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Abstract

Monocular plenoptic cameras are slightly modified, off-the-shelf cameras
that have novel capabilities as they allow for truly passive, high-resolution
range sensing through a single camera lens. Commercial plenoptic cameras,
however, are presently delivering range data in non-metric units, which is a
barrier to novel applications e.g. in the realm of robotics. In this work we
revisit the calibration of focused plenoptic cameras and bring forward a novel
approach that leverages traditional methods for camera calibration in order
to deskill the calibration procedure and to increase accuracy. First, we detach
the estimation of parameters related to either brightness images or depth
data. Second, we present novel initialization methods for the parameters of
the thin lens camera model—the only information required for calibration
is now the size of the pixel element and the geometry of the calibration
plate. The accuracy of the calibration results corroborates our belief that
monocular plenoptic imaging is a disruptive technology that is capable of
conquering new markets as well as traditional imaging domains.
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1. Introduction

A considerable number of machine vision users think that multi-view
triangulation is required in order to retrieve accurate 3-D information using
cameras without a priori information about the scene. This is predominantly
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accomplished either by passively taking images from different vantage points
(stereo vision) or by actively projecting a known pattern from a separate
location (Kinect). In other words, the notion that 3-D information is lost
when light rays traverse the front lens of the camera is widespread. Experts
know, however, that this is not the case as light rays are differently diffracted
by a lens depending on the distance to the emitting object [1]. In fact, one
of the potential outputs of monocular plenoptic cameras is range sensing.

1.1. Plenoptic Imaging

Plenoptic (also light-field) imaging is about measuring light in a higher
dimensionality than in standard 2-D imaging. In fact, light transmission
can be contemplated in a higher-dimensional space, the so-called plenoptic
function [2]. Current plenoptic imaging samples the plenoptic function in
4-D, viz. 2-D projection position on the chip together with the direction of
incoming light rays. The quest for this extra information is anything but new,
but advances in parallel computation and modern workmanship of microlens
arrays (MLAs) have recently made commercial products possible [3, 14, [5].
In a nutshell, monocular plenoptic cameras capture the 3-D image produced
by the main lens within the camera by using an MLA in front of the sensor
chip. By capturing the whole 3-D image, classical habits when using planar
sensors like keeping the aperture size small in order to increase depth of field
are lifted and more light can be gathered from the scene. Different camera
designs open up new possibilities to trade off lateral precision against angular
resolution of the reprojected ray directions. The original monocular plenoptic
cameras focus the image on the MLA, achieving a limited spatial resolution
at that particular depth equal to the number of valid microlenses. These
microlenses produce defocused images that sample the ray direction at the
position of the microlens. In 2009 Lumsdaine and Georgiev introduced the
focused plenoptic camera (or plenoptic camera 2.0), which makes it possible
to adapt this rather rigid trade-off between angular and spatial resolutions
towards more spatial resolution [6]. This is performed by a modification of
the focus distance to the main lens with the result that microlenses produce
focused images that, on the other hand, more loosely sample ray direction.

Many characteristics of plenoptic cameras are in conformity with the stan-
dard reference on disruptive technologies in Ref. [7]. For instance, plenop-
tic cameras initially produce a deficient standard output (fair images) at a
higher cost, which makes them of no interest to the average consumer. They,
however, clearly have the potential to improve and open up new markets



while sharply reducing costs. Their current applications are offline refocus-
ing and total focusing (i.e., increased depth of field) of 2-D images. More
relevant potential applications are passive, 3-D video recording, 3-D mode-
ling, range-based segmentation and tracking, industrial inspection (e.g. in
narrow cavities), and imaging in challenging, low-light environments (e.g.
underwater or in space). Most of these applications rely on the capability
of plenoptic cameras to provide metric information of the scene in the form
of 2.5-D depth images. This is, however, not yet commercially available as
depth is currently being delivered in internal units related to image process-
ing (disparities). We address the metric calibration of focused, monocular
plenoptic cameras in order to transform their depth output into metric space.

