
Higher-order Segmentation via Multicuts

Jörg Hendrik Kappes2,4, Markus Speth4, Gerhard Reinelt2,4, and Christoph Schnörr1,2,4

1Image and Pattern Analysis Group, Heidelberg University, Germany
2Heidelberg Collaboratory for Image Processing, Heidelberg University, Germany

3Discrete and Combinatorial Optimization Group, Heidelberg University, Germany
4Research Training Group 1653: Spatio/Temporal Graphical Models and Applications in Image Analysis, Heidelberg University, Germany

Abstract
Multicuts enable to conveniently represent discrete graphi-
cal models for unsupervised and supervised image segmen-
tation, in the case of local energy functions that exhibit sym-
metries. The basic Potts model and natural extensions thereof
to higher-order models provide a prominent class of such ob-
jectives, that cover a broad range of segmentation problems
relevant to image analysis and computer vision. We exhibit
a way to systematically take into account such higher-order
terms for computational inference. Furthermore, we present
results of a comprehensive and competitive numerical evalu-
ation of a variety of dedicated cutting-plane algorithms. Our
approach enables the globally optimal evaluation of a signif-
icant subset of these models, without compromising runtime.
Polynomially solvable relaxations are studied as well, along
with advanced rounding schemes for post-processing.

1 Introduction

1.1 Overview, Motivation

The segmentation problem, also known as partitioning, clus-
tering, or grouping, is a fundamental problem of image anal-
ysis. Applications include unsupervised image partition-
ing [40, 4], task-specific image partitioning [41], semantic
image segmentation [52, 36], and modularity clustering in
network analysis [14].

Common problem representations are based on a
graph G = (V,E), where nodes V relate to raw data on an
image grid or extracted feature vectors, and edges E define
a neighborhood structure of the nodes. A segmentation of a
graph can be represented either by

(i) assigning to each node v ∈V a label, or by

(ii) a multicut given by a subset of cut edges E ′ ⊆ E, result-
ing in a partition of the set of nodes V .

The segmentation problem is then to find a segmentation
(node labeling or multicut) with minimal costs.

One commonly distinguishes supervised and unsupervised
segmentation. In the former case, the number of classes rep-
resented by labels is known, together with a function mea-
suring how likely features associated with nodes belong to
each class. In the latter unsupervised case, such information
is absent. This introduces ambiguities of the representation (i)
since permuting the labels results in the same segmentation.
Representation (ii) does not exhibit such symmetries and is
therefore particularly appealing in the unsupervised case.

(a) unsupervised segmentation (b) inclusion prior

(c) segmentation (d) modularity clustering

Figure 1: The presented framework covers (a) unsupervised
and (c) supervised segmentation problems. In the former
case, the number of components (clusters) of the partition is
unknown. In the latter example, the image is partitioned (la-
belled) by assigning pixels to 12 predefined colors classes,
taking spatial context into account. (b) By including higher
order terms into the graphical model (bottom), segments can
be enforced to include each other so as to respect topologi-
cal prior knowledge. (d) Illustration of another example of a
broad range of applications covered by the framework: graph
partitioning by modularity clustering.

Accordingly, this paper focuses on the segmentation prob-
lem as a multicut problem, on the polyhedral representation
of valid multicuts resulting in partitions of a given image
[24, 16, 17], and on a computational approach to take into
account the corresponding constraints efficiently.

Specifically, we consider objective functions for the seg-
mentation problem of the form J(x) = ∑ f ϕ f (xne(f)) – see
Sec. 2 for details – where all higher-order terms, i.e. terms de-
pending on more than one variable, are invariant to label per-
mutations. For second-order models this is equivalent to Potts
models that may involve negative couplings between adjacent
nodes. While cutting-plane based methods [35] have shown
best performance on second-order Potts models with arbitrary
couplings [38], we show that terms with order higher than two
can be handled by additional auxiliary variables and few ad-
ditional constraints that do not interfere with the constraints
defining valid multicuts. Consequently, cutting-plane meth-

1

ar
X

iv
:1

30
5.

63
87

v3
 [

cs
.C

V
]

 1
6

N
ov

 2
01

5

ods can be uniformly used for all models as we demonstrate
by comprehensive numerical evaluations.

In this connection, the present paper provides a system-
atic comparison of different separation strategies for com-
puter vision applications. In particular, we find that (i) odd-
wheel inequalities do not tighten the relaxation as expected,
in view of results for highly connected non-computer vision
models [58], ii) integer linear programming subroutines work
overall best, but (iii) novel extensions for separation proce-
dures as suggested in this paper are indispensable for efficient
usage.
Taking these aspects into account improves runtime by at least
a factor of 2.

We also consider the supervised segmentation problem, i.e.
finding an optimal multicut with at most k labels, which is
known as the multiway cut problem. Compared to the stan-
dard (I)LP representation of such problems our approach is
considerably more memory efficient and able to provide glob-
ally optimal solutions for many computer vision problems in
reasonable runtime [36, 37, 38]. Fig. 1 provides an overview
and illustrations of the models studied in this paper.

1.2 Related Work

In the unsupervised case, the multicut polytope has recently
become a focal point of research in computer vision. Major
aspects of current work include closedness constraints for im-
age segmentation [4, 7], contour completion [55], ensemble
segmentation [3, 55], and the convex hull of feasible multi-
cuts from the optimization point of view [35, 41, 69].

Regarding the latter viewpoint, some authors considered
primal linear program (LP) relaxations solved by cutting-
plane methods [40, 41]. Yarkony et al. [69] suggested a La-
grangian relaxation for planar graphs based on a problem
decomposition into binary planar max-cut problems. Oth-
ers [4, 3, 55, 35] resorted to integer linear programs (ILPs) as
inner-loop solver within the cutting-plane formulation. While
this has exponential runtime in the worst case, it may be ex-
pected to work fast in many applications. However, a com-
parison of these methods and variants was missing so far.

In the supervised case, representation (i) above prevails
for the image segmentation problem [42]. Accordingly, the
marginal polytope has become a focal point of research with
respect to relaxations and approximate inference for image
labeling [67, 63, 46].

Alternatively, greedy move-making algorithms like α-
expansion [13] or FastPD [48] have become established meth-
ods that are widely applied. Recently, FastPD has been gen-
eralized by [28] such that it can handle higher order models.

Methods that solve the multiway cut problem [16] have
been considered somewhat misleadingly as computationally
intractable for computer vision problems [12]. While in gen-
eral this problem is known to be NP-hard [19], for few spe-
cial cases, e.g., for planar graphs, exact polynomial-time al-
gorithms are known [18, 53].

A connection of a special relaxation of the second-
order multiway cut problem to variational approaches us-
ing anisotropic variants of total variation, and to the linear
programming relaxation over the local polytope, has been
pointed out by Osokin et al. [59] and Nieuwenhuis et al. [56].
We generalize this connection for positive and negative cou-
pling strength in Thm. 7.1.

Recently, Kappes et al. [35] presented a cutting-plane ap-
proach to solve the multiway cut problem for various prob-
lem instances from computer vision. Globally optimal results
for benchmark datasets were reported [37, 36] that compare
well also in terms of runtime to state-of-the-art methods for
approximate inference. However, a detailed evaluation of dif-
ferent separating procedures, its generalization to the higher
order case as well as an analysis of the polyhedral relaxations
were lacking.

Form the modeling point of view, models with higher-
order interactions between variables have become a focus of
research in the last years. Due to their enhanced expressive-
ness, compared to commonly used pairwise models, more
complex statistics and interactions between variables can be
included into models, see [68] for a more detailed discussion.
The main limitation of such higher-order models was and of-
ten still is the lack of efficient inference methods, especially
compared to the fast methods available for second-order mod-
els.

In order to deal with the intrinsic complexity of higher-
order terms, specialized solvers have been suggested that
make use of internal structures of this functions, that can be
utilized for faster inference. This includes reduction tech-
niques for higher order problems with two variables [33, 27]
which have been used to generalize fusion move [51] for
higher order models. For the class of (robust) Pn Potts func-
tions closed form reductions for the expansion and swap
moves are known, that can be found under certain condi-
tions in polynomial time by a min-st-cut [44, 43]. Simi-
lar techniques are used in the case of functions that depend
on the diversity of the set of labels that its arguments (vari-
ables) take, see [26] for further details. Furthermore, graph-
cut based approaches has been proposed for co-occurrence
statistics [49] and label costs [21]. For message passing meth-
ods efficient update rules have been proposed for higher-order
Fields-of-Experts model [50], linear constraint potentials [60]
and cardinality-based potentials [66]. For linear program-
ming relaxations sparsity of the higher-order function has be
used to reduce the number of dual variables [47, 62].

In the present work we introduce a new class of higher-
order functions that can be handled efficiently, namely label
permutation invariant functions. These functions can be in-
cluded in a much more efficient manner after a embedding
of the original label space into a lower dimensional one. It is
worth mentioning that the sparsity is independent on the num-
ber of labels. The class of label permutation invariant func-
tions can be seen as a generalization of the Potts function and
the reduction suggested by Kim et al. [40] as a special case,
as we show in Sec. 4.4. The relation of label permutation in-
variant functions and Pn Potts functions will be discussed in
detail in Sec. 4.5.

Our label permutation invariant functions can also be used
to model topology prior. As an example we show in Sec. 6.3.2
an prior that enforce that segments have to be included by
not more than one other segment, see also Fig. 1(b). Delong
et al. [20] suggest to solve this problem by introducing ge-
ometric interactions on the label space. While this allows a
simple reduction to the second order case, the inclusion is
conditioned on the labels and not on the topology of the par-
tition, e.g. the prior of Delong et al. [20] can not restrict the
label space to any sequence of including rings, because this
is a pure topological prior without label dependencies, see
Sec. 6.3.2 for details.

2

1.3 Contribution

1. We present a general framework for multicut problems,
which includes Potts models as a special case. For the
first time, we systematically compare different types of
cutting-plane methods for the multicut problem in con-
nection with computer vision applications.

2. Our framework also includes higher-order problems
based on a new class of so-called label permutation in-
variant (LPI) functions. This class comprises all func-
tions that are invariant to label permutations and thus
provides a natural generalization of Potts functions.

3. We present several separation procedures and algorith-
mic variants that lead to significant speedups. These
methods are then able to solve the problems to optimal-
ity or to provide an approximative solution in guaranteed
polynomial time with bounded integrality gap.

4. We prove that these relaxed problems are equivalent
to linear programs that use standard relaxations of the
marginal polytope for general second-order Potts mod-
els.

5. Comprehensive numerical evaluations demonstrate the
basic properties of our approach and enable us to rank
the different variants.

1.4 Organization

We start in Sec. 2 with the problem formulation followed
by introducing multicuts and corresponding problem trans-
formations in Sec. 3. In Sec. 4 we extend the framework
to higher-order models and show how corresponding higher-
order terms can be taken into account in a memory-efficient
way by exploiting symmetries.

We detail separation procedures for finding violated con-
straints in Sec. 5 and show how they can be implemented ef-
ficiently. Rounding mechanisms are discussed in Sec. 5.3.
We conclude the framework with our cutting-plane method
presented in Sec. 5.4 and generalize the connection to linear
programs over the local polytope in Sec. 5.5.

Finally, we provide numerical evaluations for a large num-
ber of different models in Sec. 6, including second- and
higher-order models in the supervised and unsupervised case,
followed by concluding remarks in Sec. 7.

2 Problem Formulation

2.1 Basic Definitions

We consider discrete energy minimization problems given in
terms of a factor graph G = (V ,F ,E), that is a bipartite
graph with a set of variable nodes V , a set of factors F , and
a corresponding relation E ⊆ V ×F associating variables to
factors, cf. [45].

Variable xv assigned to node v ∈ V takes values in a dis-
crete label-space Xv. We use the shorthands XA =

⊗
v∈A Xv

and xA = (xv)v∈A for A⊆ V , in particular X = XV and x = xV .
In cases where all Xv are equal we denote this label set by L.

