexity with respect to sequential structure-and-motion pipelines,
from O(n®) to O(n*) in the best case, i.e. when the tree is well balanced (n is the number of images). If the
tree is unbalanced this computational gains vanishes. It is therefore crucial to enforce the balancing of the
tree.

The preceding solution, which used the simple rule, specified that the distance between two clusters is
to be determined by the distance of the two closest objects (nearest neighbors) in the different clusters. In
order to produce better balanced trees, we modified the agglomerative clustering strategy as follows: starting
from all singletons, each sweep of the algorithm merges the pair with the smallest cardinality among the
£ closest pair of clusters. The distance is computed according to the simple linkage rule. The cardinality
of a pair is the sum of the cardinality of the two clusters. In this way we are softening the closest first
agglomerative criterion by introducing a competing smallest first principle that tends to produce better
balanced dendrograms.

The amount of balancing is regulated by the parameter £: when ¢ = 1 this is the standard agglomerative
clustering with no balancing; when £ > n/2 (n is the number of images) a perfect balanced tree is obtained,
but the clustering is poor, since distance is largely disregarded.

Figure [4] shows an example of balancing achieved by our technique. The height of the tree is reduced
from 14 to 9 and more initial pairs are present in the dendrogram on the right.

6. Local bundle adjustment

In the pursuit of further complexity reduction, we adopted a strategy that consists in reducing the
number of images to be used in the bundle adjustment in place of the whole model. This strategy is an
instance of local bundle adjustment |71, [72], which is often used for video sequences, where the active images
are the most recent ones. Let us concentrate on the model merging step, as the resection is a special case
of the latter. Consider two models A and B, where A has fewer images than B. We always transform the
smallest onto the largest (if one is projective it is always the smallest).
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The bundle adjustment involves all the images of A and the subset of images of B that share some
tracks with A (tie-points that are visible in images in both models). Let us call this subset B’. All the
tie-points linking B’ and A are considered in the bundle adjustment. Images in B\ B’ are not moved by
bundle adjustment but their tie-points are still considered in the minimization in order to anchor B’ through
their common tie-points. The tie-points linking only cameras in B\ B’ are not considered. This strategy is
sub-optimal because in a proper bundle adjustment all the images in B should be involved, even those that
do not share any tie-point with A. However, a bundle adjustment with all the images and all the tie-points
can be run at the end to obtain the optimal solution.

7. Uncalibrated hierarchical structure-and-motion

A model that differs from the true one by a projectivity is called projective. A model that differs from
the true one by a similarity is called Euclidean. The latter can be achieved when calibration parameters are
known, the former can be obtained if images are uncalibrated.

In this section we relax the hypothesis that images are calibrated and integrate the autocalibration
algorithm in our pipeline, so that the resulting model is still Euclidean.

The main difference from the procedure described in Sec. |4 is that now leaf nodes do not have proper
calibration right from the start of the structure-and-motion process. The models is projective at the begin-
ning, and as soon as one reaches a sufficient number of images, the Euclidean upgrade procedure (described
in Section is triggered. Moreover, each step of hierarchical structure-and-motion must be modified to
accommodate for projective models, as described in Sections and

7.1. Autocalibration

Autocalibration starts from a projective model and seeks the collineation of space H so as to transforms
the model into a Euclidean one.

Without loss of generality, the first camera of the Euclidean model can be assumed to be Pf = [K; | 0],
so that the Euclidean upgrade H has the following structure, since P = P, H:

i=| ] ®

where K7 is the calibration matrix of the first camera, r is a vector which determines the location of the
plane at infinity and A is a scale factor.
Our autocalibration technique is based on two stages:

1. Given a guess on the internal parameters of two cameras compute a consistent upgrading collineation.
This yields an estimate of all cameras but the first.

2. Score the internal parameters of these n — 1 cameras based on the likelihood of skew, aspect ratio and
principal point.

The space of the internal parameters of the two cameras is enumerated and the best solution is refined via
non-linear least squares.

This approach has been introduced in [45], where it is compared with several other algorithms obtaining
favorable results.

7.1.1. Estimation of the plane at infinity.

This section describes a closed-form solution for the plane at infinity (i.e., the vector r) given two
perspective projection matrices and their internal parameters.