1.2. Related Work

There is less research on the metric calibration of focused plenoptic ca-
meras and the works on the calibration of the original, unfocused ones are
only of partial use [8]. Next we review the only available approaches in Refs.
[9, 10, 11, 12]. They all have in common that they start out from synthetic
images generated by the RxLive software of Raytrix GmbH (viz. the total fo-
cus image and the depth image), not from the raw images of the camera. The
conformity of the generated synthetic images with the camera models used
for calibration is of course critical. It is a judicious decision to rely on the
manufacturers, however, since (i) they are most qualified to do that job, (ii)
they still keep individual design details in secret, and (iii) in order to avoid
mismatching between our potential reconstruction attempts and the even-
tual operation on GPGPUs. In addition, the calibration process is simplified
by using the synthetic images because we leverage established methods for
pinhole camera calibration [13| [14]. It is worth noting that the geometry of
the MLA is not included in the calibration process as it can be estimated in a
separate procedure using the Raytrix software. The best-known work in Ref.
[9] details the modeling and calibration of the focused plenoptic camera, fail-
ing to obtain absolute range accuracy. Further the automatic initialization of
calibration parameters is not addressed; the authors make use of privileged
information from the manufacturer. The recent master’s thesis in Ref. [12],
however, does achieve superior results by largely implementing the above ap-
proach. Still, considerations on the initialization of calibration parameters
are not being addressed. The author makes strong use of filtering approaches
to wipe out peripheral artifacts in depth estimation, which might constrain
the general applicability of the approach. Zeller et al. in Ref. [I1] perform
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calibration by minimizing the reprojection residuals with respect to (w.r.t.) a
set of measured calibration points for which the object distance is known—at
least for the initialization of their method. In addition, the method requires
assumed intrinsic values. In the same spirit, Luhmann et al. in Ref. [10] opt
for measuring ranges of a planar calibration object, which is error-prone and
inconvenient [15], [16]. Incidentally, the current internal approach for metric
calibration at Raytrix GmbH also relies on a linear actuator in order to pro-
duce a polynomial that directly converts virtual depths into metric distances
[12]. This type of empirical models, however, is only applicable within the
scope of the calibration data.

1.3. Contributions

In this work we revisit the type of calibration approaches that are based
on the standard camera calibration method described in Refs. [13, 14]. We
suggest modifications to particular modeling details and present justifica-
tions. Special care has been taken to keep the approach in the spirit of the
standard method, i.e., to take images of a known planar calibration pattern
in unknown pose and to facilitate automatic bootstrapping of the parame-
ters prior to nonlinear optimization. This keeps the amount of required prior
knowledge (e.g. specifications by the manufacturer) to a minimum, making
the whole calibration process more generic and easier. More importantly,
we introduce a novel approach for stepwise calibration by alternate use of
total focus and depth (synthetic) images. Our motivation is to avoid the
impact of higher levels of noise in the depth images on a large part of the in-
trinsic parameters like the focal length and the radial lens distortion. These
parameters can be estimated in advance by exclusively using total focus ima-
ges, as in traditional camera calibration. After that, the optimization of the
remaining parameters using the depth images and the results of the first
optimization takes place, see Fig. 2l By doing so, calibration accuracy is
increased and the optimization robustness is promoted as the formulations
of both optimizations become better conditioned compared with joint opti-
mization methods [9]. In addition, the optimization of the lens distortion
model will not get entangled with the optimization of the (potentially very
similar) depth distortion model.

Overall, we produce an easy-to-use, automatic method for metric plenop-
tic camera calibration. The only required data are synthetic total focus and
virtual depth images of a planar calibration plate of known geometry and
the metric size of their virtual sensor elements.



2. Proposed Method

2.1. The Thin Lens Camera Model and the Focused Plenoptic Camera

The pinhole camera model is a valid approximation for most cameras and
applications. It relates projection directions in the camera reference frame S¢
with projection positions in the sensor reference frame Ss. This projection is
independent of the actual range to the scene, which makes it unsuitable for
modeling plenoptic cameras aimed at inferring the depth of the scene out of
inner camera projections. The pinhole camera model is derived from the thin
lens camera model in the case of smaller aperture sizes. The thin lens camera
model embraces the thin lens approximation of light rays passing through a
thin lens, which states that ray directions are still projected following the
pinhole camera model and that projections are only focused at particular
depths d that depend both, on the focal length f of the lens and on the
object ranges r in the direction of the principal axis of the camera as follows:

1 1 1 1

f d + ro (1)

The thin lens camera model does consider ranges to the scene and there-

fore serves as a starting point for the camera model of a plenoptic camera.

