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Abstract

Statistical analysis of shape representations relies on having good correspondence across a 

population. Improving correspondence yields improved statistics. Point distribution models 

(PDMs) are often used to represent object boundaries. Skeletal representations (s-reps) model 

object widths and boundary directions as well as boundary positions, so they should yield better 

correspondence.

We present two methods: one for continuously interpolating a discretely-sampled skeletal model 

and one for improving correspondence by using this interpolation to shift skeletal samples to new 

positions. The interpolation operates by an extension of the mathematics of medial structures. As 

with Cates’ boundary-based method, we evaluate correspondence in terms of regularity and shape-

feature population entropies.

Evaluation on both synthetic and real data shows that our method both improves correspondence 

of s-rep models fit to segmented lateral ventricles and that the combined boundary-and-skeletal 

PDMs implied by these optimized s-reps have better correspondence than optimized boundary 

PDMs.
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1. Introduction

Statistical analysis of shape populations is an important task in many image analysis 

applications. Achieving good correspondence [1] across a population of shapes is a 

necessary step in computing accurate statistics. For point distribution models (PDMs) [2], 

this means having the points evenly spread around the object while each point has similar 

local geometry on every object. The most common use of the PDM is to represent the 

boundary of an object. Cates et al. [3] developed a method for improving correspondence of 

a set of PDMs by shifting points along the boundary to minimize geometric entropy less a 

regularity entropy summed over the population, which is implemented in the publicly 

available ShapeWorks [4] software. This optimization has been shown to produce improved 

statistics on populations of PDMs.

In many applications [5, 6, 7], it is beneficial to model object interiors as well as boundaries. 

Skeletal representations (s-reps) [8] are one method for doing this. An s-rep consists of a 

discretely sampled skeletal surface with vectors called spokes pointing from the skeleton to 

the object boundary. As with PDMs, good correspondence is required for statistical analysis 

of s-reps. At the same time, it would be interesting to compare the statistical properties of a 

boundary PDM put into correspondence directly by the Cates method to one implied by the 

s-reps correspondence. In this paper, we present a method for improving correspondence of 

s-reps by shifting spokes along the skeleton. Similarly to the boundary-based method, we 

shift spokes to minimize a geometric entropy less a regularity entropy summed over the 

population. In order to shift these discrete spokes, we develop a method for interpolating a 

continuous s-rep from the discrete samples. The interpolation is a new result generalizing the 

mathematics of medial structures [9].

We evaluate our method on a set of 31 lateral cerebral ventricles. We show that our method 

improves the correspondence of s-reps fit to this data. We also compare the results of the s-

rep correspondence optimization to two methods of producing corresponding PDMs: the 

PDMs computed via the SPHARM-PDM [10] method as well as PDMs optimized using the 

ShapeWorks software. To compare s-reps to the PDM data, we apply our measures of 

correspondence to the PDM implied by the s-rep spoke ends.

The rest of this paper lays out as follows. Sections 2 and 3 provide background information 

and a brief description of materials. Section 4 describes our method for interpolating 

continuous object interiors from discrete s-reps. Section 5 describes our method for 

improving the correspondence of s-rep models using an entropy-minimizing optimization. 

Section 6 gives results of applying the s-rep correspondence optimization, and section 7 

discusses these results, gives conclusions, and describes future work.

2. Background

2.1. Entropy-based surface correspondence

Many shape representations require good correspondence over a population before being 

useful for statistical analysis. Manually constructing models with corresponding points is a 

difficult and time-consuming task. Instead some methods, such as SPHARM-PDM [10], 
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attempt to automatically generate representations with good correspondence based on 

geometry. Another approach is to take an existing model and attempt to optimize its 

correspondence by tightening a probability distribution. An entropy-based method for PDMs 

has been shown to improve correspondence across a population of objects [3]. This method 

takes an existing set of PDMs and shifts the points along the interpolated boundary to 

optimize an objective function which is a difference of two terms: a geometry entropy which 

measures how well some set of geometric features at a point match across the population, 

and a regularity entropy which measures how evenly the points are spread within each case. 

The idea is that the geometric probability distribution should be tightened while the 

probability of boundary point positions should be made more uniform on each case.