While the first camera is Py = [I | 0], the second projective camera can be written as P, = [Ay | €3],
and its Euclidean upgrade is:

P2E = K2 [R2|t2] >~ PQH = [AgKl + GQI‘T|>\82} . (10)
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The rotation Ry can therefore be equated to:
R2 ':KQI(AQKl +621‘T) :KglAgKl +K§182rT (11)

Using the constraints on orthogonality between rows or columns of a rotation matrix, one can solve for
r finding the value that makes the right hand side of equal to a rotation, up to a scale.

The solution can be obtained in closed form by noting that there always exists a rotation matrix R* such
as: R*ty = [[|t2]| 0 0], where t, = K, *ey. Left multiplying it to yields:

R*Ry ~ R*K; Ay Ky + [||t2] 00] ¢T (12)
Calling W = R*K;' A K and its rows w,|, we arrive at the following:

wa |+ [toflr "
R'Ry= | wy' /lwsl| (13)

W3T

in which the last two rows are independent of the value of r and the correct scale has been recovered
normalizing each side of the equation to unit norm.

Since the rows of R* Ry are orthonormal, we can recover the first one taking the cross product of the
other two. Vector r is therefore equal to:

r = (wo X wa/||ws|| —w1) /|t (14)

The upgrading collineation H can be computed using @[); the term A can be arbitrarily chosen, as it will
just influence the overall scale.

When the calibration parameters are known only approximately, the right hand side of is no more
a rotation matrix. However, will still yield the value of r that will produce an approximate Euclidean
model.

7.1.2. Estimation of the internal parameters.

In the preceding section we showed how to compute the Fuclidean upgrade H given the calibration
parameters of two cameras of the projective model.

The autocalibration algorithm loops through all possible internal parameter matrices of two cameras
K7 and K>, checking whether the entire upgraded model has the desired properties in terms of K5 ... K,.
The process is well-defined, since the search space is naturally bounded by the finiteness of the acquisition
devices.

In order to sample the space of calibration parameters we can safely assume, as customary, null skew and
unit aspect ratio: this leaves the focal length and the principal point location as free parameters. However,
as expected, the value of the plane at infinity is in general far more sensitive to errors in the estimation
of focal length values rather than the image center. Thus, we can iterate just over focal lengths f; and f>
assuming the principal point to be centered on the image; the error introduced with this approximation is
normally well within the radius of convergence of the subsequent non-linear optimization. The search space
is therefore reduced to a bounded region of R2.

To score each sample (f1, f2), we consider the aspect ratio, skew and principal point location of the
upgraded (i.e., transformed with H) camera matrices and aggregate their respective value into a single cost
function:

{f1, f2} = arg}ni]pZCQ(Kg) (15)
1, 2€:2

where Ky is the internal parameters matrix of the ¢-th camera after the Euclidean upgrade determined by
(f1, f2), and C(K) reflects the degree to which K meets a-priori expectations.
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Let us consider the viewport matrices of the cameras, defined as:

1 vVw? + h? 0 w
V- 0 VOEFRE h (16)
2 0 0 2

where w and h are respectively the width and height of each image. Camera matrices are normalized with
P <+ V7'P/||Ps1.3]|. In this way, the principal point expected value is (0,0) and the focal range is [1/3, 3].
Therefore, the term of the cost function writes:

skew aspect ratio principal point
——
C(K)=ws|k12| + War|k1,1—k2,2| + Wy, [k1 3| +w,, | k2 3] (17)

where k; j denotes the entry (4,7) of K and w are suitable weights, computed as in [37]. The first term
takes into account the skew, which is expected to be 0, the second one penalizes cameras with aspect ratio
different from 1 and the last two weigh down cameras where the principal point is away from (0, 0).
Finally, the solution selected is refined by non-linear minimization of Eq. . Since it is usually very
close to a minimum, just a few iterations of a Levenberg-Marquardt solver are necessary for convergence.