The use of the pinhole camera model has been convenient because of its li-

near projective formulation in homogeneous coordinates (7). Similarly, the
thin lens camera model allows for such a formulation as follows:
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introducing the focused projection ¢p; of the point in space ¢p, both vec-
tors represented in 3-D in S¢. The metric 2-D orthogonal projection of ¢p
{cxs, cyr} can be transformed to a virtual Sg using the length p of the vir-
tual sensor element. The virtual sensor corresponds to the sensor that would
produce the synthetic images delivered e.g. by the RxLive software out of
raw sensor images. Note that we choose to shift pixel values to the center
of projection at the principal axis of the camera since camera calibration is
less sensitive to the actual position of the principal point (at the cost of a
slightly different pose of Sc, see Refs. [17, [I8]) and because lens distortion
will feature its own 2-D origin {ca;, ¢y} in the first place.
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Main lens

Figure 1: The thin lens camera model and the focused plenoptic camera.

The internal depth d of projections ¢z is the central value of this model.
It depends on the actual range r to the scene ¢z and on the focal length f
of the main lens. In the case of the focused plenoptic camera it is possible
to estimate ¢zf using raw camera projections, see Fig. [I} In fact, the depth
estimation algorithm of Raytrix cameras delivers the distance a between the
MLA and the internal depth ¢z¢ in multiples of the distance b between the
MLA and the sensor chip, which is an unknown value related with camera
production [19]. That relative distance is called virtual depth v = @/p. In de-
tail, virtual depths are provided as normalized values P coded in 16 bits that
are to be converted to real values and divided by their potential maximum
65535, resulting in values in the range of [0.5,1.0). This normalized internal
depth value is transformed to actual, relative virtual depths v= (1 — P)7!,
which are in turn related to the internal depth projections using b and the
distance h between the MLA and S¢ as follows:

czx=v-b+h . (3)

Virtual depths are, however, of limited use to final applications because they
are not metric and because they involve a nonlinear relationship with the
actual depths in the scene ¢z. In order to be able to transform virtual
depths into actual metric depths it is necessary to estimate b and h with
high accuracy. It is worth noting that it is the knowledge of virtual depths v
that enables plenoptic cameras to deliver synthetic, total focus 2-D brightness
images composed of projections at their respective focused depths ¢z;.



2.2. Calibration Approach

Our method is based on the two types of synthetic images explained
above: first, depth images featuring virtual depths v at their virtual sensor
projections {sx, sy}, and second, total focus images featuring actual, focused
brightness values captured at the same virtual sensor projections {sz,sy}.
Traditional pinhole camera calibration approaches only use the latter bright-
ness images, minimizing reprojection residuals in Sg for optimal estimation
of intrinsic parameters following the maximum likelihood criterion, which
holds because checkerboard corner detection by image processing is prone to
errors that can be modeled by 2-D independent and identically distributed
zero-mean Gaussian distributions [I3], [14]. In the case of the thin lens ca-
mera model, the information conveyed by brightness images, together with
the model of the calibration target, does allow to parameterize Eq. in-
cluding ¢z¢. In order to estimate the unknown intrinsic parameters b and h
in Eq. , however, the information v conveyed by the virtual depth images
is also needed. The previous calibration approaches for focused plenoptic ca-
meras included both types of data into the thin lens camera model in Eqs.
and in order to obtain all intrinsic and extrinsic parameters by global
minimization of Euclidean 3-D residual distances [9]. It is difficult to jus-
tify the optimality of that approach in the face of multi-modal data and an
aleatory choice of residuals. Virtual depth images feature a much higher level
of noise than brightness images after all. It is clear that by using multi-modal
data for joint optimization, the accuracy of all results will be compromised
by both noise sources—especially by the strongest source, i.e., the virtual
depth images. Even though information theory says that even the noisiest
bit of information is able to increase the overall information budget, in reality
this is here not the case as the stochastic error distribution of virtual depths
has not yet been properly modeled.

In this work we note that most intrinsic parameters of the thin lens camera
model can be estimated without having to make recourse to noisy virtual
depth images. Virtual depths are a new type of information that is not yet
accurately understood and modeled. We propose to recur to this type of
data only when strictly necessary by the following procedure (cf. Fig. :

1. First, the focal length f and, in the case of radial lens distortion, the
parameters (cx;, c¥r, k1 and perhaps ko) are automatically estimated
using brightness images. As a by-product, we obtain the optimal ex-
trinsic parameters of the camera (i.e., the camera motion) with highest
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accuracy as well as the optimal internal depths of projections ¢z;. The
intrinsic parameters are then fixed for future estimations. Camera ca-
libration from brightness images is a trusted science after all.