2.2. Skeletal Models

The s-rep [8] is a quasi-medial skeletal model that models not only an object’s boundary but 

its interior as well. The s-rep is a collection of points sampled from a skeleton of an object 

which have associated vectors called spokes pointing from the skeleton to the object’s 

boundary. This model is fit to an object via an optimization which requires the skeleton to be 

as close to medial as possible while remaining non-branching and requires the spokes to 

touch the object boundary and be nearly orthogonal to it [8]. As such, it captures not only 

object positions but also object widths and object boundary directions. These samples can 

then be interpolated to produce a continuous representation of an object’s boundary and 

interior. This provides an object-relative coordinate system (u, v, τ) for the object’s volume, 

where (u, v) parameterizes the skeleton and τ moves from the skeleton (τ = 0) to the 

boundary (τ = 1).

2.3. Composite Principal Nested Spheres

Because shapes in general, and s-reps in particular, have many features which do not 

naturally live in a flat Euclidean space, standard Euclidean statistical techniques such as 

principal component analysis (PCA) have proven inadequate for analyzing populations of s-

reps. Instead, because many s-rep features live on spheres, such as the spoke directions (S2) 

and the PDM formed from the n skeletal points (S3n) [11], a method that can analyze data 

directly on spheres is preferred.

Analyzing spherical data can be done using a method called principal nested spheres (PNS) 

[12], which is analogous to PCA. As PCA repeatedly computes best-fitting subspaces of 

codimension 1 onto which the data is projected, PNS successively computes best-fitting 

subspheres, lowers the dimension by projection, and repeats. At each projection step, the 

signed geodesic residual of each data point to the subspace is recorded. It is reasonable to 

treat this collection of signed distances as a Euclidean data object and analyze it using 

standard methods. We call this process Euclideanization. By combining these Euclideanized 

features with the originally-Euclidean features and being careful to scale the Euclideanized 

features to make them commensurate, all of the data can now be analyzed using standard 

PCA. This method is called composite principal nested spheres (CPNS) [13].
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3. Materials

The objects on which the methods described herein are evaluated consist of 31 lateral 

cerebral ventricles of neonates segmented from MRI. The subjects were at risk for 

schizophrenia or bipolar disorder.

Each ventricle was fit via the SPHARM-PDM [14] toolbox and 1002-point PDMs were 

extracted at corresponding latitudes and longitudes. An s-rep was fit [8] to the solid implied 

by each SPHARM.

4. Spoke Interpolation

4.1. Skeletal Mathematics

A continuous skeletal model describes an object interior by two functions: p(u1, u2), a 2D 

skeletal surface and S(u1, u2), a vector field pointing from the skeletal surface to the 

boundary. S can be further decomposed into a product of two functions: U(u1, u2), a unit 

vector field pointing in the direction of S and r(u1, u2), a scalar distance function from the 

skeletal sheet to the object boundary.

An s-rep is a sampling of the continuous skeletal model. It consists of an m × n grid of 

samples from the skeletal surface with either two spokes (on the interior) or three (along the 

crest). The grid structure on the skeletal sheet forms a collection of quadrilaterals with a 

skeletal sample at each corner.

From this discrete representation we require a method to interpolate back to the continuous 

entity. Our method is a generalization to quasi-medial objects of the method for interpolating 

medial representations (m-reps) [15], which was based on the mathematics of medial 

structures [9].

We wish to interpolate a spoke S u1*, u2* . If the sampled skeletal points have integer 

parameter values, u1*, u2*  can be written as

u1*, u2* = u1
0 + δu1, u2

0 + δu2 ; δu1, δu2 ∈ [0, 1)

where u1
0, u2

0  is the top left corner of the quad containing the desired value. From this, we 

obtain the equation

S u1*, u2* = S u1
0, u2

0 + ∮
(0, 0)

δu1, δu2
∂S
∂u1

du1 + ∂S
∂u2

du2
(1)

for the spoke we wish to interpolate. Since S(u1, u2) = r(u1, u2)U(u1, u2), the partial 

derivatives in equation 1 can be written as Sui
= rUui

+ rui
U.
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The radius derivatives rui
 can be computed using the equation [16, 17] 

−rui
= pui

⋅ U + Bui
⋅ U, where Bui

 are boundary derivatives, (B = p + rU = p + S and 

Bui
= pui

+ Sui
). This equation is a correction to the compatibility condition for medial 

models [9] necessary because boundary and skeletal changes are not tied together as 

strongly in skeletal models as in medial ones. Using this expression for rui
, we obtain

Sui
= rUui

− pui
⋅ U + pui

+ Sui
⋅ U U = rUui

− 2pui
+ Sui

U⊤U

= rUui
− 2pui

U⊤U I + U⊤U −1 (2)

This equation allows for the computation of the spoke derivative at any point u1*, u2*  given 

the derivative of the skeletal surface pui
 and spoke direction Uui

 at that point. Section 4.2 

describes a method for computing pui
, while 4.3 deals with computation of Uui

. Finally, 4.4 

describes how a spoke is interpolated via numerical integration of equation 2.