Algorithm 1: Autocalibration pseudo-code

input : a set of PPMs P and their viewports V'
output: their upgraded, Euclidean counterparts

1 foreach P do P+ V~'P/||P5 15| /* normalization */
2 foreach K, K5 do /* iterate over focal pairs */
3 compute Iy,
build H from @

5 foreach P do /* compute cost profiles */
6 P, < PH

7 K <« internal of Py

8 compute C(K) from

9 end
10 end

11 aggregate cost and select minimum
12 refine non-linearly

13 foreach P do P+ VPH /* de-normalization, upgrade */

The entire procedure is presented as pseudo-code in Algorithm [I] The algorithm shows remarkable
convergence properties; it has been observed to fail only when the sampling of the focal space was not
sufficiently dense (in practice, less than twenty focal values in each direction), and therefore all the tested
infinity planes were not close enough to the correct one. Such problems are easy to detect, since they usually
take the final, refined solution outside the legal search space.

In principle, autocalibration requires a minimum number of images to work, according to the autocali-
bration “counting argument” [73] (e.g. 4 images with known skew and aspect ratio). However, as we strive
to maintain an “almost” Euclidean reference frame from the beginning, to better condition subsequent
processing, autocalibration is triggered for models starting from two images. The result is an approximate
Euclidean upgrade; in fact these models are still regarded as projective, until they reach a sufficient cardinal-
ity. After that point autocalibration is not performed any more and the internal parameters of each camera
are refined further only with bundle adjustment, as the computation proceeds. In order not to hamper the
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process too much, the internal parameters of a camera becomes fixed after they have been bundle-adjusted
together with a given number of cameras.

7.2. Projective stereo-modeling.

The model that can be obtained from two uncalibrated images is always projective. The following two
camera matrices are used:

P, =[1]0] and P, =][[ex]xF |e2], (18)

This canonical pair yields a projective model with the plane at infinity passing through the centre of the
second camera, which is very unnatural. Therefore, the method of Section is applied for guessing a
better location for the plane at infinity compatible with rough focal estimates, obtained from the magnitude
of the image diagonal. Even when the true focal lengths are far from the estimates, this procedure will
provide a useful, well conditioned starting point for the subsequent steps.

Cheirality is then tested and enforced on the model. In practice only a reflection (switches all points
from in front to behind the cameras) may be necessary, as the twisted pair case never occurs. In fact, the
twisting corresponds to the infinity plane crossing the baseline, which would imply that our guess for the
infinity plane is indeed very poor.

The 3D coordinates of the tie-points are then obtained by intersection as before. Finally bundle adjust-
ment is run to improve the model.

7.83. Resection-intersection.

The procedure is the same as in the calibrated case, taking care of using the Direct Linear Transform
(DLT) algorithm [74] for resection, as the the single image is always uncalibrated. While PPnP computes
only the external parameters of the camera, the DLT computes the full camera matrix.

7.4. Merging two models.

Partial models live in two different reference frames, that are related by a similarity if both are Euclidean
or by a projectivity if one is projective. In this case the projectivity that brings the projective model onto
the Euclidean one is sought, thereby recovering its correct Euclidean reference frame. The procedure is
the same as in the calibrated case, with the only difference that when computing the projectivity the DLT
algorithm should be used instead of OP.

The new model is refined with bundle adjustment (either Euclidean or projective) and upgraded to a
Fuclidean frame when the conditions stated beforehand are met.

8. Parameter Settings

SAMANTHA is a complex pipeline with many internal parameters. With respect to this issue our en-
deavor was: i) to avoid free parameters at all; ii) to make them data-dependent; iii) to make user-specified
parameters intelligible and subject to an educated guess. In the last case a default should be provided that
works with most scenarios. This guarantees the processing to be completely automatic in the majority of
cases.

All the heuristic parameter settings used in the experiments have been reported and summarized in Table

!

