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Abstract

A novel algorithm for wide-baseline matching called MODS – Matching On
Demand with view Synthesis – is presented. The MODS algorithm is experimen-
tally shown to solve a broader range of wide-baseline problems than the state
of the art while being nearly as fast as standard matchers on simple problems.
The apparent robustness vs. speed trade-off is finessed by the use of progres-
sively more time-consuming feature detectors and by on-demand generation of
synthesized images that is performed until a reliable estimate of geometry is
obtained.

We introduce an improved method for tentative correspondence selection,
applicable both with and without view synthesis. A modification of the standard
first to second nearest distance rule increases the number of correct matches by
5-20% at no additional computational cost.

Performance of the MODS algorithm is evaluated on several standard pub-
licly available datasets, and on a new set of geometrically challenging wide base-
line problems that is made public together with the ground truth. Experiments
show that the MODS outperforms the state-of-the-art in robustness and speed.
Moreover, MODS performs well on other classes of difficult two-view problems
like matching of images from different modalities, with wide temporal baseline
or with significant lighting changes.

Keywords: wide baseline stereo; image matching; local feature detectors, local
feature descriptors

1. Introduction

The wide baseline stereo [1] problem – the automatic estimation of a geo-
metric transformation and the selection of consistent correspondences between
view pairs separated by a wide baseline – has received significant attention in
the last 15 years [2, 3]. State-of-art local feature detectors [4], [5], [6], [7] and
descriptors [6], [7], [8] allow to match images of a scene with a viewing angle
difference up to 60◦ for planar objects [9] and 30◦ for non-planar 3D objects
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[10]. Fast detectors [11], [12] and binary descriptors [13], [14], [15] make match-
ing significantly faster at the cost of decreasing tolerance to scale, rotation and
affine changes. At the other end of the spectrum of wide baseline problems, the
ASIFT matching scheme [16, 17], increased the range of handled viewing angle
differences up to the 80◦ at the cost of a significant slow-down.

We propose a novel two-view matching algorithm called MODS – matching
with on-demand view synthesis – that handles viewing angle difference even
larger than the state-of-the-art ASIFT algorithm, without a significant increase
of computational costs over “standard” wide and narrow baseline approaches.
The performance gain is achieved by introducing a number of improvements to
the wide-baseline matching process.

First, MODS employs a combination of different detectors. It is known that
different detectors are suitable for different types of images [9] and that some
detectors are complementary in the type of structures in the image they respond
to [18]. Moreover, we show that the combination of the different detectors allows
increasing the average speed of the matching and to match pairs of images
which can not be solved by any of the detectors alone. The results indicate that
searching for the “best” detector leads to data- and problem-specific outcomes
and that exploiting multiple detectors is superior to any single one.

Second, we introduce an iterative scheme which follows the “do only as
much as needed” principle. Progressively more powerful yet slower detectors
and descriptors are applied, together with more images synthesized on-demand,
until sufficient support for a two-view geometry estimate is obtained. Such on
demand approach finesses an apparent robustness vs. speed trade-off, avoiding
the slowdown for easy wide baseline problems brought by the time-consuming
operations needed for solving the most challenging pairs.

Third, a novel tentative correspondences generation strategy is presented
which generalizes the standard first to second closest distance ratio [6]. The
selection strategy which shows performance superior to the standard method is
applicable to any vector descriptor like SIFT [6], LIOP [19] and MROGH [20].

The parameters of the MODS algorithm were optimized and its performance
thoroughly evaluated. The optimization included the selection of the particular
sequence of feature detectors, the choice of the number and parameters of images
synthesized to facilitate matching and the parameter setting of the individual
detectors.

The performance of the MODS algorithm was validated on several publicly
available datasets and it was compared to the state-of-the-art in both speed and
robustness, i.e. the ability to recover the two-view geometry reliably. We show
that MODS significantly outperforms prior approaches in both robustness and
speed. We have collected a set of image pairs for evaluating MODS on wide
baseline problems with very large angular difference between views. These form
the Extreme View Dataset. The dataset with the ground truth and the source
code of the MODS algorithm is available on the authors web-page1.

1Available at http://cmp.felk.cvut.cz/wbs/index.html
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Algorithm 1 The standard two view matching scheme

Input: I1, I2 – two images.
Output: Fundamental or homography matrix F or H respectively;

a list of corresponding features.

for I1 and I2 independently do
1.1 Detect and describe local features.

end for
2 Generate tentative correspondences for I1 and I2 using the 2nd closest ratio.
3 Geometrically verify tentative correspondences using RANSAC

while estimating H or F.

2. Related work

The standard wide baseline matching pipeline (see Alg. 1) begins with the
detection of local features, computation of descriptors, generation of tentative
correspondences and ends with geometric verification using the homography or
epipolar constraint. Matching images of a scene with viewpoint difference up to
60◦ for planar objects [2] and 30◦ for non-planar 3D objects [10] was reported.
The execution time varies from a fraction of a second to seconds for 800x600
images [9].

The idea of generating synthetic views to improve a local feature based wide
baseline matching pipeline was first explored by Lepetit and Fua [21]. They syn-
thesized views to find distinctive keypoints repeatedly detectable under affine
deformations. Synthetic views provided a training set for learning a random for-
est classifier that labeled individual feature points. Feature points in different
images with the same label were assumed to be in correspondence. The simple
keypoint detector of Lepetit and Fua is very fast, but invariant only to transla-
tion and rotation and thus the number of views necessary to achieve acceptable
repeatability was high. The method was tested on pairs undergoing significant
affine transformations, but the final representation did not scale and can not be
easily used for indexing.