4.2. Interpolation of the Skeletal Surface

Interpolation of the skeletal surface is done by fitting cubic Hermite patches to the quads of 

discrete samples which form the surface. This interpolation requires 16 values: the (4) corner 

points p u1
0, u2

0 , p u1
1, u2

0 , p u1
0, u2

1 , p u1
1, u2

1 , the (8) derivatives of each corner in both 

parameter directions, and the (4) second order mixed partial derivatives, which are set to 0. 

The control matrix Hc is thus

Hc =

p u1
0, u2

0 p u1
1, u2

0 pu2
u1
0, u2

0 pu2
u1
1, u2

0

p u1
0, u2

1 p u1
1, u2

1 pu2
u1
0, u2

1 pu2
u1
1, u2

1

pu1
u1
0, u2

0 pu1
u1
1, u2

0 0 0

pu1
u1
0, u2

1 pu1
u1
0, u2

0 0 0

Let H(s) = (H1(s), H2(s), H3(s), H4(s)) and H′(s) = H1′ (s), H2′ (s), H3′ (s), H4′ (s)  where Hi are the 

cubic Hermite spline basis functions and Hi′ are their derivatives. Computation at a point 

u1*, u2*  inside a quad is given by

p u1*, u2* = H δu1 ⋅ Hc ⋅ H δu2
⊤ .

Derivatives of the skeletal surface are computed by replacing the appropriate set of basis 

functions by their derivatives:
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pu1
u1*, u2* = H′ δu1 ⋅ Hc ⋅ H δu2

⊤; pu2
u1*, u2* = H δu1 ⋅ Hc ⋅ H′ δu2

⊤
(3)

4.3. Estimation of Spoke Direction Derivatives via Quaternion Interpolation

In equation 2, the derivatives of the spoke direction vector field Uui
 are needed. Because U is 

a unit vector field, changes in U are purely rotational. Thus, we choose a quaternion-based 

interpolation to compute these derivatives.

Each spoke direction at the corner of a quad is represented by a quaternion. A unit vector U 
= (Ux, Uy, Uz) is represented by the quaternion q = 0 + Uxi + Uyj + Uzk. From the four 

spoke quaternions bounding a quad we can interpolate a unit quaternion in the quad interior 

by spherical linear interpolation (slerp) [18]. The quaternion that is λ (∈ [0, 1]) of the 

distance between qi and qi+1 is given by SL qi, qi + 1, λ = qi qi*qi + 1
λ.

To achieve higher continuity across quad boundaries and thus a smoother surface, a higher 

order interpolation is desired. We use an extension of the cubic Bézier curve to the surface of 

a sphere called squad [19]. Analogously to the application of De Casteljau’s algorithm to the 

computation of Bézier curves, squad can be computed in terms of slerp:

SQ qi, qi + 1, ai, ai + 1, λ = SL SL qi, qi + 1, λ , SL ai, ai + 1, λ , 2λ(1 − λ) (4)

where ai and ai+1 are Bézier curve control points. Careful choice of these points ensures C1 

continuity across the qis [19][20]:

ai = qiexp −
log qi

−1qi + 1 + log qi
−1qi − 1

4

Differentiating the spoke interpolation formula SQ with respect to λ yields [20]

SQ′ qi, qi + 1, ai, ai + 1, λ = SL qi, qi + 1, λ log qi*qi + 1 gi λ 2λ(1 − λ) +
SL qi, qi + 1, λ gi′ λ 2λ(1 − λ) (5)

where gi(λ) = SL(qi, qi+1, λ)∗SL(si, si+1, λ).

The derivative Uu1
(u1*, u2*) within a quad is computed by first using equation 4 to estimate 

U(u1
−1, u2

δu2), U(u1
0, u2

δu2), U(u1
1, u2

δu2), and U(u1
2, u2

δu2) via the 4 × 4 surrounding grid spokes. 