Each factor f ∈F has an associated function ϕ f : Xne(f) →
R, where

ne(f) := {v ∈ V | (v, f) ∈ E } (1)

denotes the neighborhood of the factor f , i.e., xne(f) are the
variables comprising f . We define the order of a factor by the
cardinality |ne(f)|, e.g., pairwise factors have order 2, and the
order of a model by the maximal order among all factors. We
denote the set of all factors of order N ∋ r ≥ 1 by Fr. The
energy function of the discrete labeling problem is then given
by

J(x) = ∑
f∈F

ϕ f (xne(f)), (2)

where values of the variables x are also called labelings. We
consider the problem to find a labeling with minimal energy,
i.e.,

x̂ ∈ argminx∈X J(x), (3)

for specific classes of energy functions.
By using factor graph models we take the structural prop-

erty of energy functions explicitly into account. Additionally,
we also consider properties of the functions ϕ f . Specifically,
we assume that any function with order greater than one is
invariant to label permutations.

Definition 2.1 (Label permutation invariant functions). A
function ϕ : LN → R is called invariant to label permutations
if ∀x,x′ ∈ LN with xi = x j ⇔ x′i = x′j the equality ϕ(x) = ϕ(x′)
holds.

Many problems of interest are covered by models involving
functions of this class.

Below, we will use for any predicate τ the corresponding
indicator function

I(τ) =

{
1, if τ is true,

0, otherwise.
(4)

2.2 Supervised Case
In the supervised case we deal with energy functions (2),

min
x∈X ∑

f∈F1

ϕ f (xne(f))+ ∑
r≥2

∑
f∈Fr

ϕ f (xne(f)), (P1)

where ϕ f (·) is permutation invariant for all factors f ∈
Fr, r ≥ 2. Second-order models of this kind are known as
Potts models, with Fr = /0 for r > 2 and

ϕ f (xne(f)) = β f I(xne(f)1 6= xne(f)2), ∀ f ∈ F2,

where β f ∈ R is the coupling constant of factor f , and
ne(f)i, i = 1,2, denotes the i-th neighbor of f . Note, that
we do not restrict the models to β f ≥ 0. We focus on related
higher-order models separately in Sec. 4.

2.3 Unsupervised Case
Contrary to the supervised problem (P1), in the unsupervised
case the set of first-order factors is empty and the number of
labels equals the number of variables:

min
x∈{1,...,|V |}|V | ∑r≥2

∑
f∈Fr

ϕ f (xne(f)). (P2)

In the second-order case, (P2) is known as the pairwise
correlation clustering problem, where a set of nodes V has to
be partitioned into clusters such that the sum of the costs of
node-pairs in different clusters is minimized.

min
x∈{1,...,|V |}|V | ∑

f∈F2

β f I(xne(f)1 6= xne(f)2). β f ∈ R (P2’)

3

1 2

3

(a) Graph (K3)

y12

y13

y23

(b) Multicut polytope for K3

Figure 2: (a) Illustration of the fully connected graph with
three nodes K3. (b) Illustration of the multicut polytope
MC(K3), which has five vertices. Vertices of the polytope
correspond to valid partitions and all other points of the poly-
tope correspond to convex combinations of valid partitions.
For large graphs the multicut polytope becomes huge and the
describing system of inequalities intractable [24].

As shown in [35] for the second-order case, solving prob-
lem (P2) with solvers commonly used for problem (P1),
e.g., TRWS [46], does not work, since the large state-space
and label permutation invariant functions cause large sets of
optimal solutions.

We study in this paper efficient methods for solving both (P1)
and (P2) in the general case.

3 Multicuts

3.1 Basic Definitions
For an undirected graph G = (V,E), E ⊆ V × V , let
{S1, . . . ,Sk} be a partition of V , i.e.,

⋃k
i=1 Si =V , Si ∩S j = /0,

and Si 6= /0. We call the edge set

δ (S1, . . . ,Sk) :=
{

uv ∈ E | ∃i 6= j : u∈Si and v∈S j
}

(5)

a multicut and the sets Si the shores of the multicut. To obtain
a polyhedral representation of multicuts, we define incidence
vectors χ(E ′) ∈ {0,1}|E| for each subset E ′ ⊆ E:

χe(E ′) :=

{
1, if e ∈ E ′,

0, if e ∈ E \E ′.
(6)

The multicut polytope MC(G) then is given by the convex hull

MC(G) :=conv{χ(δ (S1, . . . ,Sk)) | (7)
δ (S1, . . . ,Sk) is a multicut of G} .

Fig. 2 shows an example. For further details on the geometry
of this and related polytopes, we refer to [24].

The multicut problem is to find a multicut in a weighted
undirected graph G = (V,E,w), w ∈ R|E|, for which the sum
of the weights of edges cut is minimal. Since all vertices (ex-
treme points) of the multicut polytope correspond to multi-
cuts, this amounts to solving the linear program

min
y∈MC(G)

∑
e∈E

we ye. (P3)

In order to apply linear programming techniques, we have
to represent MC(G) as intersection of half-spaces given by
a system of affine inequalities. Since the multicut problem is

t1 t2 t3

(a) Multicut graph for (P1) (b) Multicut graph for (P2)

Figure 3: Construction of G = (V,E,w) for a 4× 4-grid for
(a) the supervised case with L = {1,2,3} and (b) the unsu-
pervised case. Red edges are part of the multicut, i.e., they
separate shores. Blue edges join nodes of the same shore of
the partition.

NP-hard [29], we cannot expect to find a system of polyno-
mial size. To overcome this limitation, we make use of the
fact that most of these affine inequalities are not required for
a given objective and use only a subset of those. The iterative
construction of this subset is described in Sec. 5.

Before discussing how problem (P3) can be solved effi-
ciently, we show how the problems (P1) and (P2) can be trans-
formed into problem (P3).

3.2 Multicuts for Second-order Models
To reformulate problem (P2) in the second-order case into
a multicut problem we make use of the correspondence be-
tween a partition and a multicut. A given factor graph G de-
fines an undirected weighted graph G= (V,E,w) with V =V ,
E = {(ne(f)1,ne(f)2) | f ∈ F2}, and we = ∑ f∈F2,ne(f)=e β f
for all e ∈ E. Accordingly, the cost of a multicut is the sum of
all β f over factors f connecting different shores, which equals
the costs of (P2) – see [16] for a formal proof and Fig. 3(b)
for an illustration.

Concerning problem (P1) for the second-order case we as-
sume without loss of generality that Xv = L = {1, . . . , |L|} for
all v ∈ V . Any labeling x ∈ X defines a partition of V . To
write a second-order problem (P1) as a multicut problem (P3),
we introduce additional terminal nodes T = {tl | l ∈ L} ={

t1, . . . , t|L|
}

and define the undirected graph G = (V,E) by
V = V ∪ T , E = {(ne(f)1,ne(f)2) | f ∈ F2} ∪ {(t,v) | t ∈
T,v ∈ V }∪{(ti, t j) | 1 ≤ i < j ≤ |L|}, cf. Fig. 3(a). Thus each
internal node v ∈ V is connected to all terminal nodes t ∈ T
by terminal-edges (t,v).

The terminal nodes represent the |L| labels l ∈ L, and label
l is assigned to variable xv if the terminal-edge tlv is not part
of the multicut, i.e., tl and v are in the same shore. Since a
single label only should be assigned to each variable, |L|− 1
terminal-edges incident to each internal node v have to be part
of the multicut. This is enforced by |V | additional constraints
given by (26) below where we take a closer look to classes of
valid constraints. Edges between terminal nodes have weight
0 but are enforced to belong to different shores by additional
constraints (27), which results in the so-called multiway cut
polytope.

It remains to define the weights of terminal edges. Let 11⊤

be the matrix of all ones and I be the identity matrix, both of
size |L|× |L| and

gv(l) = ∑
f∈ne(v)∩F1

ϕ f (l), l ∈ L. (8)

4

Then the weights wtlv, l ∈ L, v ∈V , are given by




wt1v

...
wt|L|v


=

1
|L|−1

(11⊤− I)




gv(1)
...

gv(|L|)


 . (9)

As before we set we = ∑ f∈F2,ne(f)=e β f for internal edges e.

4 Multicuts for Higher-order Label
Permutation Invariant Models

We turn to higher-order models. First, we specify a class of
higher-order functions which are invariant to label permuta-
tions, and show, after detailing a reduction approach, how
such functions can be incorporated into a multicut framework.
In its most general form, cf. Sections 4.1 and 4.3, the space
complexity of representing these functions in an LP grows
with the Bell number. Consequently, factors of an order more
than ten are no longer tractable in this general form, cf. Tab. 1.
However, for important subclasses of label permutation in-
variant functions efficient LP-representations exist. We will
exemplary consider one such subclass of functions that can
be handled even when the function comprises an order larger
than several hundreds in Sec. 4.4 and show an application
with factors of order 651 in Sec. 6.2.3.

4.1 Label Permutation Invariant (LPI) Func-
tions

An important class of functions are label permutation invari-
ant (LPI) functions, whose values only depend on the parti-
tioning of the variables rather than on the labeling, as spec-
ified by Def. 2.1. They generalize Potts functions1 (10) in a
natural way.

f (x1,x2) =

{
α0 if x1 = x2

α1 else (10)

In other words, they can be evaluated by just knowing for all
variable-pairs if their labels are identical or not. The specific
label of a single variable does not matter. Any function that
is evaluated on (I(xi = x j))i, j∈A instead of xA itself, as e.g.
the Potts function, is a label permutation invariant function.
A further property is that the complexity of evaluating and
storing of label permutation invariant functions does not grow
with the number of labels.

Each possible partition of N variables is uniquely repre-
sented by a binary vector over all N(N −1)/2 variable-pairs.
But not each binary vector χ ∈ {0,1}N(N−1)/2 corresponds to
a partition, cf. Fig. 2. The number of possible partitions is
much smaller and given by the Bell numbers B(N) [1]. This
observation raises the issue of an efficient representation of
these functions, independent of the number of labels.

Let us denote for i = 1, . . . ,B(N) by χN
i ∈ {0,1}N(N−1)/2

the indicator vector of the i-th partition of N variables. Fur-
thermore, we define a mapping τN : LN → {0,1}N(N−1)/2

from a variable-labeling to the partition indicator by

τN(x)(i j) :=
{ 1 if xi 6= x j

0 if xi = x j
∀0 < i < j < N. (11)

1The additional assumption that α0 or α1 = 0 can be ensured by a con-
stant added to the function

With this we can represent any label permutation invariant
function over N = |A| variables parameterized by β ∈ RB(N),
where βi is the cost for the i-th partition of the sub-graph over
the node-set A,

ϕLPI(xA|β) = βi if τ |A|(x) = χ |A|
i . (12)

As example let us consider the node-set A = {1,2,3}. There
are 8 = 23 different binary labelings of the edges between
these nodes. Only 5 = B(3) of them form a valid partition
and will therefore appear. We enumerate these valid partitions
and assign to each a weight denoted by βi. For a given node-
labeling xA we then can calculate its binary edge-labeling
τ |A|(x), which corresponds one-to-one to a partition, and re-
turn the cost βi of this partition. Note that this function has
only five parameters and does not dependent on the size of the
label-space.

4.2 Reduction Theorem
In order to incorporate label permutation invariant functions
into our multicut framework, we introduce the following re-
duction theorem. The basic idea of this theorem is known in
the field of integer nonlinear optimization, dating back to the
work of Glover et al. [31], but seemed to be unknown in other
fields of research as e.g. computer vision.

Theorem 4.1 (Reduction Theorem). Any pseudo-Boolean
function g : {0,1}M → R given by g(z) = ∏i∈B+ zi ·∏i∈B−(1−
zi), with |B+∪B−|= M and B+∩B− = /0, can be transformed
into
(a) a single Boolean auxiliary variable s ∈ {0,1} and two lin-
ear inequalities

min
z∈{0,1}M ,s∈{0,1}

s (13a)

s.t. Ms ≤ ∑
i∈B+

zi + ∑
i∈B−

(1− zi) (13b)

s ≥ 1−M+ ∑
i∈B+

zi + ∑
i∈B−

(1− zi) (13c)

or
(b) a single auxiliary variable s∈ [0,1] and M+1 inequalities

min
z∈{0,1}M ,s∈[0,1]

s (14a)

s.t. s ≤ zi ∀i ∈ B+ (14b)

s ≤ (1− zi) ∀i ∈ B− (14c)

s ≥ 1−M+ ∑
i∈B+

zi + ∑
i∈B−

(1− zi). (14d)

Proof. The function g(z) takes the value 1 if and only if ∀i ∈
B+ : zi = 1 and ∀i ∈ B− : zi = 0, and otherwise g(z) = 0. It
remains to show that the systems of inequalities together with
s ∈ {0,1} or s ∈ [0,1] restrict the feasible set such that s =
g(z).