2. Second, virtual depths images are used to estimate the inner lengths
b and h in Eq. —perhaps together with the parameters of a depth
distortion model.
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Figure 2: Diagram representing the information flow in the presented method.

In addition, the detachment of these two types of information during the
calibration process proves to be useful whenever it is required to robustify
the calibration process against data outliers. For example, the whole set
of brightness features can be used to perform lateral calibration (Stage #1)
whereas the most noisy depth values can be readily removed during the
estimation of the depth-related parameters (Stage #2). This is not possible
when using the state-of-the-art calibration algorithms that mix both data
types during calibration. An additional advantage is that the lens distortion
model and the depth distortion model will not become entangled within a
sole optimization, which otherwise would be a problem since both models
are potentially similar. Lastly, the unwanted correlations between the focal
length f and the inner camera lengths b and h are suppressed.

Without loss of generality in this work we suggest checkerboard calibra-
tion patterns [20]. In Ref. [I2] the author chooses circular features because
Raytrix, historically, did so. They calculate their projected centroids and av-
erage over the depth values of the whole ellipse. It is worth noting, however,
that in the case of circular features, the center of the ellipse is generally not
the same as the projected circle center [21]. Similarly, averaging over depth
values of the ellipse to find the depth of its centroid is also prone to errors.



Both of these aspects are better managed when using checkerboard patterns.
The correspondence problem is easily solved e.g. by using the calibration
software DLR CalDe [22].

Lastly, we introduce automatic, sequential initialization schemes for all
parameters involved in the staged calibration.

2.3. Stage #1: Lateral Calibration
By removing the third, depth-related row in Eq. we obtain:

L0 00 cT L0 00 o
ST P P O 40
=8 oo =8y o[5S ] 3
1 C 1 O
1 0 0—% 1 ) 0 0—% 1 )

(4)
which represents a projection model from 3-D coordinates in S¢ or the object
reference frame Sg to 2-D projections in Sg. This formulation is fully in the
spirit of the thin lens camera model. Since the calibration object is planar,
i.e., 0z 2 0, this formulation allows for rapid initialization of the focal length
f and the rigid body transformation {CRO: [r1rors], otO= [Cxocyoczof}
using planar homographies H (3,3 similar to the traditional pinhole approach
in Refs. [13] [14]. Homographies H can be easily estimated for every calibra-
tion image as the linear least squares solution of the homogeneous formu-
lation including two equations for every measured (7) feature sp [23]. The
importance of normalizing data cannot be overestimated at this point.

First, a novel correspondence between the homography and the unknown
transformations is established:
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The correspondence has been simplified because the focal length is generally
much shorter than the range to the feature in front of the main lens ¢z,



when represented in the same distance units. Now using the orthonormality
constraints ry -ry = 0, ¥y -1y = 1, and 79 - 79 = 1, d.e., cRO€ SO(3), we
obtain:

(A'h)"- (A hy) =0 o hlwchy =0
(A’lhl)T-(A’lhl) — (A’th)T-(A’lhg) =0 hiwehi = hjwo hy
(6)
with the so-called absolute conic
p> 0 0
0p?0 ) (7)
0 0 f2

we =ATTAT =

Egs. @ enable the direct estimation (") of the focal length f either using the
orthogonality constraint (f) or using the normalization constraint (f3):

P —hi1hia + horhey - h3, + h3, — h3, — h3
fl — :i:p . \/ 1 hl - ’ f2 — j:p . \/ 12 h32 — h;l 217 (8)
31732 31 32

for every single calibration image of the checkerboard plate. Note that
hy = [hi1 hay hgl]T and hy = [hig hoo hgg]T. The only required data for the
metric initialization of f are the side length p of the virtual sensor pixel
featuring total focus and virtual depth images together with the geometry
of the checkerboard calibration plate, i.e., the N coordinates of its corners
op; = lowi oyiozi]T, Vi € {1,...,N}. The requirement on the knowledge
of the latter geometry could, however, be partially lifted [16]. Experiments
show that the estimation f2 is slightly better conditioned with regard to the
amount of perspective distortion included in the calibration images (orthogo-
nal plate projections are widely discouraged for camera calibration [24]). We
choose the median of all the fg estimations for every C' calibration images,
arriving at a value f =median( fgc), Vee{l, ..., C}, that closely matches the
nominal focal length of the lens unit.