Equation 5 on the resulting quaternions then yields the desired derivative. The computation 

is similar for Uu2
.
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4.4. Spoke Computation via Integration of Derivatives

With the pui
 and Uui

 values from sections 4.2 and 4.3, we can start from the quad corner 

u1
0, u2

0  and integrate equation 2 using interval subdivision h to produce a spoke at 

u1
h = u1

0 + hδu1, u2
h = u2

0 + hδu2 . Euler’s method for the integration yields 

S u1
h, u2

h = S u1
0, u2

0 + h δu1Su1
u1

0, u2
0 + δu2Su2

u1
0, u2

0 . From u1
h, u2

h , we take another step 

towards u1*, u2*  and iterate to u1*, u2* . Figure 2 shows results.

5. Correspondence

In this section we describe our method for improving s-rep correspondence through spoke 

shifting. Tightening the probability distribution of the geometric properties of s-reps in the 

population is the basic means of producing correspondence. If this is optimized alone, these 

features will tend to group together and produce highly irregular objects. This effect is 

avoided by also considering, for each training object, an entropy derived from various s-rep 

properties related to the regularity of the distribution of spokes throughout the s-rep. We 

improve s-rep correspondence by optimizing the weighted difference of these two entropy 

measures.

5.1. Spoke Shifting to Optimize Entropy

In order to optimize correspondence, spokes must be able to shift along the skeletal surface 

while respecting the boundary of the object. A spoke S(ui, vj), with i, j ∈ Z+, is shifted to a 

new position S ui + δui, v j + δv j  by interpolating the value of the spoke at S ui + δui, v j + δv j . 

By constraining δu, δv ∈ (−0.5, 0.5), we ensure that the rectangular structure of the grid is 

kept intact. Spokes in the interior of the grid shift along the skeletal surface, while spokes 

along the fold of the object can only move on the crest curve.

The δu and δv by which the spokes are shifted are chosen to optimize an objective function 

which is the difference of two entropies: a geometry term Egeo which measures how well 

corresponding spokes match across a population of objects and a regularity term Ereg which 

measures how evenly spokes are distributed within each object. The following subsections 

discusses each of these terms in more detail.

5.2. Geometry Entropy

Correspondence in a population of s-reps is defined here as having a tight probability 

distribution of their geometric properties. These properties are the positions of the skeletal 

points, the spoke directions, and the spoke lengths. Because typical entropy measurements 

assume that the properties are Euclidean whereas s-rep features are not, we first 

Euclideanize and commensurate the object features as described in section 2.3 and detailed 

in [8]. After Euclideanization and commensuration, the probability distribution of these 

features can be estimated via standard Euclidean PCA, from which the entropy Egeo is 

computed.
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5.3. Regularity Entropy

The regularity entropy is a measure of how uniformly distributed features are within each 

object. On an s-rep, using spoke interpolation the grid of skeletal positions can be connected 

to form curvilinear quadrilaterals with corresponding curvilinear quads on the object 

boundary. Figure 3 shows three examples of these quads with varying regularity.

S-rep regularity is measured on a number of features for each skeleton / boundary quad pair. 

We wish these features to be statistically independent while implying the geometrical 

properties of quad edge lengths, quad areas, and inter-quad-pair volumes, which are 

intuitively related to regularity. The features are as follows: horizontal and vertical quad 

edge lengths, average angle cosines of top-left and bottom-right corners of each interpolated 

sub-quad, and cosine of the swing of the quad normal between the two corners of the quad. 

The first two help to enforce regular shapes for the quads (tend towards rectangles) while the 

last penalizes highly curved surfaces (tends toward planar quads). These properties are 

computed separately for the skeleton and boundary quads. The similar features for each 

quad are combined (i.e., the boundary and skeletal horizontal edge lengths for that quad are 

concatenated) forming a tuple of that feature for that quad. These features are then combined 

from all quads into three groups: the horizontal edge lengths Mhel, the vertical edge lengths 

Mvel, and the angle cosines Mcos. If there are 2k copies of a feature per quad (k on the 

boundary and k on the skeleton) and there are n quads in the s-rep, this yields a 2k × n 
feature vector.

From these three feature sets, the entropy measures Ehel, Evel, and Ecos are derived (see 

section 5.4 for detail on the Entropy computation). The total measure of regularity for ith 

object in the training set is Ereg
i = Ehel

i + Evel
i + Ecos

i  due to the assumption of independence.

5.4. Optimization

As with the PDM correspondence method implemented in ShapeWorks, each of the 

entropies is computed using the assumption that the features follow a Gaussian distribution. 