Let k denote the number of vanishing terms of g(z)

k =
∣∣{i ∈ B+ | zi = 0}∪{i ∈ B− | zi = 1}

∣∣

then:
(a) Inequalities (13b) and (13c) imply

s ≤ 1− k
M
, s ≥ 1− k

s∈{0,1}⇒
s = 1 if k = 0,
s = 0 if k > 0. (15)

5

(b) Inequalities (14b)–(14d) yield

(14b)− (14c) ⇒ s ≤ 0
s∈[0,1]⇒ s = 0 if k > 0, (16)

(14d) ⇒ s ≥ 1
s∈[0,1]⇒ s = 1 if k = 0. (17)

A crucial observation is that case (b) of the reduction theo-
rem implies integrality of s if all zi ∈ {0,1}, whereas in case
(a) this has to be enforced separately by s ∈ {0,1}. Conse-
quently, case (b) leads to tighter relaxations by only enforcing
s ∈ [0,1].

While reduction (b) thus seems to be preferable, due to a
lower number of constraints, reduction (a) can be nevertheless
appealing for some (I)LP-solver techniques, e.g., dual sim-
plex. The reason is that sometimes a single constraint (13b)
is a less tight but a sufficient relaxation compared to sev-
eral small constraints (14b) and (14c)2. In our experiments,
we therefore use all M+2 constraints (13b),(13c) and (14b),
(14c) (note that (13c) equals (14d)), and let the solver choose
the active constraint set.

4.3 Reduction for Label Permutation Invari-
ant Functions

In order to apply Thm. 4.1 to a label permutation invariant
function (12) of order N = |A| we rewrite it as a pseudo-
Boolean function

ϕLPI(xA|β) =
B(N)

∑
i=1

βi ·
N(N−1)

2

∏
j=1

l
(
[χN

i] j, [τN(x)] j
)

︸ ︷︷ ︸
gi(τN(x))

(18)

with

l(b1,b2) =

{
1−b2, if b1 = 0,

b2, if b1 = 1.
(19)

We apply the reduction theorem to each of the B(N) bi-
nary functions gi(z), z = τN(x). Consequently, a function
ϕLPI(xA|β) of order N requires B(N) auxiliary variables.
These auxiliary variables are connected to the node-variables
via the Boolean expressions l(·, ·) in (19) and correspond to
the edge-variables y used in the multicut representation (P3).
By this, we also get rid of difficulties caused by ambiguities
of the node-label representation of a partition.

If an expression l(·, ·) has no corresponding edge e in G,
we add this edge to G with weight zero.

Summing up, to include an label permutation invariant fac-
tor of order N into our multicut framework, we require at
most N(N − 1)/2 edge variables, B(N) auxiliary variables,
and B(N) · (N(N − 1)/2+ 2) linear inequalities. These num-
bers are upper bounds, of course. In many cases more com-
pact representations are obtained.

We observed in numerous experiments that additionally en-
forcing that all auxiliary variables corresponding to a higher-
order term sum up to 1 significantly speeds up optimization.
This entails to complement a single equality constraint for
each higher-order term.

Fig. 4(a) illustrates an example of a factor of order three.
The reduction requires B(3) = 5 auxiliary variables corre-
sponding to possible partitions and, correspondingly, they are

2Consider the case B+ = {1,2}, z1 = 0.1 and z1 = 0.3. Eqns. (13b) and
(14b) give s ≤ 2 and s ≤ 0.1, respectively.

000 011 101 110 111

(a) LPI Function

000

(b) HO Potts Function

Figure 4: Higher-order label permutation invariant functions
are dealt with by problem reduction and additional binary
auxiliary variables (Sec. 4). Corresponding constraints (black
lines) enable to represent exactly the original higher-order
problem. Panel (a) shows an example of a generalized Potts
function of order three. Panel (b) shows an example of a Potts
function of order three.

denoted by 000, . . . , 111 in the figure. Constraints generated
by the reduction theorem relate these auxiliary variables to
the original higher-order problem. A single additional edge
shown dotted in Fig. 4(a), has to be added to the graph G in
this example.

4.4 Higher-Order Potts Functions
A subclass of label permutation invariant functions that can
be handled more efficiently, are functions taking the value α0
if all variables xA with A ⊆ V have the same label (are in the
same shore) and α1 otherwise. We call such functions higher-
order (HO) Potts functions since they constitute the simplest
generalization of (second-order) Potts functions to the higher-
order case. Such functions are general enough to model the
costs of a hyper-graph partitioning, which was used in [40,
34]. The cost for a hyper-edge is included in the overall cost
function if the hyper-edge connects at least two shores:

ϕHOP(xA|α) =

{
α0, if ∀i, j ∈ A : xi = x j,

α1, else.
(20)

We can reformulate such functions in a pseudo-Boolean
form:

ϕHOP(xA|α) = α1 +(α0 −α1) ∏
e∈EA

(1− ye) (21)

where EA is a subset of the edges of G that spans A. If GA =
(A,E ∩ (A×A)) is disconnected we have to add some edges
with weight 0. We point out our empirical observation that
using a spanning graph that includes all edges of GA, instead
of an arbitrary spanning-tree, leads to shorter runtimes.

As before, we apply the reduction theorem to add a higher-
order Potts function as part of a model at hand. This only re-
quires a single auxiliary variable. Fig. 4(b) provides a sketch
for a function of order three.

Tab. 1 shows the number auxiliary variables, size of aux-
iliary factors and number of additional constraints needed by
the different reductions to add a HO-Potts Function with L
labels and order N. Including a higher-order Potts function
as a factor-table requires no additional variables but a fac-
tor with LN entries. L ·N constraints are only required when
it is reformulated into an LP. When we use the generic re-
duction for LPI functions we make no use of all symmetries
and need B(N) auxiliary variables and factors, together with
B(N) ·(N+2)+1 constraints. While no additional constraints
are needed for including this into an LP, the Bell number B(N)
makes this intractable for larger N’s. When using HO-Potts

6

Reduction Method variables factors size constraints

higher order function 0 LN 0∗
LPI function B(N) B(N) B(N) · (N +2)+1
HO-Potts function 1 1 N +2
Pn-Potts function L N ·L+L 0∗

Table 1: Comparison of reductions for HO-Potts: Table
above shows the resources required by different methods to
reduce a higher order Potts factor of order (N) with L labels
per variable. The naive method would just add a higher-order
factor. The general reduction for LPI functions does not de-
pend on the number of labels, but grows with the Bell number
of the order (B(N)) and is therefore limited. The specialized
reduction HO-Potts, grows linear with the order and is inde-
pendent on the number of labels. Alternatively, Pn-Potts are
applicable for this type of functions. However, this reduction
depends on the number of labels (L).

functions we need only one single auxiliary variable together
with N + 2 constraints. This is much smaller than all other
alternatives and does not depend on the number of labels.

4.5 Pn Potts Functions
Another generalization of Potts functions for higher order
called PN Potts (22) has been suggested by Kohli et al. [44].

f (xA) =

{
γk if xi = k ∀i ∈ A
γ̄ otherwise , γk ≤ γ̄, ∀k (22)

The assumption that γk ≤ γ̄ ∀k ensures sub-modular auxiliary
problems [44]. From a modeling point of view this is not
necessary.

If all γk are equal and |A| = 2, then (22) is equivalent to
Potts function (10). When we enforce γk ≤ γ̄ ∀k it is equiv-
alent to Potts function with positive coupling, denoted as
Potts+ in Fig. 5.

If γk vary with k the function is no longer invariant to la-
bel permutation.However, Pn-Potts functions are not power-
ful enough to model all label permutation invariant functions.
For example Pn-Potts functions assign to (1,1,1,2,3) and
(1,1,1,2,2) always the same energy, but those are different
partitions into 3 and 2 clusters, respectively. The same hold
for robust Pn-Potts functions (23) [44]

f (xA) = min

{
min

k

{
γk +∑

i∈A

γ̄ − γk

Q
I(xi 6= k)

}
, γ̄

}
,

with γk ≤ γ̄ ∀k and Q <
|A|
2

(23)

which cover a large subclass functions but still only a small
subset of LPI functions.

Fig.5 illustrate the relation between PN Potts and LPI func-
tions. Even if we would not enforce that γk ≤ γ̄ ∀k then PN-
Potts would not include all LPI functions. The intersection
between PN-Potts and label LPI-functions are HO-Potts func-
tions (12). A reduction of a HO-Potts functions as Pn-Potts
function needs L auxiliary variables, L factors of size N and
L of size 1. Constraints are only required when it is refor-
mulated into an LP. Especially for large L this is much more
expensive than the reduction introduced in Sec. 4.4. As for
Potts functions the framework suggested in [44] does only
cover cases where γk ≤ γ̄ .

HO-Potts (20)

Potts+ (10), α0 ≤ α1

Potts- (10), α0 ≥ α1

PN-Potts (22) LPI (12)

Figure 5: Classes of Higher-Order Functions: With in the
class of higher-order functions PN-Potts and LPI functions
are two major subclasses. The original definition of PN Potts
functions (22) include only the none-shaded region. If we re-
move the constrains on γ̄ we get a more general class. The
intersection of PN Potts and LPI functions are HO-Potts func-
tions, cf. Sec. 4.4, which includes Potts functions with posi-
tive (Potts+) and negative (Potts-) coupling strength as special
case.

5 Cutting-Plane Approach and Sepa-
ration Procedures

5.1 Approach
Determining a multicut with minimal costs is NP-hard in gen-
eral [29]. However, if given data induce some structure then
it is plausible to expect such problems to be easier solvable in
practice, than problems without any structure.

We use a cutting-plane approach to iteratively tighten an
outer relaxation of the form

argminy∈Y ∑
e∈E

we ye. (24)

Here, Y ⊇MC(G) is superset of the multicut polytope MC(G)
(cf. (P3)) or {0,1}|E| ⊃ Y ⊇ MC(G)∩{0,1}|E| in the integer
case. In each step we solve a problem relaxation in terms of
a linear or integer linear program, detect violated constraints
from a pre-specified finite list (cf. Sec. 5.2) and augment the
constraint system accordingly. This separation procedure is
repeated until no more violated constraints are found.

After each iteration we obtain a lower bound as the solution
of the (I)LP and an upper bound by mapping the obtained
solution to the set of feasible points (rounding, cf. Sec. 5.3).

5.2 Relaxation, Constraints
5.2.1 Initial Constraints

We start with a polytope that enforces any edge-variable ye to
be lower and upper bounded by 0 and 1, respectively,

ye ∈ [0,1], ∀e ∈ E (25)

In presence of terminal nodes, we additionally enforce for
each non-terminal node v ∈ V \ T that exactly one incident

7

a b c

d

e

f g h

i

2

1

3

1
5 4

−1

−3

−5

−3

−5

−8

−2

−9

Figure 6: Edges labelings have to be constrained in order to
be consistent. The cut edges are shown dashed in the figure.
This edge labeling is inconsistent since it does not respect the
transitivity of the corresponding relation: being in the same
segment. For example, the red path implies by transitivity
that e and g are in the same segment, in conflict to the edge-
label of the edge eg.

edge is not cut, i.e.,

∑t∈T ytv = |T |−1, if T 6= /0, ∀v ∈V \T. (26)

Furthermore, we add the compulsory constraints

ytt ′ = 1, ∀t, t ′ ∈ T, t 6= t ′, (27)

forcing different terminal nodes to belong to different shores.

5.2.2 Integer Constraints

A more restrictive alternative to (25) are the integer con-
straints

ye ∈ {0,1}, ∀e ∈ E. (28)

Note that not every vector y ∈ {0,1}|E| belongs to the mul-
ticut polytope. Hence, even enforcing Boolean variable val-
ues may lead to inconsistent edge-labelings, cf. Fig. 6, which
will be discussed in more detail in the following subsection.
In general, using constraints (28) renders inference problems
more difficult. On the other hand, finding violated constraints
can be much simpler for Boolean-valued variables than for
less tight non-Boolean relaxations. This may well compen-
sate the additional costs for solving an ILP instead of an LP3.