Keypoint detection. The keypoints extracted from all images are ordered by their response value and the
ones with the highest response are retained, while the others are discarded. The total number of keypoints
to be kept is a multiple of the number of images, so as to keep the average quota of keypoints for each image
fixed.
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Parameter Value
Keypoint detection

Number of LoG pyramid levels 12

Average number of keypoints per image 7500
Matching - broad

Number of keypoints per image 300

Degree of edge-connectedness 8
Matching - narrow

Matching discriminative ratio 1.5

Maximum number of MSAC iterations 1000

Bucket size (MSAC) in pixels D/25

Minimum number of matches 10

Homography-to-Fundamental GRIC Ratio 1.2

Minimum track length 3

Reconstruction
Maximum bundle adjustment iterations 100
Reprojection Error D/1800
Autocalibration
Number of cameras for autocalibration 4
Number of cameras to fix internal param.s 25
Prologue
Final minimum track length 2
Final maximum reprojection error D/2400

Table 1: Main settable parameters of SAMANTHA. D is the image diagonal length [pixels].

Matching - broad phase. During the broad matching phase the goal is to compute the 2D histogram men-
tioned in Sec. To this end, the keypoints in each image are ordered by scale and the 300 keypoints with
the highest scale are considered. The number of neighbors in feature space is set to six, as in [49]. Given
the nature of the broad phase, this value is not critical, to the point where only the number of keypoints is
exposed as a parameter.

The number m in Sec. (“Degree of edge-connectedness”, in Table , has been set to eight following
[49]. In our case, the role of the parameter is more “global”, as it does not set the exact number of images
to be matched but the degree of edge-connectedness of the graph. However our experiments confirmed that
that m = 8 is a good default.

Matching - narrow phase. The number of max iterations of MSAC is set to 1000 during the matching phase.
This is only an upper bound, for the actual value is dynamically updated every time a new set of inliers is
found.

The “Matching discriminative ratio” refers to the ratio of first to second closest keypoint descriptors,
used to prune weak matches at the beginning of this phase.

The “ Minimum number of matches” parameter refers to the last stage of the narrow phase, when poor
matches between images are discarded based on the number of surviving inliers after MSAC.

Clustering. The parameter £ of Sec. [f]has been set to £ = 3 based on the graph reported in Fig. 5] where the
number of reconstructed tie-points/images and the computing time are plotted as the value of /¢ is increased.
After ¢ = 3, the computing time stabilizes at around 30% of the baseline case, without any significant
difference in terms of number of reconstructed images and tie-points.

Reconstruction. The safeguard threshold on the reprojection error (Sec. [4.2)) is set to 2 pixels with reference
to a 6 Mpixel image, and scaled according to the actual image diagonal (assuming an aspect ratio of 4:3,
the reference diagonal is 3600 pixels).
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Figure 5: This plot shows the number of reconstructed tie-points, images, height of the tree and computing time as a function
of the parameter ¢ in the balancing heuristics. The values on the ordinate are in percentage, where the baseline case £ = 1.

Autocalibration. The Euclidean upgrade is stopped as soon as a cluster reaches a sufficient cardinality k
(“Number of cameras for autocalibration”) that satisfies the following inequality [73], giving the condition
under which autocalibration is feasible:

5k —8> (k—1)(5—pr — pe) +5 — pr (19)

where py, internal parameters are known and p. internal parameters are constant. With known (or guessed)
skew and aspect ratio (pr = 2 and p. = 0) four cameras are sufficient.
The reason for keeping this value to the minimum is because we observed experimentally that projective
alignment is fairly unstable and it is beneficial to start using a similarity transformation as soon as possible.
The cluster cardinality after which the internal parameters are kept fixed in the bundle adjustment is
set to 25, a fairly high value, that guarantees all the internals parameters, especially the radial distortion
ones, are steady.

Local bundle adjustment. As discussed previously, the local bundle adjustment is generally to be preferred
over the full one. However, since the autocalibration phase is crucial, our strategy is to run the full bundle
adjustment until the clusters become Euclidean. It should also be noted that the computational benefits of
the local bundle adjustment are more evident with large clusters of cameras.

Prologue. The last bundle adjustment is always full (not local) and is run with a lower safeguard threshold
on the reprojection error (1.5 pixel in the reference 6 Mpixel image). A final intersection step is carried out
using also the tracks of length two, in order to increase the density of the model. Please note however that
these weak points do not interfere with the bundle adjustment, as they are added only after it.