Recently, Morel et.al. [16] proposed a new matching pipeline – see Alg. 2.
The authors showed that view synthesis extends the handled range of view-
point differences. The ASIFT algorithm starts by generating synthetic views
(described in Section 3.1) for both images. Next, feature detection and descrip-
tion are performed using standard SIFT [6] in each synthesized view. Tentative
correspondences are formed for all pairs of views synthesized from the first
and second image. The matching stage thus entails n2 independent matching
problems, where n is the number of synthesized views per image. The set of
correspondences between the images is the union of results for all synthesized
pairs. The duplicate filtering stage of ASIFT prunes correspondences with small
spatial distance (2 pixels) of local features in both images – all such correspon-
dences except one (random) are eliminated from the final correspondence set.
“One-to-many” correspondences – correspondences of features which are close
to each other (are situated in radius of

√
2 pixels) in one image while spread
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Algorithm 2 ASIFT

Input: I1, I2 – two images.
Output: List of corresponding points; fundamental matrix F.

for I1 and I2 independently do
1.1 Generate synthetic views according to the tilt-rotation-detector setup.
1.2 Detect and describe local features.

end for
2 Generate tentative correspondences for each pair of the synthesized views
of
I1 and I2 independently using the 2nd closest ratio.

3 Add correspondences to the general list.
Reproject corresponding features to original images.

4 Filter duplicate, “one-to-many” and “many-to-one” matches.
5 Geometrically verify tentative correspondences using ORSA [22]

while estimating F.

in other synthetic views are also eliminated, despite the fact that some of the
pairs can be correct. Finally, geometric verification is performed by ORSA [22].
ORSA is a RANSAC-based method, which exploits an a-contrario approach to
detect incorrect epipolar geometries. Instead of having a constant error thresh-
old, ORSA looks for matches that have the highest “diameter”, i.e. matches
which cover a large image area. ASIFT was shown to match images of a scene
with viewpoint difference up to 80◦ for planar objects [16]. Computational costs
are in the order of tens of seconds to a few minutes.

The latest extensions of wide-baseline matching pipeline are limited to mod-
ifications of the ASIFT algorithm. Liu et.al. [23] synthesized perspective warps
rather than affine. Pang et.al [24] replaced SIFT by SURF [7] in the ASIFT
algorithm to reduce the computation time. Forssen and Lowe [25] proposed to
detect MSER on scale pyramid, which might be seen as scale synthesis.

3. The MODS algorithm

The main idea of the proposed iterative MODS algorithm (see Alg. 3) is to
repeat a sequence of two-view matching procedures, until a required number
of geometrically verified correspondences is found. In each iteration, a differ-
ent and potentially complementary detector is used and a different set of views
synthesized. The algorithm starts with fast detectors with limited invariance
proceeding progressively with more complex, robust, but computationally costly
ones. MODS is thus capable of solving simple matching problem fast without
loosing the ability to deal with very difficult cases where a combination of de-
tectors is employed to extend the state-of-the-art.

The adopted sequence of detectors and view synthesis parameters is an out-
come of extensive experimental search. The objective was to solve the most
challenging problems in the development set, i.e. to correctly recover their two-
view geometry, while keeping the speed comparable to standard single-detector
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Algorithm 3 MODS

Input: I1, I2 – two images; θm – minimum required number of matches;
Smax – maximum number of iterations.

Output: Fundamental or homography matrix F or H; list of corresponding points.
Variables: Nmatches – detected correspondences, Iter – current iteration.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 independently do

1.1 Generate synthetic views according to the
scale-tilt-rotation-detector-descriptor setup for the Iter (Tables 1, 4).
1.2 Detect and describe local features.
1.3 Reproject local features to original image.
Add described features to general list.

end for
2 Generate tentative correspondences using the first geom. inconsistent

rule.
3 Filter duplicate matches.
4 Geometrically verify tentative correspondences with DEGENSAC [26]
while estimating F or H.

5 Geometrically verify inliers with local affine frame shape.
end while

wide-baseline matchers for simple problems. Details about the selected config-
uration and the optimization process are given in Section 4. The rest of the
section describes the steps involved in the iterations of the MODS algorithm,
which is compared to the standard two view matching and ASIFT pipelines.

3.1. Synthetic views generation

MODS (Alg. 3) starts by synthetic view generation. It is well known that a
homography H can be approximated by an affine transformation A at a point us-
ing the first order Taylor expansion. The affine transformation can be uniquely
decomposed by SVD into a rotation, skew, scale and rotation around the optical
axis [27]. In [16], the authors proposed to decompose the affine transformation
A as

A = HλR1(ψ)TtR2(φ) =

= λ
(

cosψ − sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosφ − sinφ
sinφ cosφ

) (1)

where λ > 0, R1 and R2 are rotations, and Tt is a diagonal matrix with t > 1.
Parameter t is called the absolute tilt, φ ∈ 〈0, π) is the optical axis longitude and
ψ ∈ 〈0, 2π) is the rotation of the camera around the optical axis (see Figure 1).
Each synthesized view is thus parametrized by the tilt, longitude and optionally
the scale and represents a sample of the view-sphere resp. view-volume around
the original image.

The view synthesis proceeds in the following steps: at first, a scale synthesis
is performed by building a Gaussian scale-space with Gaussian σ = σbase · S
and downsampling factor S (S < 1). Then, each image in the scale-space is
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Figure 1: (left) the affine camera model (1). Latitude θ = arccos 1/t – latitude, longitude φ,
scale λ scale. (right) Transitional tilt τ for absolute tilt t and rotation φ.

in-plane rotated by longitude φ with step ∆φ = ∆φbase/t. In the third step, all
rotated images are convolved with a Gaussian filter with σ = σbase along the
vertical and σ = t · σbase along the horizontal direction to eliminate aliasing in
a final tilting step. The final tilt is applied by shrinking the image along the
horizontal direction by factor t. The synthesis parameters are: the set of scales
{S}, ∆φbase – the longitude sampling step at tilt t = 1, the set of simulated
tilts {t}.