5.2.3 Cycle Constraints

The problem of inconsistent edge-labelings has been con-
sidered in the literature, either motivated by closing con-
tours [55, 4] or as tightening the multicut polytope relaxation
via cycle constraints [17, 58, 40, 35]. In both cases incon-
sistent cycles are detected. If integer constraints are enforced
an inconsistent cycle is a cycle that contains exactly a single
cut edge, which obviously violates transitivity. This can be
generalized to the relaxed non-Boolean case ye ∈ [0,1] [17].

A system of cycle inequalities that necessarily has to be
satisfied by consistent labelings, is given by

∑e∈Pye ≥ yuv ∀uv ∈ E, P ∈ Path(u,v)⊆ E. (29)

It is well known [17] that if and only if the cycle {uv} ∪P
is chordless, then the constraint is facet-defining for the un-
derlying polytope or, speaking less technically, “effective” for
enforcing labeling consistency.

While for fully connected graphs, (29) can be represented
by a polynomial number of triangle constraints [17, 32, 14],

3Note, sometimes solving the ILP is even faster than the LP.

the separation procedure reduces to a sequence of shortest
path problems in the general case [17]. Given y, the naive ap-
proach searches for each edge uv ∈ E the shortest path from u
to v in the weighted graph Gy = (V,E,y). If this path is shorter
than yuv, then it represents the most violated constraint of the
form (29) for uv. Using a basic implementation of Dijkstra
(as we do) the cost for one search is O(|V |2). The cost can be
reduced to O(|E|+ |V | log |V |) by using Fibonacci heaps.

To reduce the number of shortest path searches we exploit
the following three ideas:

Efficient Bounds on the Shortest Path (B): Instead of
searching for each edge uv ∈ E the shortest path from u to v
in a positive weighted graph G = (V,E,y), we can calculate a
lower bound on the path length for all uv ∈ E in O(|E|+ |V |).
To this end, we determine the connected components in the
graph G′ = (V,{e ∈ E | ye < γ}). If two nodes u,v ∈V are not
in the same connected component, the shortest path from u to
v is greater than or equal to γ . Choosing γ = 1 yields a pre-
processing procedure that enables to omit many shortest path
searches. Furthermore, if the edge between two nodes has
weight 0, this is obviously the shortest path since all edge-
weights ye are non-negative.

Shortest Path in Binary Weighted Graph (I): If the edge
weights are either 0 or 1, then simple breadth-first search
can be applied instead of the Dijkstra algorithm. The com-
putational effort can be further reduced, as before but with-
out additional costs, by restricting the search to the graph
G0 = (V,{e ∈ E | ye = 0}). Since any path including an edge
with weight 1 cannot be shorter than the edge between the
two nodes which is 0 or 1.

Finding Chordless Shortest Paths / Facet-Defining Con-
straints (F): A path between the two nodes forming an edge
is called chordless if the cycle consisting of the path and the
edge has no chord. Shortest path search can be easily ex-
tended so as to determine the shortest chordless paths: Every
node except for the end-node is not updated by the Dijkstra
algorithm if the path from this node to the starting node is
chordal. This increases the costs by a factor bounded by |V |.
In view of cycle constraints, the corresponding constraints are
facet-defining.

Our experiments, discussed by Fig. 7 and in Sec. 6, spot
that joint application of bounding procedures, facet-defining
constraints (chordless paths) and dedicated search methods
for binary weighted graphs, leads to better runtimes in nearly
all cases.

5.2.4 Terminal Cycle Constraints

In the supervised case we can further reduce the costs for
shortest path searches based on the following lemma.

Lemma 5.1. In the presence of terminals there exists no cycle
C with more than three nodes that is chordless and contains a
terminal node.

Proof. Let C be a cycle with more than three nodes that con-
tains a terminal node t, and select an edge uv in C with u,v 6= t.
The tu, tv ∈ E by definition, hence the cycle is chordal.

As a result of Lemma 5.1, we ignore all cycle constraint
of a length greater than 3 that includes a terminal node. All
facet-defining cycle constraints that include a terminal node

8

corr-clustimage-seg image-seg3 mod-clust
0

0.5

1

re
la

tiv
e

ru
nt

im
e

(%
)

MC-C (baseline) MC-CB MC-CF MC-CFB
MC-I-C(baseline) MC-I-CI MC-I-CFB MC-I-CIFB

Figure 7: Comparison of the proposed extensions (marked
by the postfixes B, I, and F) on the runtime. For the re-
laxed case (MC-C∗) (first four bars) we observe that bound-
ing clearly improves runtimes for image-based data, this is
not true for third-order image segmentation and modularity
clustering. Using only facet-defining constraints decreases
the runtime for all four datasets, most significantly for modu-
larity clustering. If we enforce integrality (MC-I-C∗) during
the cutting-plane procedure (last four bars), the use of special-
ized search methods (CI) reduces the runtime significantly.

are then given by

ytu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T, (30)
ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T, (31)
ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T, (32)

together with (27). As a consequence we only have to search
for general cycle constraints on the graph without terminal
nodes, that has |T | · |V | fewer edges!

5.2.5 Multi Terminal Constraints

Calinescu et al. [15] suggested another class of non-facet-
defining linear inequalities for the supervised case that further
tightens the outer polytope relaxation:

yuv ≥ ∑t∈S (ytu − ytv) , ∀uv ∈ E,S ⊆ T. (33)

Intuitively, these constraints enforce each non-terminal edge
to be at least as ”much cut” as all its terminal edge-pairs indi-
cate. Since ∑t∈T (ytu − ytv) = 0, we only consider differences
in the direction u → v. An alternative representation of (33)
exploiting symmetry is

yuv ≥ ∑t∈T
1
2
|ytu − ytv| . (34)

In order to see why multi terminal constraints are useful, let
us consider a tiny toy example of a model with two variables
and four labels. Overall, the multiway cut polytope has eight
terminal edges (t,1)t∈T , (t,2)t∈T and a single edge (1,2) be-
tween the two nodes. We inspect few values of y and check if
(33) is implied by (30)–(32) or not.

(yt,1)t∈T (yt,2)t∈T (30)–(32) (33)
(1,1,1,0) (1,1,0,1) ⇒ 1 ≤ y12 ≤ 1 1 ≤ y12

(1,1, 1
2 ,

1
2) (1,1, 1

2 ,
1
2) ⇒ 0 ≤ y12 ≤ 1 0 ≤ y12

(1
2 ,

1
2 ,1,1) (1,1, 1

2 ,
1
2) ⇒ 1

2 ≤ y12 ≤ 3
2 1 ≤ y12

(1, 2
10 ,

3
10 ,

5
10) (1, 1

10 ,
2
10 ,

7
10) ⇒ 2

10 ≤ y12 ≤ 3
10

2
10 ≤ y12

101 011

110

(a) Nearest label rounding

101 011

110

ρ

(b) Derandomized rounding

Figure 8: Illustration of the two rounding schemes for the
multiway cut problem for the vector (ytv)t∈T . Nearest label
rounding (a) assigns each point in the simplex to the nearest
vertex. Fig. (b) shows exemplarily one iteration of derandom-
ized rounding for ρ = 0.75.

In the third example (row) above, multi terminal constraints
tighten the relaxation. It can be shown that these constraints
may tighten the relaxation only if at least four terminal nodes
are present.

5.2.6 Odd-Wheel Constraints

While cycle constraints are only sufficient to obtain optimal
solutions if integer constraints are enforced, we may tighten
the relaxation in the case ye ∈ [0,1] by adding more complex
constraints.

One such a class of constraints for which the separation
procedure can be carried out efficiently, are odd-wheel con-
straints. A wheel W = (VW ,EW) is a graph with a selected
center node c ∈ VW . All other nodes are connected with the
center, and the remaining edges build a cycle containing all
nodes in VW \{c}. An odd-wheel is a wheel with an odd num-
ber of non-center nodes. The odd-wheel constraints are given
by

∑
uv∈EW ,u,v6=c

wuv − ∑
v∈VW \{c}

wcv ≤
⌊ ||VW |−1|

2

⌋
(35)

for all odd-wheels W = (VW ,EW).
Deza et al. [25] proved that odd-wheel constraints are facet-

defining for ||VW |−1| ≥ 3. As described in detail by Deza and
Laurent [23] and Nowozin [57], the search for violated odd-
wheel constraints can be reduced to a polynomial number of
shortest path searches, if the current solution does not violate
any cycle constraints.

In our experiments, we found that with increasing sparsity,
odd-wheel constraints tighten the relaxation less. This is in-
tuitively plausible since in densely connected graphs signif-
icantly more odd-wheels exist that could be violated. Since
the overall gain was not better than with the previously pro-
posed methods, we did not spend time to search for heuristics
to speed up computation, as we did for the cycle inequalities.

5.3 Rounding Fractional Solutions

Relaxations of the integer-valued multicut problem yield so-
lutions that may be fractional and therefore infeasible. The
objective value then is a lower bound of the optimal value.
The procedure to map an infeasible solution to the feasible
set is called rounding. Furthermore, for the resulting multi-
cut, a corresponding node-labeling has to be determined.

9

5.3.1 Supervised Case

In the presence of terminal nodes, we assign to each node-
variable the label of the terminal node to which it is connected
by means of ytv = 0 in the integer-valued case. This idea ex-
tends to the general case by assigning to node v the label l
with the lowest edge-value ytlv, i.e., the nearest corner in the
corresponding simplex, cf. Fig. 8:

xv = argmint∈T ytv ∀v ∈V \T. (36)

This heuristic nearest label rounding method has two draw-
backs, however. Firstly, it does not provide any performance
guarantee. Secondly, nearby nodes that favor two or more
labels nearly equally might be randomly assigned to differ-
ent labels due to numerical inaccuracy. This is particularly
problematic in case of positive coupling strengths where ho-
mogeneously labeled regions are preferred.

Contrary to this local procedure, Calinescu et al. [15]
suggested a randomized rounding procedure that provides
optimality bounds for Potts models with positive coupling
strengths. Given a threshold ρ ∈ [0,1], they iterate over all
labels in a fixed order and assign label l to node v if ytlv ≤ ρ
and no label was assigned to v before. In case no label was
assigned to node v in the end, then the last label with respect
to the ordering of the labels is assigned to v. This rounding
procedure is sketched by Fig. 8(b).

A randomized rounding procedure would apply this for all
ρ ∈ [0,1] and select the labeling with the lowest energy. Since
[0,1] is uncountable, Călinescu et al. suggested a derandom-
ized version. This is based on the observation that we only
have to consider |V \ T | · |T | different threshold parameters,
namely the values of the terminal edge variables ytv. Since
this set can still be quite large, we also consider a heuristic
approximation that we call pseudo-derandomized rounding,
using a small number of equidistant thresholds, in practice:
0,0.01,0.02, . . . ,0.99,1.

Concerning tightness of the relaxation, Calinescu et al. [15]
pointed out that the integrality ratio of the relaxed LP for the
second-order multiway cut problem with positive coupling
strengths, exploiting cycle, terminal and multi-terminal con-
straints, is 3

2 − 1
k . This is superior to the α-expansion algo-

rithm [13] and the work of Dahlhaus et al. [18], which guar-
antees only a ratio of 2− 2

k . It is not known if these results
can be extended for higher-order label permutation invariant
functions.

Empirically, we observe for these types of models that
derandomized rounding and pseudo-derandomized rounding
usually lead to results that are slightly better than when using
nearest label rounding. While pseudo-derandomization does
empirically not give results worse than original derandomiza-
tion, it is much faster, but does not come along with theoret-
ical guarantees. Fig. 9 shows results for two instances taken
from [36]. While for the synthetic instances rounding matters,
for real world examples the differences are negligible.