The entropy of a d-dimensional Gaussian random variable X is 

H(X) = 1
2 d + dln(2π) + ∑i = 1

d lnλi , where λ1, λ2, . . λd are the non-zero eigenvalues of the 

covariance matrix of X. Because in many applications the covariance matrix will not have 

full rank, there will be a number of small eigenvalues that will disproportionately contribute 

to H(X). We solve this by removing eigenvalues with contribution λi/∑λi lower than a 

threshold θ.

We optimize correspondence by minimizing

arg min
x

ωEgeo(x) − ∑
i = 1

N
Ereg

i (x) (6)

where ω is a weight controlling the balance between probability distribution tightness and 

the regularity of each model and x is the shifting of each spoke in all of the models. The 

optimization is done via iterative, alternating applications of the NEWUOA [21] and one-
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plus-one evolutionary [22] optimization algorithms. The choice of the parameters ω and θ 
was made via empirical evaluation.

6. Application & Results

Our method was first tested on a set of 80 synthetic lateral ventricle s-reps where all but one 

spoke were identical. After optimization, the distribution of the one moving spoke was 

greatly tightened.

In the following experiments we evaluate the method for improving s-rep correspondence on 

the set of 31 lateral ventricle shapes described in section 3. Unless otherwise noted, for these 

experiments ω = 4 in equation 6 and θ = 0.01. For each of the 31 lateral ventricles, in order 

to verify the accuracy of representation of the object after spoke shifting, we compute the 

Dice coefficient of the s-rep-implied boundaries before and after optimization. We obtain a 

mean Dice coefficient of 0.976, showing high agreement between the before and after 

surfaces.

6.1. Improvement of S-rep Correspondence

Figure 4 shows distributions of s-rep spokes before and after optimization. The s-reps after 

optimization have qualitatively better correspondence and maintain good regularity 

properties.

Figure 5 shows the cumulative variance explained by each eigenvalue from CPNS analysis 

on the s-rep population, i.e. of the s-rep features, before and after optimization. The two 

plots are similar, but after optimization the amount of variance captured in the first two 

eigenmodes has increased. The cumulative variance of the s-rep population is lower after 

optimization, with the sum of the eigenvalues being .0081 compared with .0085 before 

optimization.

Figure 6 shows the effect of the correspondence improvement on the s-rep population under 

three standard measures for evaluating correspondence [23, 24, 25]: compactness, 

generalization, and specificity. All of these measures are computed not on the s-rep directly, 

but on the PDM formed by taking two points for each spoke: the tail point on the skeletal 

sheet and the end point on the object boundary.

Compactness is a measure of tightness of a probability distribution, computed as the sum of 

the eigenvalues obtained via PCA. After correspondence optimization there is marked 

improvement in compactness.

Generalization is measured by computing a shape space on all but one of the training cases 

and computing the distance between the last shape and its projection onto this shape space. 

Generalization is computed on a set of PDMs in a leave-one-out fashion. PCA is applied to 

all but one case, forming a shape space. This final PDM is then projected onto the shape 

space given by the first M modes of variation. The distance between the PDM and its 

projection is computed as the average Euclidean distance between pairs of corresponding 

points. The optimized s-reps show slightly better generalization for low numbers of 

eigenvalues that would be used in a final model as indicated by the compactness result. 
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However, they show slightly worse generalization than before optimization at higher 

numbers of eigenvalues.

Specificity is a measure of average distance between random samples in the computed shape 

space with their nearest members of the data. Specificity is computed by using PCA on all 

PDMs to produce a probability distribution. Independent random samples are chosen from 

the distribution given by the first M modes. For each sample, the distance between it and the 

nearest original PDM is computed in the same way as for generalization. The optimized s-

reps show noticeable improvement in specificity.

We also examined the effect of changing the weight ω on the results of the optimization. 

Figure 7 shows the correspondence measures on s-reps with different weights. In general, ω 
= 4 is the best choice, showing the most improvement in compactness and specificity and the 

least worsening of generalization.

6.2. Comparison with PDM-based Methods

We compare the correspondence produced via optimized s-reps to the initial SPHARM-

PDMs as well as PDMs optimized using the ShapeWorks software. For SPHARM-PDM and 

ShapeWorks, these measures are directly on the boundary PDMs. For the s-reps, use the 

PDMs mentioned previously. All PDMs have similar numbers of points, with the s-reps 

being interpolated to match the numbers of points in the SPHARM-PDMs. Figure 8 shows 

comparisons of the three methods using the three correspondence evaluation criteria. The s-

rep-implied PDMs are scaled to match the scale of the others.