The absolute extrinsic camera parameters {CRO, Cto} can then be esti-
mated for every calibration image ¢ using both, the C' homographies H, and
the approximated intrinsic matrix A including the virtual pixel size p and
the newly estimated focal length f as follows: r1=1s A7 hy, 7o=1/s A" hy,
P3=71x7y, t=1/s A"ths, and s=||A"'h;||=||A " hs||. These can also be used
for a potential hand-eye calibration of the plenoptic camera [25].

At this point all parameters have been estimated with reasonable accu-
racy. It is known that the radial lens distortion parameters can be initialized
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at zero value for subsequent nonlinear optimization. If necessary, they can
also be estimated in advance, perhaps stand-alone [26 27].
Last, the optimal () parameters Q* including f*, CTrs Clrss kl*, ko, as

well as the C' extrinsic transformations {cRc*, ctc*} can be estimated on

the basis of the maximum likelihood criterion, i.e., by sensibly minimizing
the discrepancies between the erroneous measurements p and the expected,
distorted projections gp, of the actual corners of the calibration plate op as
follows:

2

= arg mmz Z Hsp{c i { i <Q> P Opi>

The expected projections spy depend on the calibration parameters €2 to be
optimized, on the side length p, and on the known geometry of the corners
of the calibration plate op. The calibration parameters €2 are initialized as
explained above.

A word of caution regarding the formulation of the lens distortion model
as in Ref. [28]: First, the only formulation that is correct on a physical
ground, viz. based on Snell’s refraction law, applies to virtual, undistorted
projections derived from the actual scene (u—d formulation). Many authors
apply the formulation the other way around (d—u formulation), which is
wrong on a strict, physical ground and can be potentially misinterpreted
when it comes to using the parameterized model. Experiments show, how-
ever, that the d —u formulation does come very close by the physically-
conform u—d formulation [23]. Second, it is necessary to state the dimen-
sions of the lens distortion model along with delivering the calibration results,
i.e., whether it has been estimated on normalized directional coordinates or
on projected pixels or millimeters. Third, it is a good idea to use ¢z, and
c¥: to detach the camera’s principal point from the origin of lens distortion,
which is equivalent to releasing the first degree of freedom of lens decentering
distortion [I§].

(9)

2.4. Stage #2: Depth Calibration

Metric calculation of depths in front of a plenoptic camera demands me-
tric knowledge about its inner lengths 6 and h. These parameters connect
virtual depths with actual ranges in S¢, cf. Eq. . It is by the relationship
between virtual and actual depths that we will be able to estimate these
parameters in a novel way.
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In Sect. We removed the third row of the system of equations in Eq.

CcR

a —CZ/f+1

obtaining Eq. (4). Eq. , however, can readily be executed after optimal
estimation of the other intrinsic parameters in Eq. @, obtaining optimal
depth values Céfic’ % for all features and C calibration images. These values,
together with the virtual depths o1¢% acquired during calibration, can be
used to estimate the inner lengths h and b by using Eq. . First, we
initialize these values by ordinary least squares on all available data:

czt / cz=rs0r+r0y+rzor+cz’,  (10)

o1y 1 gf{*l’l} .
R[] [l e o
: 1
N————
C d

Note that these parameters can be estimated using a sole calibration image
but using more data is beneficial. Earlier approaches initialized these pa-
rameters using privileged information from the manufacturer, together with
the focus distance that can be gauged from the lens unit, which is both
inconvenient and error-prone.

After that, the whole thin lens camera model can be used to optimize
only these two parameters ® = {b, h} as follows:

c
D, = arg mAiHZ Z Hcf?gq g (‘I’) - cf?g{ g (p, oP; Q*)
P c=1 1

L)

making use of the optimal parameters (Al* obtained in Eq. @ This opti-
mization is well conditioned and converges in a few steps. Note that we opt
for minimizing 3-D Euclidean distances in S¢ between focused depths within
the camera because these distances feature Gaussian noise, refer to Fig. o]
Gaussian noise is certainly not expected from reconstructed actual depths
in front of the camera as the relationship in Eq. is highly nonlinear. It
is conceivable, however, that a minimization of reprojection errors on raw
plenoptic images delivers even more accurate results.