5.3.2 Unsupervised Case

In absence of terminal nodes, we compute in the integer-
valued case the connected components of G0 = (V,{e ∈ E |
ye = 0}), enumerate them by #CCG0 , and assign to each node-
variable as label the number of its connected component

xv = #CCG0(v), ∀v ∈V. (37)

(a) Data (b) Nearest

(c) P.-derand. (d) Derand.

Figure 9: Illustration of the rounding results (nearest label,
pseudo-derandomized and derandomized) after solving the
LP relaxation with terminal, multi-terminal, and cycle in-
equalities for the instances inpainting and clownfish from
[36]. Derandomized and pseudo-derandomized rounding
gives similar results. Simple rounding to the nearest label
can give inferior results (top row). But for real applications
differences of the labelings are marginal (last row).

It is easy to see that the labeling-costs J(x) (2) are greater than
or equal to the multicut costs 〈w,y〉 and equal if y is a valid
multicut.

If y is not integral we first have to map y to a vertex of the
multicut polytope. To this end, we determine the connected
components of G≤κ = (V,{e ∈ E | ye ≤ κ}) and define the
feasible projection ŷ by

ŷuv =

{
0, if #CCG≤κ (u) = #CCG≤κ (v),

1, else.
(38)

The labeling then is given by

xv = #CCG≤κ (v), ∀v ∈V. (39)

Since the connected component procedure tends to remove
dangling edges, it seems to be reasonable to select κ smaller
than 0.5. This was empirically confirmed by our experiments.
Fig. 10 shows the relative error of the rounded solutions after
enforcing cycle constraints for different problem-classes with
various values of κ .

It is worth to mention that the multicut problem is APX-
hard [8, 22] and that a rounding procedure with a worst

10

10.90.80.70.60.50.40.30.20.10
0

1

2

3

threshold (κ)

re
la

tiv
e

er
ro

r(
%

)

image-seg image-seg3 corr-clust mod-clust

Figure 10: Illustration of the impact of the choice of κ on
the distance of the energy of the integer solution obtained
by rounding to the optimal value. For modularity clustering
(mod-clust) and third-order image segmentation (image-seg3)
we scaled the bars by a factor of 0.1. The results show that
one should choose κ < 0.5. Empirically the optimal value
lies in [0.2,0.3] but also 0 (more precisely 10−8) gives nearly
similar results.

case integrality gap of the linear program of Ω(log(|V |)) ex-
ists. While it seems that the corresponding proof can be ex-
tended to higher-order multicuts, an integrality gap guarantee
of log(|V |) is not enough in real applications. This is why we
did not further investigate this issue in the present work.

5.4 Multicut Cutting-Plane Algorithm

Alg. 1 provides a compact description of our complete multi-
cut approach, summarizing the present section. In addition to
the specification of the objective function in terms of a factor
graph model G , we expect a proper4 list of separation pro-
cedure sets S as input parameters. For example, S1 could
represent simple cycle constraints separation, S2 integrality
constraints, and S3 cycle constraints separation specialized to
integer solutions.

As specified by Alg. 1, we construct the weighted undi-
rected graph G, introduce auxiliary variables for higher-order
factors (as detailed in previous sections), and initialize the
constraint set C by a simple outer relaxation of the feasible
set.

For each separation procedure set in the list S, we apply
all separation procedures in Si to find violated constraints and
add these to C until no more are found. Then we proceed
with the next set Si+1.

The (integer) linear program in line 6 is solved by CPLEX
12.2, a standard off-the-shelf LP-solver. Finally, we compute
an optimal node-labeling x ∈ X from the multicut solution y.

The implementation of Alg. 1 turned out to be involved,
due to several subtle pitfalls necessitating some care. We
therefore made our code publicly available5. Furthermore,
when solving the (I)LP one should not expect that the solution
is feasible. Sometimes we observe negative values of ye and
therefore project solutions always to [0,1]|E|. Also Boolean
constraints were sometimes slightly violated. Most impor-
tantly, due to numerical reasons, constraints should only be
added if they are significantly violated, i.e., the constraint

4A list of separation procedures is called proper if the separation proce-
dures that are included once are also included when proceeding further down
the list. For proper lists the obtained relaxation is well-defined. All lists used
in our experiments are proper.

5https://github.com/opengm/opengm

Algorithm 1 Multicut-Algorithm
1: Given: G = factor graph model,

S = proper list of separation procedure sets.
2: Construct G = (V,E,w) from G .
3: Initialize the constraint set C as described in Sec. 5.2.1.
4: for i = 1, . . . , |S| do
5: repeat
6: Solve ŷ ∈ argminy∈C 〈w,y〉,
7: C̄ = violated constraints found by separation proce-

dures Si for ŷ,
8: C = C ∪ C̄ ,
9: until C̄ is empty.

10: end for
11: Compute a labeling x ∈ X based on ŷ (also known as

rounding, cf. Sec. 5.3).

a ≤ b is only added if a ≤ b − ε does not hold. Ignoring
this may not only lead to infinite loops for some instances,
but may also significantly increase runtime. The parameter
ε should be chosen depending on the precisions of the (I)LP
solver. We use ε = 10−8.

5.5 Relation between Relaxations of the Multi
Way Cut and Marginal Polytope

A major line of research considers relaxations of the marginal
polytope to approximately solve problem P1. For the local
polytope relaxation [67] of second order models it is known
that the local multiway cut relaxation (42) is equivalent if
either the labeling is binary [10] or the coupling w is posi-
tive [59].

We generalize this results for real valued couplings. This
gives a interesting connection between local polytope and
multiway cut relaxation and allows us to rank our relaxations.
As the proof is very technical, we add the corresponding
Thm. 7.1 and its proof in the appendix.

6 Experiments

6.1 Set-Up, Implementation Details
We implemented the separation procedures and reduction
methods described above using C++ and the OpenGM2-
library [5] for the factor graph representation, and CPLEX
for solving ILPs and LPs in the inner loop of the iteration.

Our multicut approach encompasses a variety of algorithms
which differ in the used inequalities, in the separation pro-
cedures, and in the order these procedures are applied. The
abbreviations for single separation procedures are listed as
Tab. 2.

For example, MC-CFB-I-CIF indicates:

• application of the multicut algorithm (MC) based on

• searching for violated facet-defining cycle inequalities
(CF) using bounding (B),

• enforcing integer constraints (I), and finally

• searching for facet-defining cycle inequalities vio-
lated by the current Boolean solution (CIF), based on
Breadth-First-Search instead of the Dijkstra algorithm
(cf. Sec. 5.2.3).

11

I integer constraints
C cycle inequalities separation
CF facet-defining cycle inequalities separation
CI cycle inequalities separation for ILP
CIF facet-defining cycle inequalities separation for ILP
OW odd-wheel inequalities separation
T terminal inequalities separation
MT multi terminal inequalities separation
TI terminal inequalities separation for ILP
*B bounding for the shortest path search was used

Table 2: Abbreviations for the separation procedures.

name #instances #nodes order type results references

synth-potts 10 322 2 US Tab. 4 -
synth-inclusion 10 322 4 S Fig. 13, Tab. 10 -

image-seg 100 156-3764 2 US Fig. 11, Tab. 5 [4, 36]
image-seg3 100 156-3764 3 US Fig. 11, Tab. 6 [4, 36]
corr-clust 715 122-651 34-651 US Fig. 12, Tab. 7 [40, 36]
mod-clust 6 34-115 2 US Tab. 8 [14, 38]
color-seg 3 424720 3 S Tab. 9 [2, 36]

Table 3: Overview of the datasets used for evaluation.

We report for each dataset results averaged over all its in-
stances:

1. the mean6 runtime: runtime,

2. the mean6 value (energy) of the integer solution after
rounding: value,

3. the mean6 lower bound, given by the solution of the re-
laxed problem: bound,

4. how often the method found an integer solution with an
objective value not larger than 10−6 compared to the
overall best method for this instance: best7, and

5. how often the method provided a gap between the ob-
jective value of the integer solution and the lower bound,
that was smaller than 10−6: ver. opt7, which we interpret
as globally optimal for our instances.

6. if available we also evaluate on an application specific
loss, e.g. Variation of Information (VI) [54], Rand Index
(RI) [61], and Pixel Accuracy (PA).

In the unsupervised case, we compared the proposed meth-
ods with our implementation of the Kernighan-Lin (KL) algo-
rithm [39] for the second-order case, as well as with iterative
conditional mode (ICM) [9] and Lazy Flipper (LF) [6]. For
planar graphs, an optimal segmentation with only four labels
exists, and methods for the supervised case can be applied.

In the supervised case, we compared with TRWS [46], Max
Product Linear Programming with no (MPLP) [30] and with
cycle-inequalities MPLP-C [64, 65], α-expansion [13] and
FastPD [48] – using in each case code provided by the re-
spective authors of these papers. Furthermore, we compared
to commercial LP- and ILP-solvers in the nodal domain, LBP,
TRBP, and α-fusion, as provided by OpenGM2.

6.2 Unsupervised Segmentation Problems
6.2.1 Synthetic Experiments

For numerical evaluation we generate 10 synthetic Potts in-
stances (synth-potts). The models have a underlying grid

6 Averaged over all instances of this dataset.
7 Note, that 0 means that the method has never found the best solution

among all methods or has never verified optimal solution. Of course, this
does not mean that solutions provided by this method are poor. Performing
slightly worse than optimal already returns the value 0.

structured (4 neighbors) with 32×32 variables with 10 labels
each. Unary terms are uniformly sample from [0,1] and the
coupling of the pairwise Potts terms are uniformly sampled
from [−1,1]. Results averaged over all instances are shown in
Tab. 4. MC-T-MT and LP solve both the local polytope relax-
ation. TRWS and MPLP stops too early or get stuck in local
fixed points, which can be seen by the worse bound. When
we add cycle constraints, MPLP-C performs slightly better in
terms of the lower bound but of cost of significant higher run-
time. While the differences in the averaged value are mainly
caused by more involved rounding used by MPLP-C, the bet-
ter bound might be caused by a tighter relaxation. Contrary
to our approach MPLP-C also considers violated odd-cycle-
constraints on binary partitions of the label spaces, which ad-
ditionally tightens the polytope for models with more than
2 labels. However, when we add integer constraints after
our cut phases the optimum is found for 9 of 10 cases and
for the remaining one some additional integer terminal con-
straints guarantee to find the global optimal solution. MC-T-
MT-CFB-I-TI is 100 times faster than the ILP and 10 times
faster than MPLP-C. Latter even is not able to find optimal
solutions in all cases.

algorithm runtime value bound best ver. opt

ICM 0.03 sec −95.87 −∞ 0/10 0/10
LF-1 0.01 sec −95.79 −∞ 0/10 0/10

LP 2.92 sec −152.89 −189.09 0/10 0/10
MPLP 5.24 sec −159.60 −189.16 0/10 0/10
TRWS 0.93 sec −168.87 −189.15 0/10 0/10
MC-T-MT 1.59 sec −152.72 −189.09 0/10 0/10

MPLP-C 36.78 sec −183.90 −184.14 8/10 3/10
MC-T-MT-CFB 2.06 sec −179.00 −184.47 0/10 0/10

ILP 421.24 sec −184.14 −184.14 10/10 10/10
MC-T-MT-CFB-I-TI 4.30 sec −184.14 −184.14 10/10 10/10

Table 4: Synthetic Potts models with 10 labels on a 32× 32
grid

6.2.2 Probabilistic Image Segmentation

The probabilistic image segmentation framework was sug-
gested by Andres et al. [4] and belongs to the class of un-
supervised image segmentation problems. These problem in-
stances involve 156−3764 superpixels. For all pairs of adja-
cent superpixels, the likelihood that their common part of the
superpixel boundary is part of the segmentation, is learned of-
fline by a random forest. This results in a Potts model with
positive and negative coupling constraints. While the connec-
tion to Potts models is not mentioned in [4], they use a similar
optimization scheme as in the present work. They introduced
a higher-order model as well as a second-order one. They
have been made publicly available in [38] and [36], respec-
tively.