3.2. Local feature detection and description

The second step of MODS is detection and description of local features. It
is known that different local feature detectors are suitable for different types of
images [9] and that some detectors are complementary in the image structures
they respond to [18]. Our experiments show (see Section 5) that combining
detectors improves the overall robustness and speed of the matching procedure.

MODS combines a fast similarity covariant FAST (in ORB implementation)
detector and affine covariant detectors MSER and Hessian-Affine. The nor-
malized patches are described by the binary descriptor BRIEF [13] (in ORB
implementation) and a recent modification of SIFT [6] – the RootSIFT [28].
The local feature frames computed on the synthesized views are backprojected
to the coordinate system of the original image by the known affine matrix A
and associated with the descriptor and the originating synthetic view. MODS
steps configuration are specified in Table 1.

For the MSER and Hessian-Affine detectors, the fast affine feature extraction
process from [29] was applied.

3.3. Tentative correspondence generation

The next step of the MODS algorithm is the generation of tentative cor-
respondences. Different strategies for the computation of tentative correspon-
dences in wide-baseline matching were proposed. The standard method for
matching SIFT(-like) descriptors is based on ratio of the distances to the closest
and the second closest descriptors in the other image [6]. While the performance
of this test is in general very good, it degrades when multiple observations of the
same feature are present. In this case, the presence of similar descriptors will
lead to the first to second SIFT ratio to be close to 1 and the correspondences
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Table 1: MODS step configurations are defined by a detector, descriptor and the set of the
synthesized views. RootSIFT is used for all detectors but ORB which is described by BRIEF.

Iter. Setup

1 ORB,{S} = {1}, {t} = {1}, ∆φ = 360◦/t

2 ORB,{S} = {1}, {t} = {1; 5; 9}, ∆φ = 360◦/t

3 MSER,{S} = {1; 0.25; 0.125}, {t} = {1}, ∆φ = 360◦/t

4 MSER,{S} = {1; 0.25; 0.125}, {t} = {1; 3; 6; 9}, ∆φ = 360◦/t

5 HessAff, {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 360◦/t

6 HessAff, {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 120◦/t

7 HessAff , {S} = {1}, {t} = {1; 2; 4; 6; 8; 10}, ∆φ = 60◦/t

Table 2: MODS variants tested. The corresponding steps are the same as in Table 1. The
tarred MODS:3∗-6∗ configuration slightly differs from Table 1 and corresponds to [30].

Name Steps
MODS == MODS:1-7 1 2 3 4 5 6 7
MODS:2-7 - 2 3 4 5 6 7
MODS:3∗-6 - - 3∗ 4∗ 5 6 -
MODS:3-7 - - 3 4 5 6 7
MODS:3,2-7 3 - 2 4 5 6 7
MODS:2,4,7 - 2 - 4 - - 7
MODS:5,1-7 5 1 2 3 4 6 7

will ”annihilate” each other, despite the fact they represent the same geometric
constraints and are therefore not mutually contradictory (see Figure 2). The
problem of multiple detections is amplified in matching by view synthesis since
covariantly detected local features are often repeatedly discovered in multiple
synthetic views.

To address this problem, we propose a modified matching strategy denoted
first to first geometrically inconsistent – FGINN . Instead of comparing the first
to the second closest descriptor distance, the distance of the first descriptor and
the closest descriptor that is geometrically inconsistent with the first one is used.
We call descriptors in one image geometrically inconsistent if the Euclidean
distance between centers of the regions is ≥ n pixels (default: n = 10). The
difference of the first-to-second closest ratio strategy and the FGINN strategy
is illustrated in Figure 2.

3.4. Geometric verification

The last step of the MODS is the geometric verification. It consists of three
substeps.

3.4.1. Duplicate filtering

The redetection of covariant features in synthetic views results in duplicates
in tentative correspondences. The duplicate filtering prunes correspondences
with close spatial distance (≈ 5 pixels) of local features in both images – all
these correspondences except one – with smallest descriptor distance ratio – are
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Figure 2: Green regions – correct correspondences rejected by the standard first to second
closest ratio test (second closest region is in red), but recovered by the first to first geometri-
cally inconsistent ratio (first geometrically inconsistent region is in yellow) matching strategy.
DoG regions (top), MSERs (bottom).

eliminated from the final correspondences list. The number of pruned corre-
spondences can be used later for evaluating the quality (probability of being
correct) in PROSAC-like [31] geometric verification.

3.4.2. RANSAC

The LO-RANSAC [32] algorithm searches for the maximal set of geometri-
cally consistent tentative correspondences. The model of the transformation is
set either to homography or epipolar geometry, or automatically determined by
a DegenSAC [26] procedure.

3.4.3. Local affine frame check

Since the epipolar geometry constraint is much less restrictive than a ho-
mography, wrong correspondences consistent with some (random) fundamental
matrix appear. The local affine frame consistency check (LAF-check) eliminates
virtually all incorrect correspondences. The procedure uses coordinates of the
closest and furthest ellipse points from the ellipse center of both matched local
affine frames to check whether the whole local feature is consistent with esti-
mated geometry model (see Figure 3). The check is performed for the geometric
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Figure 3: The LAF-check. While centers of both regions A and B are consistent with found
homography, farthest (1) and closest (2) points of the ellipse pass the check only for region A.

model obtained by RANSAC. Regions which do not pass the check are discarded
from the list of inliers. If the number of correspondences after the LAF-check
is fewer than the user defined minimum, matcher continues with the next step
of view synthesis.