9. Experiments

We run SAMANTHA on several real, challenging datasets, summarized in Tab. [2l All of them have some
ground truth available, being either a point cloud (from laser scanning), the camera internal parameters or
measured “ground” control points (GCP).
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The qualitative comparison against VISUALSFM focuses on differences in terms of number of recon-
structed cameras and manifest errors in the model. The quantitative evaluation examines the accuracy of
the model against GCPs and laser scans, and/or the internal orientation accuracy.

Table 2: Summary of the experiments. The “camera” column refers to the number of different cameras or to different settings
of the same camera.

#images  #cameras ground truth notes

Bra 331 1 laser laser /photo inconsistencies
Duomo di Pisa 309 3 laser 3 cameras

S. Giacomo 270 2 laser 2 sets 1 year apart
Navona 92 1 internal also used in [75]
Ventimiglia 477 1 GCP nadiral /oblique

Termica 27 1 GCP nadiral

Herz-Jesu-P25 25 1 GCP, internal reference dataset [70]

9.1. Qualitative evaluation.

We compared SAMANTHA (version 1.3) with VISUALSFM (version 0.5.22) [77, [78], a recent sequential
pipeline that improves on Bundler [32] in terms of robustness and efficiency.

In all the experiments of this section, the internal camera parameters were considered to be unknown
for both pipelines. However, while SAMANTHA uses a completely autocalibrated approach, VISUALSFM
extracts an initial guess of the internal parameters from the image EXIF and a database of known sensor
sizes for common cameras (or uses a default guess for the focal length).

We report four experiments. The first one, “Bra”, is composed of 331 photos of Piazza Bra, the main
square in Verona where the Arena is located. Photos were taken with a Nikon D50 camera and a fixed focal
length of 18mm. This dataset is also publicly available for download El Results are shown in Figure @ Both
VISUALSFM and SAMANTHA produced a correct result in this case. It can also be noticed that Bundler
failed with the same dataset [12].

The second test, “Duomo di Pisa”, is composed of 309 photos of the Duomo of Pisa in the famous Piazza
dei Miracoli square. The dataset is composed of three sets of photos taken with a Nikon D40X camera at
different focal lengths (13mm, 20mm and 58mm). Results are shown in Figure |7} Also in this case both the
pipelines produced a good solution. This dataset is a relatively easy one as far as the structure-and-motion
is concerned, for there are many photos covering a relatively small and limited scene, but there are three
different cameras, which makes it challenging for the autocalibration.

The third tested dataset, “S. Giacomo”, is composed of 270 photos of one of the main squares in Udine
(IT). It consists of two set of exposures. The first one was shot with a Sony DSC-H10 camera with a fixed
focal length of 6mm while the second one — one year after the first — with a Pentax OptioE20 camera with
a fixed focal length of 6 mm. Results are shown in Figure 8] While SAMANTHA produced a visually correct
result, some cameras of VISUALSFM are located out of the square and some walls are manifestly wrong.

The last set, “Navona”, contains 92 photos of the famous square in Rome, taken with a Samsung ST45
Camera at a fixed focal length of 35mm. The dataset is publicly available for download’] Results are
shown in Figure [0l In this case, SAMANTHA produced a complete and correct model of the square while
VISUALSFM produced a partial and incorrect model, as reported also in [75].

For this dataset the internal parameters of the camera were also available (from off-line standard cali-
bration), thus allowing us to compare the focal length obtained by autocalibration, which achieved an error

of 2.3% (Tab. [4).

8http://www.diegm.uniud.it/fusiello/demo/samantha/
9http://www.icet-rilevamento.lecco.polimi.it/
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Figure 6: Comparative modeling results from the “Bra” dataset. Top: VISUALSFM. Bottom: SAMANTHA. In this case both
methods produced visually correct results.
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Figure 7: Comparative modeling results from the “Duomo di Pisa” dataset. Top: VISUALSFM. Bottom: SAMANTHA. In this
case both methods produced visually correct results.
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Figure 8: Comparative modeling results from the “S. Giacomo” dataset. Top: VISUALSFM. Bottom: SAMANTHA. Please note
the cameras outside the square and the rogue points in the VISUALSFM model.

Figure 9: Comparative modeling results from the “Navona” dataset. Top: VISUALSFM. Bottom: SAMANTHA. Please note that
VIisUALSFM modeled only half of the square and the facade is bent.
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Table 3: Comparison with ground control points (GCP). All measures are in mm.