Second-order Case. As shown in Tab. 5, for this dataset
(image-seg), we profit from using ILP subproblems. This re-
duces the mean runtime to less than 3 seconds and is there-
fore empirically faster than LP-based cutting-plane methods
and the heuristic KL-algorithm. ICM and LF perform worse
than KL. With increasing search space LF outperforms KL.
For a search-depth greater than 1 we make use of the fact that
the instances are planar and an optimal solution with four la-
bels exists. The same trick is used to make TRWS applicable.
Additionally, we fix the first variable and initialize messages
randomly. Even this does not help to prevent TRWS from
running into poor local fix-points. In both cases the label re-
duction is marked by the postfix L4.

12

algorithm runtime value bound best ver. opt VI RI

KL 4.96 s 4608.57 −∞ 0.0% 0.0% 2.6431 0.6401
ICM 6.03 s 4705.07 −∞ 0.0% 0.0% 2.8580 0.5954
LF1 2.35 s 4705.01 −∞ 0.0% 0.0% 2.8583 0.5953
LF2-L4 0.13 s 4627.38 −∞ 0.0% 0.0% 2.9020 0.5821
LF3-L4 3.16 s 4581.83 −∞ 0.0% 0.0% 2.9102 0.5873
LF4-L4 176.47 s 4555.73 −∞ 0.0% 0.0% 2.9164 0.5926

TRWS-L4 0.84 s 4889.23 4096.53 0.0% 0.0% 3.2164 0.6628

MC-C 14.02 s 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822
MC-CB 4.71 s 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822
MC-CF 11.35 s 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822
MC-CFB 5.16 s 4447.47 4442.34 35.0% 35.0% 2.5490 0.7822

MC-C-OW 14.08 s 4447.41 4442.34 35.0% 35.0% 2.5489 0.7822
MC-CB-OW 4.81 s 4447.41 4442.34 35.0% 35.0% 2.5489 0.7822
MC-CF-OW 11.45 s 4447.41 4442.34 35.0% 35.0% 2.5490 0.7822
MC-CFB-OW 5.19 s 4447.41 4442.34 35.0% 35.0% 2.5490 0.7822

MC-I-CI 2.78 s 4442.64 4442.64 100.0% 100.0% 2.5367 0.7821
MC-I-CIF 2.20 s 4442.64 4442.64 100.0% 100.0% 2.5363 0.7821
MC-C-I-CI 15.00 s 4442.64 4442.64 100.0% 100.0% 2.5365 0.7821
MC-CFB-I-CIF 5.69 s 4442.64 4442.64 100.0% 100.0% 2.5365 0.7821

Table 5: Second-order probabilistic image segmentation [4,
36]

algorithm runtime value bound best ver. opt VI RI

ICM 10.79 s 6030.49 −∞ 0.0% 0.0% 2.7089 0.5031
LF 4.17 s 6030.29 −∞ 0.0% 0.0% 2.7095 0.5033

MC-C 43.82 s 6657.32 5465.15 0.0% 0.0% 3.9927 0.7755
MC-CB 42.86 s 6657.32 5465.15 0.0% 0.0% 3.9927 0.7755
MC-CF 26.68 s 6658.28 5465.15 0.0% 0.0% 3.9935 0.7755
MC-CFB 25.00 s 6658.28 5465.15 0.0% 0.0% 3.9935 0.7755

MC-C-OW 43.71 s 6657.12 5465.29 0.0% 0.0% 3.9928 0.7754
MC-CB-OW 43.38 s 6657.12 5465.29 0.0% 0.0% 3.9928 0.7754
MC-CF-OW 27.62 s 6658.08 5465.29 0.0% 0.0% 3.9936 0.7754
MC-CFB-OW 25.55 s 6658.08 5465.29 0.0% 0.0% 3.9936 0.7754

MC-I-C 689.79 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727
MC-I-CFB 469.87 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727
MC-I-CI 119.64 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727
MC-I-CIF 72.81 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727
MC-C-I-CI 125.33 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727
MC-CFB-I-CIF 82.00 s 5627.52 5627.52 100.0% 100.0% 2.6586 0.7727

Table 6: Third-order probabilistic image segmentation [4, 38]

Concerning the multicut approach, odd-wheel constraints
only marginally improve the results. LP-based cutting-plane
methods find the optimal solution for 35 of 100 instances and
are slower than ILP-based methods, too.

Higher-order Case. The third-order models (image-seg3)
from [4] are hard to solve with relaxations, hence rounding
becomes more important, cf. Fig. 10. The additional third-
order factors favor smooth boundary continuation. Since this
sometimes conflicts with local boundary probabilities, the
problem becomes more involved.

As shown in Tab. 6, local search methods give better re-
sults than relaxed solutions after rounding. Our exact multicut
scheme was able to solve all instances to optimality. Notably,
one instance was significantly harder than all others and took
more than half of the overall runtime for MC-I-C and MC-I-
CFB.

Overall, a few instances are significantly harder than oth-
ers.

Compared to the second order model the Variation of In-
formation (VI) [54] and Rand Index (RI) [61] are worse. The
reason might be a to strong regularisation with the boundary
continuation which results in segmentation that does not fit
with the BSD-ground-truth well.

6.2.3 Higher-order Hierarchical Image Segmentation

The hierarchical image segmentation framework was sug-
gested by Kim et al. [40] and also belongs to the class of
unsupervised image segmentation problems. Contrary to the
work of Andres et al. [4], they learn their model-parameters
by a structured support vector machine (S-SVM). Further-

(a) Input (b) MC-CC (3rd-order)

(c) MC-ICC (3rd-order) (d) KL

(e) MC-ICC (f) TRWS-4L

Figure 11: Example for second and third order image seg-
mentation. When the second order model is solved by KL
or TRWS (using 4 labels was sufficient) the partitions tend to
be over-segmented as compared to the optimal solution ob-
tained by MC-ICC. The 3rd-order model returned segmen-
tations different from those obtained using the second-order
model, having higher quality in many but not all regions.
This gain of performance could be improved by learning the
higher-order model parameters.

algorithm runtime value bound best ver. opt VI RI

ICM 1.90 s −585.60 −∞ 0.0% 0.0% 2.6245 0.5154
LF 1.00 s −585.60 −∞ 0.0% 0.0% 2.6245 0.5154

MC-C 0.23 s −625.97 −628.89 19.9% 13.7% 2.0684 0.8371
MC-CB 0.12 s −625.97 −628.89 19.9% 13.7% 2.0684 0.8371
MC-CF 0.20 s −625.97 −628.89 19.9% 13.7% 2.0684 0.8371
MC-CFB 0.11 s −625.97 −628.89 19.9% 13.7% 2.0684 0.8371

MC-C-OW 0.24 s −625.98 −628.89 20.1% 14.0% 2.0681 0.8371
MC-CB-OW 0.14 s −625.98 −628.89 20.1% 14.0% 2.0681 0.8371
MC-CF-OW 0.21 s −625.98 −628.89 20.1% 14.0% 2.0681 0.8371
MC-CFB-OW 0.13 s −625.98 −628.89 20.1% 14.0% 2.0681 0.8371
MCR [40] 0.38 s −624.35 −629.03 16.4% 10.2% 2.0500 0.8357

MC-CI 1.14 s −628.16 −628.16 100.0% 100.0% 2.0406 0.8350
MC-CIF 1.04 s −628.16 −628.16 100.0% 100.0% 2.0406 0.8350
MC-C-CI 0.85 s −628.16 −628.16 100.0% 100.0% 2.0406 0.8350
MC-CFB-CIF 0.62 s −628.16 −628.16 100.0% 100.0% 2.0406 0.8350

Table 7: Higher-order hierarchical image segmentation [40,
36].

more, higher-order Potts terms force selected regions to be-
long to the same cluster. The 715 instances of this dataset
(corr-clust), published as part of [36], contain factors of or-
der up to a few hundred and 122–651 variables.

The results are summarized as Tab. 7. Surprisingly, our
LP-based methods perform better than the original algorithm
used in [40], even though the algorithms are identical. Maybe
this was caused by the different LP solver they used, or by
some floating-point problems inside their separation proce-
dure. The use of odd-wheel constraints marginally improves
the results. Best results are obtained by using integer cutting-
planes after having solved the LP. The use of the bounding
as part of the post-processing reduces runtime by a factor of
2. The differences to only using facet-defining constraints are
negligible.

13

(a) Input (b) MC-CFB

(c) MC-CFB-OW (d) MCR

(e) MC-CIF (opt) (f) ICM

Figure 12: Two instances of the hierarchical correlation-
clustering problem. The first image is easier and ICM gave
competitive results relative to multicut methods. This is no
longer true for more complicated images like the second one
where ICM clearly is inferior. MC-CFB and MC-CFB-OW
make use of slightly different rounding procedures that result
in finer segmentations. MC-CIF computes the segmentation
with the optimal energy, which differs slightly from those of
MCR but improves the VI, cf. Tab. 7. This small improve-
ment is remarkable, since the models are trained for MCR.
So the models are biased towards this method and hence it is
not surprising that it performs well.

6.2.4 Modularity Clustering

We also considered a clustering problem from outside the
field of computer vision, which contrary to the previous mod-
els considered so far, involves a fully connected graph. Modu-
larity clustering [14] means the problem of clustering an undi-
rected unweighted graph into ”meaningful” subsets, which
amounts to optimization problems related to fully connected
Potts model. For our experiments, we used the datasets8 dol-
phins, football, karate, and lesmis (mod-clust), with 62, 115,
34, and 77 data-points, respectively.

As shown in Tab. 8, for modularity clustering, the use of
facet-defining inequalities as well as odd-wheel constraints
significantly improves the results. We attribute this to the
high connectivity of the graph. In such dense graphs more
likely violated odd-wheel inequalities exist. Likewise, more
non-facet-defining cycle inequalities exist as well, and adding
those only blows up the system of inequalities.

As observed by Nowozin and Jegelka [58], odd-wheel in-
equalities usually tighten sufficiently the polytope. Further-
more, we observed for this dataset, as in [58], numerical
problems if the allowed feasibility and optimality tolerances
were set to large. However, the experiments showed that our
proposed integer cycle inequalities perform better than odd-
wheel separation, especially if we start from the LP-relaxation
with cycle inequalities, cf. Tab. 8.

8http://www-personal.umich.edu/~mejn/netdata/

algorithm runtime value bound best ver. opt

KL 0.01 s −0.5251 −∞ 2/4 0/4
ICM 0.12 s 0.0000 −∞ 0/4 0/4
LF 0.05 s 0.0000 −∞ 0/4 0/4

MC-C 47.99 s −0.5204 −0.5294 1/4 1/4
MC-CB 48.33 s −0.5204 −0.5294 1/4 1/4
MC-CF 1.02 s −0.5204 −0.5294 1/4 1/4
MC-CFB 0.91 s −0.5204 −0.5294 1/4 1/4

MC-C-OW 72.05 s −0.5282 −0.5282 4/4 4/4
MC-CB-OW 72.42 s −0.5282 −0.5282 4/4 4/4
MC-CF-OW 12.26 s −0.5282 −0.5282 4/4 4/4
MC-CFB-OW 11.60 s −0.5282 −0.5282 4/4 4/4

MC-I-C 152.20 s −0.5282 −0.5282 4/4 4/4
MC-I-CI 14.57 s −0.5282 −0.5282 4/4 4/4
MC-I-CIF 6.31 s −0.5282 −0.5282 4/4 4/4
MC-I-CFDB 6.56 s −0.5282 −0.5282 4/4 4/4
MC-C-I-CI 58.24 s −0.5282 −0.5282 4/4 4/4
MC-CFB-I-CIF 1.31 s −0.5282 −0.5282 4/4 4/4

Table 8: Modularity clustering [14, 38]

algorithm runtime value bound best ver. opt

FastPD 0.45 s 308 472 275.0 −∞ 2/3 0/3
FastPD* 1.62 s 308 472 274.7 −∞ 2/3 0/3
α-Exp 6.42 s 308 472 275.6 −∞ 2/3 0/3
α-Exp* 1.72 s 308 472 274.3 −∞ 3/3 0/3

MC-T-MT 115.14 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT 1.76 s 308 472 274.3 308 472 274.3 3/3 3/3
LP † † † † †
LP* 2.17 s 308 472 274.3 308 472 274.3 3/3 3/3
TRWS 150.47 s 308 472 310.6 308 472 270.4 2/3 1/3
TRWS* 3.90 s 308 472 274.3 308 472 274.3 2/3 2/3

MC-T-MT-I-T 149.43 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT-I-T 1.86 s 308 472 274.3 308 472 274.3 3/3 3/3
ILP † † † † †
ILP* 1.91 s 308 472 274.3 308 472 274.3 3/3 3/3

Table 9: Supervised image segmentation [2, 36]

6.3 Supervised Segmentation Problems

6.3.1 Supervised Image Segmentation

An elementary approach to supervised image segmentation,
or image labeling, is to apply locally a statistical classifier,
trained offline beforehand, to raw image data or to locally ex-
tracted image features. This is complemented by a non-local
prior term, the most common form of which favours short
boundaries of the segments partitioning the image domain.
Such terms can be approximated by pairwise Potts terms [11]
and lead to an energy function of the form

∑
f∈F1

− log(pne(f)(xne(f)|I))+ ∑
f∈F2

β I(xne(f)1 6= xne(f)2).