4. Implementation and parameter setup

In this subsection, we discuss the tilt-rotation-detector setups of the MODS
algorithm, and threshold selection for the first to first geometrically inconsistent
– FGINN matching strategy validation.

4.1. View synthesis for different detectors and descriptors

The two main parameters of the view synthesis, tilt {t} sampling and the
latitude step ∆φbase, were explored in the following synthetic experiment.

A set of simulated views with latitudes angles θ = (0, 20, 40, 60, 65, 70, 75,
80, 85◦), corresponding to tilt series t = (1.00, 1.06, 1.30, 2.00, 2.36, 2.92, 3.86,
5.75, 11.47)2 was generated for each of 150 random images from the Oxford
Building Dataset3 [33]. Example images are shown in Figure 4. The ground
truth affine matrix A was computed for each simulated view using equation (1)
and used in the final verification step. The original image was matched against
its warped version, and the running time and number of inliers for each combi-
nation of the detector, tilt and rotation (see Table 3) were computed. In all, 84
setups for each of the 8 detectors on the 150 image pairs were evaluated. As an
example, we show the relation between the density of the view-sphere sampling
and the number of images matched for the DoG detector in Figure 5.

Since our goal is to find a variety of detector-tilt-rotation configurations op-
erating with different matching ability – run-time trade-offs, we defined “easy”,

2assuming that the original image is the fronto-parallel view
3available at http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
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Figure 4: Two examples of image sets from the synthetic dataset. Original unwarped images
are from the Oxford buildings dataset [33].
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Figure 5: Top: the percentage of images matched depending the synthetic viewpoint difference
for the DoG detector with tilt configurations given in Table 3. Left: different tilt synthesis
configurations (for ∆φ = 240◦), right: different rotation synthesis configurations (for tilt set
(d) = {1,5,9}). Bottom: running time per image pair for the respective configuration.
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Table 3: View synthesis configuration evaluation. Configuration is a triplet - the detector,
descriptor and the set of the synthesized views.

Detector-descriptor combination
DoG-SIFT, Hessian-Affine-SIFT, Harris-Affine-SIFT,
MSER-SIFT, SURF-SURF, SURF-FREAK,
AGAST-FREAK, ORB

Tilt set

a = {1}, b = {1,2}, c = {1,8}, d = {1,5,9}, e =
{1,4},f = {1,4,8}, g = {1,2,4,8}, h = {1,3,6,9}, i =
{1,4,8,10}, j = {1,2,4,6,8}, k = {1,

√
2, 2, 2

√
2, 4,

4
√

2, 8}, l = {1,2,3,4,5,6,7,8,9}.
φbase[◦] 360, 240, 180, 120, 90, 72, 60

“medium” and “hard” problems on the synthetic dataset. Successful two-view
matching was defined as recovering n ≥ 50 ground truth correspondences on a
synthetically warped image. The threshold is set high – synthetic warping of
an image is underestimating the reduction of the number of matchable features
induced by the effects of a corresponding viewpoint change e.g. due to non-
planarity of the scene or illumination changes. The matcher is considered to
solve an “easy” problem if percentage of the matched images f ≥ 50% of total
images, “medium” if f ≥ 90% of images matched and solved “hard” if f ≥ 99%
of the images are matched.

The experiment with the synthetically warped dataset gives a hint about
the limits of configurations. Three configurations that solved the maximum tilt
difference for each case fastest for a given detector were selected for evaluation.
The configurations are specified in Table 4.

The average time necessary to match a given synthetic tilt difference for
different detectors with the optimal configuration is shown in Figure 6. The
computations were performed on the Intel i7 3.9GHz (8 cores) desktop with
8Gb RAM with parallel processing.

Note that view synthesis significantly increases the matching performance
of all detectors, but not uniformly. The left plot of Figure 6 shows that a very
sparse viewsphere sampling greatly improves matching at almost no computa-
tional cost for all detectors. However, after reaching a certain density, additional
views do not add correspondences in the hardest cases – see the right graph of
Figure 6. The ORB detector-descriptor clearly outperforms other detectors in
terms of speed, but fails to match all images with the maximum tilt difference.
The Hessian-Affine shown the best performance and it matched all pairs.

4.2. First geometrically inconsistent nearest neighbor ratio correspondence se-
lection strategy

The following protocol was used to find the thresholds and to evaluate the
performance of the proposed First Geometrically Inconsistent Nearest Neighbor
FGINN strategy. First, similarity covariant regions were detected using the
DoG detector (we also tried Hessian-Affine, MSER and SURF, with very sim-
ilar results) and described using four popular descriptors – RootSIFT, SURF,
LIOP [35] and MROGH [20] which are typically matched with the second-
nearest region SNN strategy. Then for each keypoint descriptor, the first, second
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Figure 6: Performance of view synthesis configurations on the synthetic dataset. Average
time needed to match (left)“easy”, (center) “medium” and (right)“hard” problems. The time
for the fastest detector configuration that solved corresponding problems for a given tilt is
shown.

and first geometrically inconsistent descriptors in the other image were found.
The matching keypoints were then labeled as correct if their Sampson error was
within 1 pixel of the ground truth location given by homography for the image
pair, and incorrect otherwise.