RMS error avg. depth GSD

Ventimiglia 22 15 -103 <4
Termica 86 79 -10° 27
Herz-Jesu-P25 3.4 3.4 103 5

9.2. Comparison against control points.

In this set of experiments we tested the models obtained by SAMANTHA in a context where the position
of some “ground” control points (GCP) was measured independently (by GPS or other techniques). These
control points was identified manually in the images and their position in space was estimated by intersection.
Correspondences between true and estimated 3D coordinates have been used to transform the model with
a similarity that aligns the control points in the least-squares sense. The root mean square (RMS) residual
of this registration was taken as an indicator of the accuracy of the model.
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Figure 10: From left to right: results for “Ventimiglia”, “Termica”, “Herz-Jesu-P25” obtained with SAMANTHA

“Ventimiglia” (477 photos) is composed of aerial photos — nadiral and oblique — taken with a RPAE
equipped with a 24 Mpixel Nikon D3X (full frame sensor) mounting a Nikkon 50 mm lens. 23 targeted points
have been measured through topographic surveying using a Topcon GPT-7001i total station. The (average)
ground sampling distance (GSD) is less than 4 mm. After modeling with SAMANTHA and least-squares
alignment, the RMS error with respect to the control points is 22 mm. Figure reports the individual
erTors.

“Termica” (27 images) was captured with a RPA equipped with a 12 Mpixel Canon Power Shot S100
camera (1/1.7 CMOS sensor) with nadiral attitude. 13 non-signalized natural target points was measured
by geodetic-grade GPS receivers. The (average) GSD is 27 mm. After modeling with SAMANTHA and
least-squares alignment, the RMS error with respect to the control points is 86 mm, which is well within
the uncertainty affecting the measured camera positions (reported in [76]). Individual errors are shown in
Figure

“Herz-Jesu-P25” is part of a publicly available dataset [76], it consist of 25 cameras, for which the ground
truth position and attitude had been computed via alignment with a laser model; in this case, as GCPs
we considered the camera centres. After modeling with SAMANTHA and least-squares alignment, the RMS
error with respect to the control points is 3.4 mm. Figure |L3|reports the individual errors.

For this dataset the internal parameters of the camera were also available, thus allowing us to validate
the parameters obtained by autocalibration, with a remarkably low error of 0.2% on the focal length value
(Tab. [4).

Figures shows the models obtained for these three datasets. As a further qualitative comparison,
Figures shows the models obtained by VISUALSFM for the same datasets. Both pipelines produced
qualitatively correct results, but VISUALSFM discarded a group of 24 photos in the “Ventimiglia” dataset.

1ORemotely Piloted Aircraft
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Figure 11: Top: Distance of computed 3D points to ground
control points for the “Ventimiglia” image-set. Bottom: Dif-
ferences on each dimension (X-Y-Z).

Figure 12: Top: Distance of computed 3D points to ground
control points for the “Termica” image-set. Bottom: Differ-
ences on each dimension (X-Y-Z).
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Figure 13: Top: Distance of computed camera centers to reference positions for the “Herz-Jesu-P25” image-set. Bottom:
Differences on each dimension (X-Y-Z).

Figure 14: From left to right: results for “Ventimiglia”, “Termica”, “Herz-Jesu-P25” obtained with VISUALSFM
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Table 4: Focal length values (in pixel) and errors [percentage]. The value for VISUALSFM on “Navona” missing due to failure.
Calib.  SAMANTHA VISUALSFM

Navona 4307.5 4208.7 [2.3%] n.a.
Herz-Jesu-P25  2761.8  2756.2 [0.20%] 2752.1 [0.32%]

Table 5: Comparison with laser data. Mean and standard deviation of closest-points distance after registration. All measures
are in mm.

Mean Std Dev GSD

Bra 360 300 ~ 10
S. Giacomo 140 220 ~ 4
Duomo di Pisa 73 185 ~ 2.8

9.3. Comparison against laser data

Thanks to the availability of a laser survey for two datasets (“Bra” and “Duomo di Pisa”) we have been
able to further assess the accuracy of our results, by aligning the 3D point produced by SAMANTHA with the
laser point cloud using iterative closest point (ICP) and looking at the residuals (using “CloudCompare”
software [79]).