(40)

As recently shown by Kappes et al. [37], such models can be
evaluated globally optimal and very fast by first determining
partial optimality, leading to a reduced inference problem in
terms of remaining unlabelled connected image components,
followed by solving each of these smaller problems indepen-
dently.

We use “*” to mark when these preprocessing steps were
applied and “†” to mark whenever the memory requirement
exceeded 12 GB.

As dataset (color-seg) we used the color segmentation in-
stances of Alahari et al. [2]. The results are summarized as
Tab. 9.

While standard (I)LP solvers often suffer from their large
memory requirements, the multicut approach outperformed
all other approaches. Since for all instances the local poly-
tope relaxation returned optimal integer solutions, MC-T-MT
could solve them in polynomial time. When we resorted to the
model reduction *, the subproblems became small for these
problem instances, and (I)LP solvers could be conveniently

14

applied. Our multicut approach then was only marginally
faster. Despite global optimality, however, the runtime was
comparable to algorithms for approximate inference that do
not guarantee global optimality.

6.3.2 Higher-Order Supervised Image Segmentation
with Inclusion Prior

We studied image segmentation with junction regularisation
as problem instances that benefit from the application of
higher-order generalized Potts functions.

Rather than merely penalizing the boundary length of seg-
ments, this approach aims at improving segmentation results
by additionally penalizing points where the boundaries of
three or more segments meet:

ϕ I(x1,x2,x3,x4) =

{
λ , if |{x1,x2,x3,x4}|> 2,

0, else.
(41)

The overall cost for labeling then is given by

∑
f∈F1

ϕ1
f (xne(f))+ ∑

f∈F2

ϕ2
f (xne(f))+ ∑

f∈F4

ϕ I(xne(f)),

where ϕ1 denotes the L1-norm of the difference between in-
tensity of a pixel and a pixel-label, ϕ2 the same second-order
terms as in the pairwise case, and F4 the set of all factors over
four pixels that build a cycle in the image grid.

Setting λ to 0 yields standard second-order model with
boundary length regularization, whereas setting λ → ∞ yields
a model that enforces segments to be surrounded by one sin-
gle segment, without fixing the topology of the inclusion
as done by Delong et al. [20]. Contrary to [20] our model
”learns” the geometric interaction ”contain” [20] locally on-
line and allows furthermore to use different and unknown
”containing rules” in different regions instead a single global
one.

Fig. 1(b) illustrates this property of the model. The stan-
dard second-order approach, cf. Fig. 1(b), middle, produces
many small artefacts inside “U” and “C” and opens the sur-
rounding segment right of “C”. Invoking the fourth-order reg-
ularizer, cf. Fig. 1(b), bottom, eliminates many of these arte-
facts and results in a significantly better segmentation.

The results of an empirical evaluation for 10 synthetic
32×32 images (synth-inclusion) are summarized as Tab. 10.
Fig. 13 show exemplary segmentation results. Additionally,
we give the relative number of correct labeled pixels as pixel
accuracy (PA). Even a labeling with high energy can have a
high PA, as happens for MPLP. This is caused by some vari-
ables, with wrong labels that causes a high energy but count
marginal for the PA.

Approximate inference methods performed quite good, but
among those only LBP-LF2 (Lazy Flipper initialed with the
solution of LBP) was able to provide nearly optimal results.
While the multicut approach is on par when relaxations were
considered, it became quite slow compared to a ILP applied
to labeling in the nodal domain, when a globally optimal so-
lution was enforced.

We believe there are two major reasons: First, the relax-
ation “prefers” less integral solutions due to the higher-order
terms and therefore becomes harder to solve for LP-based
methods. Second, we observe that CPLEX solves the ILP
mainly by branching and probing in order to avoid solving
LPs. This is also the reason why ILP is faster than LP.

algorithm runtime value bound best ver. opt PA

ogm-ICM 0.03 sec 1556.20 −∞ 0/10 0/10 0.6206
ogm-LF-1 0.04 sec 1556.20 −∞ 0/10 0/10 0.6206
LBP-LF-2 12.20 sec 1400.62 −∞ 8/10 0/10 0.9495
α-Fusion 0.07 sec 1587.13 −∞ 0/10 0/10 0.6771

ogm-LBP 12.28 sec 1800.67 −∞ 3/10 0/10 0.9495
ogm-TRBP 13.93 sec 2000.67 −∞ 2/10 0/10 0.9491

MC-T-MT 18.55 sec 1739.29 1399.49 1/10 0/10 0.3001
LP 25.04 sec 3900.59 1400.33 1/10 1/10 0.9484
MPLP 10.08 sec 4000.44 1400.30 1/10 1/10 0.9479
MPLP-C 4741.42 sec 4000.41 1400.35 1/10 1/10 0.9471

ILP 7.33 sec 1400.57 1400.57 10/10 10/10 0.9496
MC-T-MT-I-T 66.58 sec 1400.57 1400.57 10/10 10/10 0.9496

Table 10: Supervised image segmentation with inclusion pri-
ors.

(a) GT (b) Data (c) MC-T-MT

(d) MPLP (e) Fusion (f) MC-ICC (opt)

Figure 13: Example instance for the inclusion problem.
While MC-T-MT and α-Fusion both found solutions that re-
spect the inclusion prior, they do not fit the data term well.
MPLP found a good solution but does not respect the inclu-
sion in the right upper corner. MC-ICC found the optimal
solution of the problem which visually fulfils inclusion and
gave good results in view of the noise level.

While an in-depth study of such aspects is beyond the scope
of the present paper, our findings indicate ways to further im-
prove the multicut approach in such advanced settings.

7 Conclusion

We presented an approach based on multicuts to solve a broad
range of supervised and unsupervised segmentation problems
to optimality in reasonable runtime. We showed, in particu-
lar, how to extend the approach higher-order models based on
a class of label invariant functions that generalize Potts func-
tions in a natural way. Such models enable to model higher-
order interactions and topological priors concisely by taking
its symmetries into account.

We devised several dedicated separation procedures and
demonstrated a corresponding significant impact on runtime.
A systematic comparison of different cutting-plane proce-
dures for computer vision applications enabled us to improve
runtimes for all models compared to the state of the art. A
discussion of polynomially solvable relaxations of the unsu-
pervised segmentation problems complemented our study, to-
gether with advanced rounding schemes.

15

Acknowledgments. This work has been supported by the German
Research Foundation (DFG) within the program “Spatio-/Temporal
Graphical Models and Applications in Image Analysis”, grant
GRK 1653.

References
[1] M. Aigner. Combinatorial Theory. Springer, 1979.

[2] K. Alahari, P. Kohli, and P. H. S. Torr. Dynamic hybrid al-
gorithms for MAP inference in discrete MRFs. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(10):
1846–1857, 2010.

[3] A. Alush and J. Goldberger. Ensemble segmentation using
efficient integer linear programming. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(10):1966–1977,
2012.

[4] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-
precht. Probabilistic image segmentation with closedness con-
straints. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2011.

[5] B. Andres, T. Beier, and J. H. Kappes. OpenGM2, 2012. http:
//hci.iwr.uni-heidelberg.de/opengm2/.

[6] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Ham-
precht. The lazy flipper: Efficient depth-limited exhaustive
search in discrete graphical models. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2012.

[7] B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Korogod,
G. Knott, U. Köthe, and F. A. Hamprecht. Globally optimal
closed-surface segmentation for connectomics. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
2012.

[8] Y. Bejerano, M. A. Smith, J. Naor, and N. Immorlica. Efficient
location area planning for personal communication systems.
IEEE/ACM Trans. Netw., 14(2):438–450, 2006. doi: 10.1145/
1217619.1217635.

[9] J. Besag. On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society, Series B, 48(3):259–302, 1986.

[10] E. Boros and P. L. Hammer. Pseudo-boolean optimization.
Discrete Appl. Math., 123(1-3):155–225, Nov. 2002. ISSN
0166-218X.

[11] Y. Boykov and V. Kolmogorov. Computing geodesics and min-
imal surfaces via graph cuts. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), 2003.

[12] Y. Boykov, O. Veksler, and R. Zabih. Markov random
fields with efficient approximations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 1998.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[14] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer,
Z. Nikoloski, and D. Wagner. On modularity clustering. IEEE
Transactions on Knowledge and Data Engineering, 20(2):172–
188, 2008.

[15] G. Călinescu, H. Karloff, and Y. Rabani. An improved approx-
imation algorithm for multiway cut. Journal of Computer and
System Sciences, 60(3):564–574, 2000.

[16] S. Chopra and M. R. Rao. On the multiway cut polyhedron.
Networks, 21(1):51–89, 1991.

[17] S. Chopra and M. R. Rao. The partition problem. Mathemati-
cal Programming, 59(1–3):87–115, 1993.

[18] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Sey-
mour, and M. Yannakakis. The complexity of multiway cuts
(extended abstract). In Proceedings of the ACM Symposium on
Theory of Computing (STOC), 1992.

[19] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Sey-
mour, and M. Yannakakis. The complexity of multiterminal
cuts. SIAM Journal on Computing, 23(4):864–894, 1994.

[20] A. Delong and Y. Boykov. Globally optimal segmentation of
multi-region objects. In ICCV, pages 285–292. IEEE, 2009.

[21] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast ap-
proximate energy minimization with label costs. Int. J. Com-
put. Vision, 96(1):1–27, Jan. 2012. ISSN 0920-5691.

[22] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Cor-
relation clustering in general weighted graphs. Theor. Com-
put. Sci., 361(2):172–187, Sept. 2006. ISSN 0304-3975. doi:
10.1016/j.tcs.2006.05.008.

[23] M. M. Deza and M. Laurent. Geometry of Cuts and Metrics.
Springer, 1997.

[24] M. M. Deza, M. Grötschel, and M. Laurent. Complete de-
scriptions of small multicut polytopes. In P. Gritzmann and
B. Sturmfels, editors, Applied Geometry and Discrete Math-
ematics: The Victor Klee Festschrift. American Mathematical
Society, 1991.

[25] M. M. Deza, M. Grötschel, and M. Laurent. Clique-web facets
for multicut polytopes. Mathematics of Operations Research,
17(4):981–1000, 1992.

[26] P. K. Dokania and M. P. Kumar. Parsimonious labeling.
CoRR, abs/1507.01208, 2015. URL http://arxiv.org/

abs/1507.01208.

[27] A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut al-
gorithm for higher-order markov random fields. In Proceed-
ings of the 2011 International Conference on Computer Vision,
ICCV ’11, pages 1020–1027, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-1-4577-1101-5.

[28] A. Fix, C. Wang, and R. Zabih. A primal-dual algorithm
for higher-order multilabel markov random fields. In 2014
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2014, Columbus, OH, USA, June 23-28, 2014,
pages 1138–1145, 2014. doi: 10.1109/CVPR.2014.149.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., 1979.

[30] A. Globerson and T. Jaakkola. Fixing max-product: Conver-
gent message passing algorithms for map lp-relaxations. In
NIPS, 2007.

[31] F. Glover and E. Woolsey. Converting the 0-1 polynomial pro-
gramming problem to a 0-1 linear program. Operations Re-
search, 22(1):180–182, 1974.

[32] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm
for a clustering problem. Mathematical Programming, 45(1):
59–96, 1989.

[33] H. Ishikawa. Higher-order clique reduction in binary graph
cut. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 2993–3000, June 2009.