Depth images from plenoptic cameras are also affected by systematic
depth errors. The authors in Ref. [9] suggest that these are in part con-
sequence of the Petzval field curvature aberration, which describes a slight
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change of focal distance for oblique projections. The authors model this
distortion in a similar way to the radial lens distortion, affecting projection
depth ¢z instead of its lateral position {cx, cy}. Further, the authors intro-
duce a linear dependency of this model w.r.t. the magnitude of the virtual
depth. Since this type of distortion is in accordance with the nature of the
lens used, we propose a more general depth distortion model as follows:

cZra = cZu + a (Zc/Zc) + B (Jc/ic) ‘
+ 37 it dicz) - (V(Ee/Z? + (Jof2)?) - (13)

Eq. models a skewed paraboloid with factors o and § that parameterize
a linear bias dependent on the lateral projection position (i.e., a planar slope,
which could be consequence of inner skewness of the camera components),
and ~; and ¢§; parameterize the linear dependency of the depth distortion
w.r.t. the undistorted, focused projection depth ¢Zt, = (0 - b+ h) and the
absolute lateral distance. These parameters can be added to the set of un-
known parameters $. As explained in the next Sect. our experiments
using a short focal length lens of 12.5 mm feature a stronger planar distortion
w.r.t. the lateral projection position, an underlying parabolic depth distor-
tion component, and a steep higher-degree paraboloid in 7*" degree to cope
with the strong peripheral distortion. It is known that multi-focus plenoptic
cameras work best using long focal lengths and short focus distances [19].
Further research is required in this concern.

3. Results

Next, the implementation of the calibration procedure is described. The
parameters are then validated using a commercial range measuring table.

3.1. Calibration

We use a Raytrix R5-C-K color camera featuring 4.2 Megarays and a
12.5mm Canon lens that yields total focus and depth images with 1 MP
each. We choose a low post-processing level for depth images in order not
to hallucinate information by using regularization terms. Note that p =
2-5.5 um is twice the side length of the actual Baumer camera pixels because
we are using 1 MP virtual images instead of the raw 4 MP images.

First, eight tilted calibration images including feature ranges between 11
and 55 cm have been taken, see Fig. 3] The total focus images in the top row
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are processed with either DLR CalDe or DLR CalDe++ [22], which flawlessly
detect all 2023 visible corners and assigns them to their known coordinates
in So. All of these corners will be used for calibration, i.e., data filtering is
not applied. After that, the feature projections are represented around the
central point of the image instead of the upper-left corner.

Figure 3: Total focus brightness calibration images (top) and depth images (bottom).

The initialization of the parameters requires the computation of homo-
graphies, which is performed on normalized pixel and Euclidean coordinates.
In detail, C linear equation systems (one for every image ¢, Vee{1,...,C})
are solved in a least-square sense using the single value decomposition. The
homographies are then transformed back to their original dimensions by ma-
trix multiplication [23]. The 2-D reprojection root mean square (RMS) error
using homographies amounts to 3.3 pixels. Next, we estimate the focal length
of the lens using Eq. with the result of f = 12.01 mm. It is clear that,
in the absence of radial distortion correction, the estimated focal length di-
verges from reality as the apparent scaling factor is compromised. This initial
value is, however, valid for subsequent nonlinear optimization of the whole
model. Next, the C' absolute extrinsics of the camera w.r.t. the calibration
plate {CR(?, Ct?} are estimated as explained in Sect. . A pinhole ca-

A~ ~0 ~
mera model featuring f and {CRC , Ct?} shows a reprojection RMS error of

3.6 pixels.

At this point the thin lens camera model optimization described in Eq. @
takes place. The optimization is performed using the 1sqnonlin method in
MATLAB®, a Levenberg-Marquardt implementation. After 14 iterations
and 8s it successfully optimizes the model’s parameters yielding a reprojec-
tion RMS error of 0.39 pixels. Such a low reprojection residual indicates a
highly accurate parametrization and pose estimation—in consideration of the
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megapixel size of the images and the fact that images are filled with features
to the brim. The optimal focal length f* amounts to 12.76 mm and the lens
distortion parameters are detailed in Fig. 4] (a).