For compactness, the optimized s-reps show noticeably improved compactness over both of 

the PDM datasets. For generalization, the optimized s-reps are better than both for low 

numbers of eigenvalues but worse than the optimized PDMs at higher numbers. For 

specificity, the optimized s-reps again out-perform both PDM datasets.

7. Discussion

This paper presented novel methods for interpolating discrete s-reps into continuous objects 

and improving the correspondence of a population of s-reps. This interpolation is an 

extension of the interpolation of m-reps to the more general skeletal representation. The 

correspondence improvement is done via entropy minimization analogously to similar 

methods for PDMs. This optimization was shown to improve the correspondence of a 

population of lateral cerebral ventricle s-reps and s-rep-implied PDMs are shown to have 

correspondence comparable to or better than PDMs optimized via ShapeWorks.

The interpolation method presented here produces smoother and more accurate s-rep 

boundaries, as earlier methods for s-rep interpolation were based on the mathematics of 

medial structures and failed to correctly model the interaction between changes in the 

skeleton and the boundary when medial constraints are relaxed. Figure 9 shows a 

comparison of a boundary patch interpolated using both methods. The use of Euler’s method 

for performing the integration steps will be replaced by a method with better speed and 

accuracy properties in future work.
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The correspondence optimization results show good improvement in correspondence on the 

population of s-reps. Previous work has shown that s-reps without improved correspondence 

outperform PDMs in the statistical tasks of classification [7] and hypothesis testing [26] and 

we believe that using s-reps with improved correspondence will only further this advantage. 

In particular, the results on compactness show that the improved s-reps are a more efficient 

representation than the non-optimized s-reps used in previous studies, while the similar 

generalization and improved specificity suggest the improved s-reps could be more powerful 

for these tasks. Experiments to demonstrate this improvement are planned but are outside the 

scope of this paper.

The comparisons done to the PDM datasets are troublesome for several reasons. The use of 

PCA in computing probability distributions of shape representations, be they PDMs or s-

reps, is not ideal because of the non-Euclidean nature of the data. Second, we compare 

purely boundary PDM-based methods (SPHARM-PDM and ShapeWorks) to PDMs implied 

by s-reps. While we use both boundary and skeletal points to leverage some of the interior 

correspondence s-reps provide, the use of point information without orientation or width 

information ignores many of the rich features that s-reps provide.

The current implementation of the correspondence optimization is in C++ and MATLAB 

takes 5 days to run on 31 cases on a 3.20GHz quad-core computer with 8GB of memory, 

with this time increasing with the number of cases being optimized. A reimplementation to 

speed up the optimization is ongoing.
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Highlights

• We develop a method for interpolating skeletal representations (s-reps).

• We optimize correspondence in an s-rep population via an entropy 

minimization.

• Interpolation is used to shift s-rep spokes to improve correspondence.

• We show improvement in s-reps under several correspondence measures.

• S-rep-implied PDMs have better correspondence than those from other 

methods.
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Figure 1: 
An s-rep model (left) and its implied boundary (right). The yellow balls are samples of the 

skeletal surface. The cyan spokes point to the top of the object, the magenta to the bottom, 

and the red to the crest. The green lines show the grid structure of the skeletal samples.
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Figure 2: 
A lateral ventricle s-rep and a dense interpolation of its top side spokes.
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Figure 3: 
Three s-reps with varying regularity. The quads of the left and middle s-reps are non-regular 

while the right s-rep is highly regular.
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Figure 4: 
Distributions of spokes on the top (left) and crest side (right) of the s-reps before (first row) 

and after (second row) optimization. The groupings of spokes are noticeably tighter after 

optimization.
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Figure 5: 
CPNS eigenvalues before (left) and after (right) correspondence optimization, as percent of 

total variance explained. The red curves show cumulative variance explained.
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Figure 6: 
Plots of compactness (left), generalization (center), and specificity (right) on the original and 

optimized s-rep populations. These measures are functions of the number of eigenmodes 

(M) used to form the shape space.
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Figure 7: 
Effects of the weighting factor ω on the 31 lateral ventricle s-reps on compactness (left), 

generalization (middle), and specificity (right).
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Figure 8: 
Plots of compactness (left), generalization (middle), and specificity (right) measures of the 

original SPHARM-PDMs, the s-reps after correspondence optimization, and the PDMs 

optimized via ShapeWorks. These measures are functions of the number of eigenmodes (M) 

used to form the shape space.
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Figure 9: 
Comparison between interpolations of an s-rep using medially-based (left) and skeletal-

based (right) mathematics.
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