16

[34] L. Kang, Y. Li, and D. Doermann. Orientation robust text line
detection in natural images. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2014.

[35] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr.
Globally optimal image partitioning by multicuts. In Proceed-
ings of the International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMM-
CVPR), 2011.

[36] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lellmann,
N. Komodakis, and C. Rother. A comparative study of modern
inference techniques for discrete energy minimization prob-
lems. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2013.

[37] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. Towards
efficient and exact MAP-inference for large scale discrete com-
puter vision problems via combinatorial optimization. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2013.

[38] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr,
S. Nowozin, D. Batra, S. Kim, B. X. Kausler, T. Kröger, J. Lell-
mann, N. Komodakis, B. Savchynskyy, and C. Rother. A com-
parative study of modern inference techniques for structured
discrete energy minimization problems. International Journal
of Computer Vision, pages 1–30, 2015. ISSN 0920-5691.

[39] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell Systems Technical Journal,
49(2):291–307, 1970.

[40] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order
correlation clustering for image segmentation. In Proceedings
of the Annual Conference on Neural Information Processing
Systems (NIPS), 2011.

[41] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Task-specific
image partitioning. IEEE Transactions on Image Processing,
22(2):488–500, 2013.

[42] J. Kleinberg and É. Tardos. Approximation algorithms for
classification problems with pairwise relationships: Metric la-
beling and Markov random fields. In Proceedings of the An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 1999.

[43] P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 & beyond: Move
making algorithms for solving higher order functions. IEEE
Trans. Pattern Anal. Mach. Intell., 31(9):1645–1656, 2009.

[44] P. Kohli, L. Ladicky, and P. H. Torr. Robust higher order po-
tentials for enforcing label consistency. International Journal
of Computer Vision, 82(3):302–324, 2009. ISSN 0920-5691.

[45] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[46] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 28(10):1568–1583, 2006.

[47] N. Komodakis and N. Paragios. Beyond pairwise energies: Ef-
ficient optimization for higher-order mrfs. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2985–2992. IEEE, 2009. ISBN 978-1-4244-3992-8.

[48] N. Komodakis and G. Tziritas. Approximate labeling via graph
cuts based on linear programming. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(8):1436–1453,
2007.

[49] L. Ladick, C. Russell, P. Kohli, and P. H. Torr. Inference meth-
ods for crfs with co-occurrence statistics. International Journal
of Computer Vision, 103(2):213–225, 2013. ISSN 0920-5691.

[50] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black. Effi-
cient belief propagation with learned higher-order markov ran-
dom fields. In A. Leonardis, H. Bischof, and A. Pinz, editors,
ECCV, volume 3952 of Lecture Notes in Computer Science,
pages 269–282. Springer, 2006. ISBN 3-540-33834-9.

[51] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves
for markov random field optimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(8):1392–1405,
2010. ISSN 0162-8828.

[52] V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model
for semantic segmentation. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS),
2011.

[53] D. Marx. A tight lower bound for planar multiway cut with
fixed number of terminals. In International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2012.

[54] M. Meilă. Comparing clusterings—an information based dis-
tance. J. Multivar. Anal., 98(5):873–895, May 2007. ISSN
0047-259X.

[55] Y. Ming, H. Li, and X. He. Connected contours: A new contour
completion model that respects the closure effect. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[56] C. Nieuwenhuis, E. Töppe, and D. Cremers. A survey and
comparison of discrete and continuous multi-label optimiza-
tion approaches for the Potts model. International Journal of
Computer Vision, 104(3):223–240, 2013.

[57] S. Nowozin. Learning with Structured Data: Applications to
Computer Vision. PhD thesis, Technische Universität Berlin,
2009.

[58] S. Nowozin and S. Jegelka. Solution stability in linear pro-
gramming relaxations: Graph partitioning and unsupervised
learning. In Proceedings of the International Conference on
Machine Learning (ICML), 2009.

[59] A. Osokin, D. Vetrov, and V. Kolmogorov. Submodular de-
composition framework for inference in associative Markov
networks with global constraints. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011.

[60] B. Potetz and T. S. Lee. Efficient belief propagation for higher-
order cliques using linear constraint nodes. Comput. Vis. Image
Underst., 112(1):39–54, Oct. 2008. ISSN 1077-3142.

[61] W. Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association, 66
(336):846–850, 1971.

[62] C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse
higher order energy functions of discrete variables. In CVPR,
pages 1382–1389. IEEE, 2009. ISBN 978-1-4244-3992-8.

[63] D. Sontag and T. Jaakkola. New outer bounds on the marginal
polytope. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2007.

[64] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss.
Tightening lp relaxations for map using message passing. In
UAI, pages 503–510, 2008.

17

[65] D. Sontag, D. K. Choe, and Y. Li. Efficiently searching for
frustrated cycles in map inference. In N. de Freitas and K. P.
Murphy, editors, UAI, pages 795–804. AUAI Press, 2012.

[66] D. Tarlow, I. E. Givoni, and R. S. Zemel. HOP-MAP: effi-
cient message passing with high order potentials. In Y. W. Teh
and D. M. Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010, volume 9 of JMLR Proceedings, pages 812–819.
JMLR.org, 2010.

[67] M. J. Wainwright and M. I. Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1–2):1–305, 2008.

[68] C. Wang, N. Komodakis, and N. Paragios. Markov random
field modeling, inference & learning in computer vision & im-
age understanding: A survey. Comput. Vis. Image Underst.,
117(11):1610–1627, Nov. 2013. ISSN 1077-3142.

[69] J. Yarkony, A. Ihler, and C. C. Fowlkes. Fast planar correla-
tion clustering for image segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), 2012.

Appendix
Theorem 7.1. For second-order Potts models with arbitrary
coupling constraints w ∈ RN the optima of the LP over the
local multiway cut relaxation in (42)

min
y∈[0,1]N

〈w,y〉 (42)

s.t. ∑t∈T ytv = |T |−1, if T 6= /0, ∀v ∈V \T c.f. (26)

ytt ′ = 1, ∀t, t ′ ∈ T, t 6= t ′ c.f. (27)
ytu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T c.f. (30)
ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T c.f. (31)
ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T c.f. (32)

yuv ≥ ∑t∈S (ytu − ytv) , ∀uv ∈ E,S ⊆ T c.f. (33)

is equivalent to the optima of LP over the local polytope re-
laxation (43)

min
µ∈[0,1]N

〈θ ,µ〉. (43)

s.t. ∑
xi∈Xi

µi;xi = 1 ∀i ∈V

∑
xi∈Xi

µi j;xix j = µ j;x j ∀ f ∈ F2,{i, j}= ne(f)

∑
x j∈X j

µi j;xix j = µi;xi ∀ f ∈ F2,{i, j}= ne(f).

Proof. By construction of the multiway cut problem we have

µu;i = 1− yti,u ∀u ∈ V , i ∈ Xu, (44)

where ti ∈ T denotes the terminal node belonging to label i ∈
Xu.

Instead of optimizing over µu;i for all u ∈ V and xu ∈ Xu
we show that for any fixed µu;i ∀u ∈ V , i ∈ Xu problem (42)
and (43) have the same minima. For fixed unary variables the
problem splits in several small terms, which can be treated
independently. What is left to show is that for any

θuv =

{
wuv if u 6= v
0 if u = v

where wuv ∈ R the following equality holds:

min
µuv

〈θuv,µuv〉 (45)

s.t. ∑
i

µuv;i j = µv, j ∀ j ∈ Xv,

∑
j

µuv;i j = µu,i∀i ∈ Xu, µuv;i j ≥ 0

= min
yuv∈[0,1]

w · yuv (46)

s.t. (26), (27), (30)− (32), (33)

Case 1 (wuv ≥ 0):
This has been shown by Osokin et al. [59].

Case 2 (wuv < 0):
The variable yuv is only upper bounded by [0,1] and (30).
Furthermore y can be substituted by µ with (44). Hence the
the optimal value of (46) yuv is

(46)
(30)
= wuv ·min{1,min

i
{(yu,ti + yv,ti)}} (47)

(44)
= wuv ·min{1,min

i
{2− (µu,i +µv,i)}} (48)

Inequality (i): (45) ≥ (46)
For this proof we will use the following observation:

Lemma 7.1. Let us consider problem (45). If µu,i + µv,i > 1
then µuv,ii ≥ µu,i +µv,i −1.

Proof. Let µu,i + µv,i > 1 and w.l.o.g. µu,i > µv,i. Then we
have µu,i > 0.5 and µu,i > 1−µv,i. Latter causes that we have
to put some mass of µu,i on the main diagonal of Q since
we can assign to the non-diagonal elements only 1− µv,i. At
least the difference µu,i − (1−µv,i) has to be put on the main
diagonal entry µuv,ii.

Using Lemma 7.1 we obtain the inequality:

(45) = wuv · (1−∑
i

µuv,ii) s.t. (45) (49)

Lemma7.1
≥ wuv · (1−∑

i
max{0,µu,i +µv,i −1}) (50)

= wuv · (1−max
i

max{0,µu,i +µv,i −1}) (51)

= wuv · (1+min
i

min{0,−(µu,i +µv,i)+1}) (52)

= wuv · (min
i

min{1,2− (µu,i +µv,i)}) (53)

= (46) (54)

Inequality (ii): (45) ≤ (46)
We will use the following observations next:
Let i∗ = argmaxi(µu,i +µv,i)
(a) If maxi(µu,i +µv,i)< 1, then ∀i : (µu,i +µv,i)< 1.
(b) If maxi(µu,i +µv,i)> 1, then ∀i 6= i∗ : (µu,i +µv,i)< 1.

Lemma 7.2. Problem (45) with the additional constraints

µuv,ii = max{0,µu,i +µv,i −1} ∀i ∈ Xv (55)

has still a feasible solution.

18

Proof. We split the proof in to cases:
Case 1: maxi(µu,i +µv,i)> 1
Let i∗ = argmaxi µu,i +µv,i, then

µuv;i j =





maxi µu,i +µv,i −1 if i = i∗ and j = i∗

µu;i if i 6= i∗ and j = i∗

µv; j if i = i∗ and j 6= i∗

0 else

is a feasible solution.

Case 2: maxi µu,i +µv,i <= 1
Let us start with any feasible solution µ0 of (45) and define
a sequence of transitions µn → µn+1, which will end in a µm

that fulfill the additionally constraints (∀i : µuv;ii = 0), too.

Initial point (µo: As shown in [59] a feasible point µ0
uv,ii of

(45) with µ0
uv,ii = min{µu;i,µv; j} exists.

Transition (µn → µn+1): For any tuple (a,b,a′,b′) and δ ≤
min{mun

uv;ab,mun
uv;a′b′} the transition

µn+1
uv;i j =





µn
uv;i j −δ if i = a∧ j = b or i = a′∧ j = b′

µn
uv;i j +δ if i = a∧ j = b′ or i = a′∧ j = b

µn
uv;i j else

stays in the feasible set, because all values remain non-
negative and row- and column-sums does not change.

Sequence of transitions: When µn has a non-zero diagonal
element µn

uv;ii then there exist a pair (i′, j′) with i 6= i′, j 6= j′

and µn
uv;i′ j′ > 0, because

∑
(a,b),a=i or b= j

µn
uv;ab = µn

uv;ii +(µu,i −µn
uv;ii)+(µv, j −µn

uv;ii)

(56)
= µu,i +µv, j −µn

uv;ii ≥ 1−µn
uv;ii (57)

After the transition on (i, j, i′, j′) with maximal δ , either
µn+1

uv;ii = 0 or µn+1
uv;i′i′ = 0. So, each non-zero diagonal element

µn
uv;ii, can be made zero by a finite number of transitions. We

will end up with a point µm that fulfill (45) and have zero di-
agonal element µn

uv;ii.

Using Lemma 7.2 we obtain the inequality:

(45) = wuv · (1−∑
i

µuv,ii) s.t. (45) (58)

Lemma2
≤ wuv · (1−max{0,max

i
(µu,i +µv,i −1)} (59)

= wuv ·min{1,min
i
{2− (µu,i +µv,i)}} (60)

= (46) (61)

Inequality (i) and inequality (ii) together imply that
(45) = (46)

19