By way of contrast, we also implemented a plain (non-iterative) joint
optimization of all intrinsic parameters (including b and h) using all virtual
images. The optimization delivers erroneous radial distortion parameters
because they compensate for noisy virtual depth values and a potential depth
distortion model featuring radial components, see Fig. 4] (b). This effect
can be mathematically interpreted as bad conditioning and/or local minima
because a constrained optimization featuring fixed optimal intrinsic values as
obtained by our method does yield a lower residual cost. In fact, the authors
in Ref. [9] encountered the same difficulties. Therefore, they proposed an
empirical optimization approach using iterative, constrained optimization
steps within the framework of sequential quadratic programming.

600 600
400 o - 400
2000 0 - 200
0 S - 0
-200 i ~ -200
-400 : -400
. RN
-600 -600 [TV N
600 -400 200 0 200 400 600 600 -400 200 0 200 400 600

(a) Stepwise calibration, Stage #1 (b) Joint optimization

Figure 4: Reprojection residual errors in Sg using the radial lens distortion parameters
obtained either following our approach in Sect. (a) or from joint optimization (b). Red
arrows are 50x. Our approach yields 12;1* =-—0.1893 and 12;2* =0.2020 with distortion origin
at oZry = —0.023 and Y« = 0.006 in z-normalized camera coordinates. The resulting
RMS error is 0.39 pixels. The joint optimization yields k1, =—0.118 and ko, =0.158 with
origin at ¢Zr, =0.0258 and g« = —0.0008. The resulting RMS error is 3.0 pixels. The
inaccuracy after joint optimization renders total focus brightness images virtually useless.

Second, the calibration of the inner lengths of the camera between the
MLA and the image plane (b) and between the main lens and the MLA (h)
is conducted as in Sect. The initialization of these parameters by solving
the system of equations in Eq. uses the optimal depth values cé}f 4 for
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all features and C' calibration images together with the virtual depths #{%%in
the bottom row of Fig. 8] It is convenient to filter the depth values in case of
missing pixels or noise artifacts. The author in Ref. [I2] averages the virtual
depth values of a whole image blob. Instead, we opt for using the median
value within a radius of 5 pixels around the measured projections <pl@. The
values estimated by the linear least-squares method for the distances b and
h are 0.397 and 11.969 mm, respectively.

Next comes the second nonlinear optimization in Eq. (12)). This optimiza-
tion is well conditioned, taking 2 iterations and 1s. The final values for the
inner lengths are b, =0.432 mm and h, =11.850 mm (both are actually nega-
tive, owing to the formulation choice). The nonzero parameters of the depth
distortion model are also estimated: o= —0.080, = —0.044, v, = —0.127,
~v7=—190.03, and 7 =14.82. Note that we minimize 3-D Euclidean distances
between focused projections in Sc within the camera, refer to Fig. [f] The
optimization engine used is, again, MATLAB®’s 1sqnonlin.
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(a) Focused 3-D projection residuals (b) 3-D reprojection residuals

Figure 5: Ordered set of 2023 residual distance errors (blue crosses) against a Gaussian
distribution with the same mean and variance (red dots). Subfigure (a) shows the distribu-
tion of distances between focused projections within the camera (Ci)f’dfci)f’d), whereas
subfigure (b) shows distances between reprojected (from virtual depths) and estimated
(using the parameterized camera and scene models) actual 3-D points in front of the ca-
mera (cp—cP). The data in (a) follow a Gaussian distribution, thus optimal estimation
by leveraging the maximum likelihood criterion is warranted. By contrast, note the long
tail at the left-hand side of (b), which means that some depth measurements using noisy
virtual depths are markedly beyond ground truth—a known circumstance in stereo vision.
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3.2. Validation

We collect independent range data in order to validate the last section’s
results. To this end we use a commercial range measuring table and a known
planar calibration pattern, see Fig.[6] The camera is mounted on the vertical
axis and is shifted in range from 10 to 90 cm in 80 steps of 1cm.