The experiment was performed on 26 image pairs of the publicly avail-
able datasets [9],[34] (image pairs 1-3, precise homography provided) and [36]
(the homography was estimated using provided precise ground truth correspon-
dences). The recall-precision curves for correspondences from all images were
plot with a varying ratio threshold from 0 to 1 in Figure 7. The FGINN curves
for SIFT and SURF slightly outperform standard SNNs, while for LIOP and
MROGH the difference is much more significant. The significantly higher ben-
efit of the FGINN rule for LIOP and MROGH can be explained by their lower
sensitivity to keypoint shift which in turn means that undesirable suppression
of keypoints happens in a larger neighborhood. The lower sensitivity to shifts
was experimentally verified.

5. Experiments

We have tested MODS and, as a baseline, ASIFT4 and single detector con-
figurations specified in Table 4 on seven public. datasets [10],[30],[37], [38], [39],
[40], [41].

Implementation details of the MODS algorithm and parameter setting. The kd-
tree algorithm from FLANN library [42] was used to efficiently find the N-closest
descriptors. The distance ratio thresholds of the FGINN matching strategy
were experimentally selected based on the CDFs of matching and non-matching
descriptors.

The MODS algorithm allows to set the minimum desired number of inliers
which have a very low probability to be a random result as a stopping criterion.

4Reference code from http://demo.ipol.im/demo/my affine sift

12



Table 4: View synthesis configurations with best synthetic dataset performance.
Configurations

Detector Easy Medium Hard

DoG-SIFT
{t} = {1; 5; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 180◦/t

{t} = {1; 2; 4; 6; 8},
∆φ = 60◦/t

HarrAff-SIFT
{t} = {1; 3; 6; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 120◦/t

HessAff-SIFT
{t} = {1; 5; 9},
∆φ = 360◦/t

{t} = {1; 5; 9},
∆φ = 360◦/t

{t} = {1; 2; 4; 6; 8},
∆φ = 60◦/t

MSER-SIFT
{t} = {1; 8},
∆φ = 360◦/t

{t} =
{1;
√

2; 2; 2
√

2; 4;
4
√

2; 8}, ∆φ = 60◦/t

{t} = {1; 3; 6; 9},
∆φ = 60◦/t

AGAST-FREAK
{t} = {1; 4; 8; 10},
∆φ = 360◦/t

{t} = {1; 3; 6; 9},
∆φ = 60◦/t

{t} = {1; 3; 6; 9},
∆φ = 72◦/t

ORB
{t} = {1; 5; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 90◦/t

{t} =
{1;
√

2; 2; 2
√

2; 4;
4
√

2; 8}, ∆φ = 72◦/t

SURF-FREAK

{t} =
{1;
√

2; 2; 2
√

2; 4;
4
√

2; 8}, ∆φ = 60◦/t

{t} =
{1;
√

2; 2; 2
√

2; 4;
4
√

2; 8}, ∆φ = 90◦/t

{t} =
{1;
√

2; 2; 2
√

2; 4;
4
√

2; 8}, ∆φ = 72◦/t

SURF-SURF
{t} = {1; 5; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 360◦/t

{t} =
{1; 2; 3; 4; 5; 6; 7; 8; 9},
∆φ = 72◦/t

The recommended value – 15 inliers to the homography – did not produce a
false positive results in experiments. Computations were performed on Intel i3
CPU @ 2.6GHz with 4Gb RAM with 4 cores.

5.1. MODS variants testing on Extreme Viewpoint and Oxford Dataset

To evaluate the performance of matching algorithms, we introduce a two-
view matching evaluation dataset5 with extreme viewpoint changes, see Table 5.
The dataset includes image pairs from publicly available datasets: adam and
mag [16], graf [9] and there [34]. The ground truth homography matrices
were estimated by LO-RANSAC using correspondences from all detectors in
view synthesis configuration {t} = {1;

√
2; 2; 2

√
2; 4; 4

√
2; 8}, ∆φ = 72◦/t. The

number of inliers for each image pair was ≥ 50 and the homographies were
manually inspected. For the image pairs graf and there precise homogra-
phies are provided by Cordes et.al. [34]. Transition tilts τ were computed using
equation (1) with SVD decomposition of the linearized homography at center
of the first image of the pair (see Table 5). Oxford [9] dataset with 42 image
pairs (1-2, ..., 1-6) was used for easier wide baseline problems.

Experimental protocol. The evaluated algorithms matched image pairs and the
output keypoints correspondences were checked with ground truth homogra-

5Available at http://cmp.felk.cvut.cz/wbs/index.html
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Figure 7: Comparison of the FGINN and SNN matching strategies for SIFT, SURF, LIOP
and MROGH on images from the Oxford [9] and Cordes et.al. [34] datasets. Markers show
operationg points for the common distance ratio threshold = 0.8. Matching without (left)
view synthesis an using view synthesis (right) with parameters {t} = {1; 5; 9}, ∆φ = 360◦/t.
The recall and precision of the correspondence filtering step, therefore the maximum recall is
1 when all correspondences are kept.

phies. The image pair is considered as solved, when at least 10 output corre-
spondences are correct.

Figure 8 compares the different view synthesis configurations. Note that no
single detector solved all image pairs. The Hessian-Affine, MSER, Harris-Affine
and DoG successfully solved resp. 13, 13, 12 and 13 out of the 15 image pairs
however, at the expense of the high computational cost. We also noticed that
if one would know the suitable detector and configuration for each image, it is
possible to match all image pairs.
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Figure 8: Performance of different configurations on the Extreme View Dataset. Cumulative
percentage of image pairs successfully matched in a given time for configurations defined in
Table 4. Each mark represents one image pair. The fastest detector configuration which
was able to match each pair was selected. Left – ’easy’, middle – ’medium’, left – ’hard’
configurations. An images is considered matched if 10 correct inliers were found.