Results are reported in Tab. [5| and Fig[15] (for “Duomo di Pisa” and “Bra” only).

The laser data relative to the “Duomo di Pisa” is a triangular mesh with an average resolution of 30
mm representing a subset of the area surveyed by the photograph (the abside). After registering the point
cloud produced by SAMANTHA onto this mesh, the residual average point-mesh distance is 73 mm.

The laser data for “S. Giacomo” is a point cloud resampled on a 20 mm grid. After registering the point
cloud produced by SAMANTHA onto this mesh, the residual average point-point distance is 140 mm.

The laser data for “Bra” covers a larger part of the Piazza Bra site, including the interior of the Arena,
and comes as a point cloud with an average resolution of 20 mm. Unfortunately the laser survey contains
Christmas decoration (including a huge comet star rising from inside the Arena) and market stalls that were
not present during the photographic surveys. A detailed comparison would entail the manual trimming of
all the inconsistencies, which would be too cumbersome. This fact, together with a larger GSD might be
the cause of the higher residual distance obtained in this case (360 mm).

%
s
/
ot sl

AN S

Figure 15: Results of point cloud comparison between laser and SAMANTHA for “Bra” and “Duomo di Pisa”. The colour of the
SAMANTHA’s point cloud encodes the residual distance, consistently with the histogram shown in the insert (this figure is best
viewed in colour). Units are in meters.
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9.4. Running Times.

The overall running times for both pipelines are reported in Table [5] All the experiments were carried
out on a workstation equipped with a Intel Xeon W3565 cpu @ 3.20 Ghz, 36 Gb of RAM and a Nvidia
Geforce 640 GT video card.

It should be noted that, in general, the running times are comparable. VISUALSFM is faster when the
dataset is composed of a small amount of images, while SAMANTHA seems to scale better when the number
of image increases. This is mostly due to the matching phase, where by default VISUALSFM consider all the
possible pairwise matches. Please note also that the running time does not depend only on the number of
images and the image resolution, but also on unpredictable factors such as the amount of overlap among the
images or their content. For example, “Ventimiglia” is composed of many overlapping and high resolution
images and the higher running time of SAMANTHA can be probably lead back to this.

Table 6: Running times [min] for SAMANTHA and VISUALSFM.

SAMANTHA VISUALSFM

Bra 136 327

Duomo di Pisa 149 316
S. Giacomo 103 122
Navona 29 19
Ventimiglia 681 657
Termica 6 3
Herz-Jesu-P25 5 3

10. Conclusions

In this paper we have described several improvements to the current state of the art in the context of
uncalibrated structure-and-motion from images. Our proposal was a hierarchical framework for structure-
and-motion (SAMANTHA), which was demonstrated to be an improvement over the sequential approach both
in computational complexity and with respect to the overall error containment. SAMANTHA constitutes the
first truly scalable approach to the problem of modeling from images, showing an almost linear complexity
in the number of tie-points and images.

Moreover, we described a novel self-calibration approach, which coupled with our hierarchical pipeline
(SAMANTHA) constitutes the first published example of uncalibrated structure-and-motion for generic datasets
not using external, ancillary information. The robustness of our approach has been demonstrated on 3D
model datasets both qualitatively and quantitatively.

This technology has now been transferred to a company (3Dflow srl) which produced an industry grade
implementation of SAMANTHA that can be freely downloadedE

Appendix A. Edge-connectedness of G’.

Thesis: the subgraph G’ produced by the method reported in Sec. is m-edge-connected, provided
that m independent spanning tree can be extracted from G.

To prove the thesis we rely upon the following observation. Consider an undirected graph G with the
capacity of all edges set to one; G is k-edge-connected if and only if the maximum flow from u to v is at
least k for any node pair (u,v).

Since our G’ is the union of m independent (disjoint) 1-edge-connected graphs, each of them adds an
independent path with unit capacity from every node pair (u, v), so the maximum flow from every pair (u, v)
in G' is m.

http://samantha.3dflow.net
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