Note that it is also possible to estimate range accuracy without an ex-
ternal measuring system. On the one hand, 3-D reprojections are computed
from both, virtual depth images (e.g. of the calibration pattern) and the
optimal intrinsic parameters, using Egs. and . On the other hand,
3-D estimations of the same features’ structure can be computed using total
focus brightness images, the local model of the calibration pattern, and the
intrinsic parameters estimated in Sect. The latter method is preferably
in the form of a nonlinear optimization similar to Eq. @[}, now with fixed,
optimal intrinsic parameters. The method is known as model-based struc-
ture estimation and is highly accurate when using regular pinhole cameras
with an adequate angular field of view [24]. Unfortunately, high accuracy is
yet to be verified in the context of plenoptic cameras. In this section we also
consider the accuracy of model-based structure estimation using total focus
brightness images.

Figure 6: Left: Camera mounted on the vertical axis of a range measuring table. Right:
Some total focus brightness and virtual depth images of the validation set consisting of 81
image pairs and range measurements.
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Figure 7: Absolute range accuracy (solid) and standard deviation (dashed) w.r.t. re-
gistered ground truth for all features and ranges. Since the range measurements are in a
different reference frame, these have been registered to S¢ using an aleatory, camera-based
range datum. We preferably take a datum from model-based structure estimation, as they
are sub-millimetrically accurate in the whole validation range (a). The same transforma-
tion has been used to register both measurement sets (a) and (b) because they share the
same thin lens camera model. Using that transformation and the measurements, the ca-
mera origin at S (i.e., the optical center of the lens) can be pinpointed within the camera
lens at approx. 1cm distance in front of the sensor chip, exactly as expected. It is worth
noting, however, that the thin lens model is just an approximation, whose origin is not a
physically distinctive point.

Fig. shows the absolute range accuracy w.r.t. registered ground
truth of model-based structure estimation using the total focus brightness
images of the Raytrix camera, the known model of the calibration plate op;,
and the thin lens camera model parameterized using Sect. [3.1] including e,
kl*, kQ*, cTre, and ¢¥. Range data shows highest accuracy with a stan-
dard deviation of 0.18 mm in the range between 10 and 90 cm—irrespective
of the actual depth, which matches the precision of the measuring system.
Note that this validation range is larger than the distances used for camera
calibration. Therefore, model-based structure estimation using the thin lens
camera model that has been parameterized using the method presented in
Sect. does indeed yield highly accurate range estimations.

Fig. @ in turn shows the same absolute range accuracy plot, now
using the light-field range measurements reprojected from virtual depths.
All corner measurements within an angular field of view of 30° have been
used (between 9 and 450 depending on the camera height, cf. Fig. @
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this way we include the problematic depth distortion model in the validation
results. We obtain highly accurate measurements in short range between 10
and 25cm with an accuracy of 1mm. From that point through to 90 cm
an unsteady bias appears within the range of +2cm. Note that due to the
overall unbiased results, these range measurements do not require any bias
correction factor, cf. Ref. [9] with a correction factor of 25cm. These are
good accuracy values considering the extended measurement range beyond
calibration data and the highly noisy nature of virtual depths.

4. Conclusion

In this work we introduce a novel method for the calibration of focused
plenoptic monocular cameras that leverages long-established practice for the
calibration of standard monocular cameras [13] [14]. We decouple the calibra-
tion of the traditional capabilities of plenoptic cameras from the calibration
of their novel features related with depth estimation. In this way, the higher
noise levels of the latter novel features will not affect the estimation of tradi-
tional parameters like the focal length and the radial lens distortion. Further
advantages are: First, different robustification methods can be applied to
the input data (either total focus or depth images) in accordance to their
specific propensity toward outliers. Second, both subtasks are simpler, en-
abling novel, rapid initialization schemes for all parameters where the only
required physical data are the metric size of the sensor elements (pixels) and
the local geometry of the calibration pattern. Third, neither the correlated
lens and depth distortion models nor the inner lengths f, b and h will get
entangled during optimization. In addition, we address particular details on
the modeling of this sort of cameras and suggest modifications in the choice
of the minimization space of the depth distortion model.

Experiments show the rapid convergence of the approach along with its
accuracy on independent ground-truth validation data.

Future work comprises the study of the depth distortion model and the
skewness of single camera components with regard to the lens unit used. The
inclusion of the geometry of the MLA in the calibration algorithm should
be addressed as well as the consideration of the three different types of mi-
crolenses used in the MLAs of Raytrix cameras [12]. In addition, a calibration
approach based on raw plenoptic images would generalize this formulation
to jointly calibrate unfocused and focused plenoptic cameras [29].
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