The MODS algorithm with more time-consuming configurations solves all
image pairs and does it faster than a suitable configuration for each image pair
– see Figure 9. We have tested several variants of the MODS configurations,
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Table 5: The Extreme View Dataset – EVD. Image sources: C – [34], Ox – [9], M – [16].
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Name theregraf adam mag grandpkk face girl shop dum index cafe fox cat vin

Ref. C Ox M M EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD
τ –
tilt 6.3 3.6 4.8 20 2.9 7.1 6.9 8.0 9.1 6.9 8.5 11.9 22.5 47 49.8

Size
[pxl]

1536
x

1024

800
x

640

600
x

450

600
x

450

1000
x

667

1000
x

750

1000
x

750

1000
x

750

1000
x

562

1000
x

729

1000
x

750

800
x

533

1000
x

563

1000
x

598

1000
x

715

# Image 1 Image 2 # Image 1 Image 2 # Image 1 Image 2

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15
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Figure 9: Performance of MODS configurations specified in Table 2. Cumulative percentage
of image pairs successfully matched in time. Left - EVD dataset, right - Oxford dataset.
The graphs are cropped. Each mark represents one image pair. The fastest single detector
configuration which is able to match each pair was selected and plotted separately. Image
considered matched if 10 correct inliers was found.
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Table 6: ASIFT view synthesis configuration

Detector View synthesis setup

DoG {S} = {1}, {t} = {1;
√

2; 2; 2
√

2; 4; 4
√

2; 8}, ∆φ = 72◦/t

stated in Table 2. Experiments shows that the proposed MODS configuration
is very fast on the easy WBS problems as in Oxford dataset (see Figure 9, right
graph) and has very little overhead on the harder EVD dataset – it is the second
best after configuration without ORB steps. The results of the MODS medium
configuration – without first sparse synthesis step – shows fruitfulness of the
progressive view synthesis.

ASIFT is able to match only 6 image pairs from the dataset. The ASIFT
algorithm generates a lower number of correct inliers and works slower than our
identical DoG configuration (which has the same tilt-rotation set). The main
causes are the elimination of ”one-to-many”, including correct, correspondences,
the inferiority of the standard second closest ratio matching strategy and a
simple brute-force algorithm of matching used in ASIFT.

Fig. 10 shows the breakdown of the computational time. The most time
consuming parts – detection and description (including the dominant orientation
estimation) – take 40% and 35% resp. of the all time. Without applying the fast
SIFT computation from [29], the SIFT description takes more than 50% of the
time. The ORB is an exception - the synthesis is not so profitable, since it takes
more time than detection and description itself. Note that the whole process is
almost linear in the area of the synthesized views. The only super-linear part,
matching, takes only 10% of the time.

0 20 40 60 80 100

HA

MSER

ORB

DoG

SURF

MODS

Time [%]

 

 

Synthesis
Detection
Orientation
Description
Matching
RANSAC
Misc

Figure 10: Percentages of time spent in the main stages of the matching with view synthe-
sis process on a single core, easy configuration. Detection and SIFT description, i.e. the
dominant gradient estimation and the descriptor computation are the most time-consuming
parts.
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5.2. MODS testing on a non-planar dataset

5.2.1. The dataset and evaluation protocol

The evaluation dataset consists of 35 image sequences taken from the Turntable
dataset [10] (“Bottom” camera) shown in Table 7. Eight image sets contain
objects with relatively large planar surfaces and the remaining ones are low-
textured, “general 3D” objects.

The view marked as “0◦” in the Turntable dataset was used as a reference
view and 0−90◦ and 270-355 ◦ views with a 5◦ step were matched against it using
the procedure described in Sec. 5, forming a [−90◦, 90◦] sequence. Note that
the reference view is not usually the “frontal” or “side” view, but rather some
intermediate view which caused asymmetry in results (see Fig. 11, Table 8).

The output of the matchers is a set of the correspondences and the estimated
geometrical transformation. The accuracy of the matched correspondences was
chosen as the performance criterion, similarly to the protocol in [43]. For all out-
put correspondences, the symmetrical epipolar error [27] eSymEG was computed
according to the following expression:

eSymEG (F,u,v) =
(
v>Fu

)2 × ( 1

(Fu)21 + (Fu)22
+

1

(F>v)21 + (F>v)22

)
, (2)

where F – fundamental matrix, u, v – corresponding points, (Fu)2j – the square
of the j-th entry of the vector Fu.

The ground truth fundamental matrix was obtained from the difference in
camera positions [27], assuming that turntable is fixed and the camera moved
around the object, according to the following equation:

F = K−>RK>[KR>t]×,

R =

 cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

 ,K =

 mf
FRX

0 m
2

0 nf
FRY

n
2

0 0 1

 , t = r

 sinφ
0

1− cosφ

 ,

(3)

where R is the orientation matrix of the second camera, K – the camera pro-
jection matrix, t – the virtual translation of the second camera, r – the distance
from camera to the object, φ – the viewpoint angle difference, FRX ,FRY – the
focal plane resolution, f – the focal length, m, n – the sensor matrix width and
height in pixels. The last five parameters were obtained from EXIF data.

One of the evaluation problems is that background regions, i.e. regions that
are not on the object placed on the turntable, are often detected and matched
influencing the geometry transformation estimation. The matches are correct,
but consistent with an identity transform of the (background of) the test images,
not the fundamental matrix associated with the movement of the object on the
turntable. In order to solve this problem, the median value of the correspondence
errors was chosen as the measure of precision because of its tolerance to the low
number of outliers (e.g. the above-mentioned background correspondences), and
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Table 7: Reference views of the image sequences used in the evaluation (from [10]).

Abroller Bannanas Camera2 Car

Car2 CementBase Cloth Conch

Desk Dinosaur Dog DVD

FloppyBox FlowerLamp Gelsole GrandfatherClock

Horse Keyboard Motorcycle MouthGuard

PaperBin PS2 Razor RiceCooker

Rock RollerBlade Spoons TeddyBear

Toothpaste Tricycle Tripod VolleyBall
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Table 8: Experiment on the 3D dataset. The configurations are defined in Table 4. The

number of correctly matched image pairs and the run-time per pair. Best results are boxed .
Results within 90% of the best are in bold. The configurations are sorted by average time
for image pair.

Image sets solved (out of 35)
Viewpoint angular difference Time

Matcher 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ ≥ 45◦ [s]

HessianAffine easy 35 32 29 26 22 17 13 14 9 6 0.9

SURF-SURF easy 35 31 24 18 15 12 7 5 4 2 0.9
HessianAffine medium 35 30 26 24 18 17 12 10 7 10 1.0
ORB easy 35 31 27 20 16 11 10 5 5 4 1.0
AGAST-FREAK easy 35 28 29 26 19 17 12 9 7 6 1.3

DoG easy 35 33 30 22 18 12 10 7 5 3 1.4

MSER easy 35 28 22 21 15 13 10 8 7 5 1.5
SURF-SURF hard 35 26 16 11 9 7 6 4 3 3 2.1
HarrisAffine easy 35 29 22 12 8 6 5 3 2 1 2.7

AGAST-FREAK hard 35 31 28 25 20 17 15 10 8 5 4.7

HarrisAffine medium 35 27 20 11 7 6 5 4 3 2 4.7

HessianAffine hard 35 29 24 20 20 17 15 11 9 6 5.6

DoG medium 35 32 26 21 16 11 10 9 6 5 6.8
AGAST-FREAK medium 35 29 23 22 18 14 13 6 6 6 7.2
ORB hard 35 31 24 19 16 7 5 4 1 4 7.3
SURF-FREAK easy 35 25 21 13 10 8 6 3 2 2 7.3
ORB medium 35 30 26 18 17 10 5 4 2 4 8.3
SURF-FREAK medium 35 22 15 10 9 7 6 4 1 2 9.1
SURF-SURF medium 35 25 20 13 11 7 3 3 2 2 10.7
SURF-FREAK hard 35 25 17 14 10 9 4 3 1 2 10.9
MSER hard 35 29 24 24 19 16 12 13 8 8 14.5
HarrisAffine hard 35 27 16 8 5 5 5 3 2 2 15.2
DoG hard 35 32 24 17 16 13 12 8 7 8 16.7
MSER medium 35 29 26 23 21 14 10 9 7 9 17.5
ASIFT 35 32 24 18 13 8 7 5 4 3 27.6

MODS:1-7 35 31 27 27 22 22 14 9 10 11 6.7

its sensitivity to the incorrect geometric model estimated by RANSAC.
An image pair is considered as correctly matched if the median symmetrical

epipolar error on the correspondences using ground truth fundamental matrix
is ≤ 6 pixels.

5.2.2. Results

Figure 11 and Table 8 show the percentage and the number of image se-
quences respectively for which the reference and tested views for the given
viewing angle difference were matched correctly.

The difference between easy, medium and hard configurations is small for
structured scenes — unlike planar ones. Difficulties in matching are caused
not by the inability to detect distorted regions but by object self-occlusions.
Therefore synthesis of the additional views does not bring more correspondences.

Experiments with view synthesis confirmed [10] results that the Hessian-
Affine outperforms other detectors for matching of structured scenes and can
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Figure 11: A comparison of view synthesis configurations on the Turntable dataset [10]. The
fraction of correctly matched images for a given viewpoint difference.
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Figure 12: Correspondences found by MODS. Green – corresponding regions, cyan – epipolar
lines. Objects with significant self-occlusion and mostly homogenious texture were selected.
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Figure 13: Examples from the Extreme Zoom Dataset

be used alone in such scenes. MODS shows similar performance, but is slower
than the Hessian-Affine configuration.

The computations were performed on Intel i5 3.0GHz (4 cores) desktop with
16Gb RAM. Examples of the matched images are shown in Fig. 12.

5.3. MODS testing on other datasets

5.3.1. Extreme zoom dataset

We introduce the Extreme Zoom dataset (EZD), which is a small subset of
the retrieval dataset used in [41]. It consists of six sets of images with an in-
creasing level of zoom (see examples in Figure 13). The state-of-the art matcher
– ASIFT [16] and registration algorithm DualBootstrap [44] as well a results for
MSER, ORB and Hessian-Affine matchers without view synthesis were com-
pared to MODS. Image pairs are matched with tested algorithms. An image
pair is considered solved when at least 10 output correspondences are correct.
Results are shown in Table 9.

Table 9: Results on the Extreme Zoom Dataset.
Matcher Zoom level, matched

I (max 6) II (max 6) III (max 6) IV (max 4)
ORB 0 0 0 0
MSER 2 2 1 0
DBstrap 3 1 0 0
HessAff 5 3 2 0
ASIFT 3 3 2 0
MODS 6 3 3 0

5.3.2. Ultra wide-baseline dataset

The MODS performance was evaluated on the city-from-air dataset from
[37]. The dataset comprises 30 pairs (examples shown in Figure 14) of pho-
tographs of buildings taken from the air. The view points difference is quite
large, the images contain repeated structures, illumination differs. The authors
proposed a matcher based on HoG [45] descriptor with view synthesis and com-
pare it to ASIFT and D-Nets [46] for skyscraper frontal face matching. We
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follow the evaluation protocol which considers a pair matched correct only if
the facade plane is matched (≥ 75% correct inliers). If the output homography
was ground/roof, it is considered incorrect. The results are shown in Table 10.

Note that no special adjustment is done in MODS for homography selection,
so the reported performance is a lower bound.

Figure 14: Examples of image pairs from the Ultra wide-baseline dataset [37]

Table 10: Results on Ultra wide-baseline dataset (all results except MODS taken from [37])

Method Correct (or shifted) Different plane Failure/ground plane
Altwaijry and Belongie [37] 9 1 20
ASIFT-homography 1 5 24
D-Nets 7 2 21
MODS 8 1 21

5.3.3. Datasets with other than geometric changes

Despite being designed for (extreme) wide baseline stereo problems, MODS
performance was evaluated on other datasets: GDB-ICP [39] (modality, view-
point and photometry changes), SymBench [38] (photometrical changes and
photo-vs-painting pairs), and MMS [40] (infrared-vs-visible pairs) – see Table 11.
The state-of-the art matcher – ASIFT [16] and registration algorithm DualBoot-
strap [44] as well a results for MSER, ORB and Hessian-Affine matchers without
view synthesis were compared to MODS.

Table 11: Evaluation Datasets
Short name Proposed by #images Nuisance
GDB-ICP Kelman et.al. [39], 2007 22 pairs Illumination, modality
SymBench Hauagge and Snavely [38], 2012 46 pairs Illumination, modality
MMS Aguilera et.al. [40], 2012 100 pairs Modality
EVD Mishkin et.al. [30], 2013 15 pairs Viewpoint change

Image pairs are matched with the tested algorithms. Output keypoints cor-
respondences were checked against the ground truth homographies. An image
pair is considered solved when at least 10 output correspondences are correct
Our primary evaluation criterion is the ability to find sufficiently correct geo-
metric transformations in a reasonable time; accurate geometry can be found in
consecutive step.
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The computations were performed on Intel i3 3.0GHz desktop (4 cores) with
4Gb RAM.

Results are shown in the Table 12. MODS is the fastest method and it is able
to match the most image pairs in GDB-ICP and SymBench datasets without
using symmetrical parts or other problem-specific features. Images from the
MMS dataset (as well as other thermal images) produce a small number of
features as they do not contain many textured surfaces, and have very short
geometrical baseline. Those are the main reasons why area-based method –
Dual-Bootstrap – work significantly better than the feature-based methods.

After lowering the threshold for detectors allowing to detect more feature
points and using the orientation restricted SIFT [47] in addition to the Root-
SIFT, MODS-IR solved 83 out of 100 image pairs from MMS dataset.

Table 12: Performance on non-WBS datasets. For comparison, results of MSER, ORB and
Hessian-Affine matchers without view synthesis are added. Best results are in bold, average
time per image pair is shown.

Matcher GDB-ICP SymBench MMS EVD
pairs

solved
time
[s]

pairs

solved
time
[s]

pairs

solved
time
[s]

pairs

solved
time
[s]

ASIFT 15/22 41.5 27/46 14.7 8/100 3.2 5/15 12.4
MODS:1-7 17/22 2.8 38/46 3.7 12/100 2.0 15/15 2.4
DBstrap 16/22 17.6 38/46 21.7 79/100 9.3 0/15 1.9
ORB 0/22 0.2 0/46 0.4 0/100 0.1 0/15 0.3
MSER 8/22 1.7 21/46 0.8 0/100 0.2 4/15 0.6
HessAff 11/22 1.9 29/46 1.5 2/100 0.4 2/15 1.1
MODS-IR:1-7 21/22 7.6 39/46 15.1 83/100 9.1 14/15 8.6

6. Conclusions

An algorithm for two-view matching called Matching On Demand with view
Synthesis algorithm (MODS) was introduced. The most important contribu-
tions of the algorithm are its ability to adjust its complexity to the problem
at hand, and its robustness, i.e. the ability to solve a broader range of wide-
baseline problems than the state of the art. This is achieved while being fast
on simple problems.

The apparent robustness vs. speed trade-off is finessed by the use of progres-
sively more time-consuming feature detectors, and by on-demand generation of
synthesized images that is performed until a reliable estimate of geometry is
obtained. The MODS method demonstrates that the answer to the question
”which detector is the best?” depends on the problem at hand, and that it is
fruitful to focus on the ”how to combine detectors” problem.

We are the first to propose view synthesis for two-view wide-baseline match-
ing with affine-covariant detectors, which is superficially counter-intuitive, and
we show that matching with the Hessian-Affine or MSER detectors outperforms
the state-of-the-art ASIFT. View synthesis performs well when used with simple
and very fast detectors like ORB, which obtains results similar to ASIFT but
in orders of magnitude shorter time.
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Minor contributions include an improved method for tentative correspon-
dence selection, applicable both with and without view synthesis and a modifi-
cation of the standard first to second nearest distance rule increases the number
of correct matches by 5-20% at no additional computational cost.

The evaluation of the MODS algorithm was carried out both on standard
publicly available datasets as well as a new set of geometrically challenging wide
baseline problems that we collected and will make public. The experiments show
that the MODS algorithm solves matching problems beyond the state-of-the-
art and yet is comparable in speed to standard wide-baseline matchers on easy
problems. Moreover, MODS performs well on other classes of difficult two-view
problems like matching of images from different modalities, with large difference
of acquisition times or with significant lighting changes.
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