
ar
X

iv
:1

60
1.

03
12

8v
1 

 [
cs

.C
V

] 
 1

3 
Ja

n 
20

16

Enhancing Energy Minimization Framework for

Scene Text Recognition with Top-Down Cues

Anand Mishra1∗ , Karteek Alahari2 , C. V. Jawahar1

1IIIT Hyderabad 2Inria

Abstract

Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem
has gained significant attention from the computer vision community in recent years, and several methods based on
energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the
energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing
cropped words extracted from street images. The bottom-up cues are derived from individual character detections from
an image. We build a conditional random field model on these detections to jointly model the strength of the detections
and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e.,
language statistics. The optimal word represented by the text image is obtained by minimizing the energy function
corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped
scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and
show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and
analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our
framework to further improve the recognition performance.

Keywords: Scene text understanding, text recognition, lexicon priors, character recognition, random field models.

1. Introduction

The problem of understanding scenes semantically has
been one of the challenging goals in computer vision for
many decades. It has gained considerable attention over
the past few years, in particular, in the context of street
scenes [1, 2, 3]. This problem has manifested itself in var-
ious forms, namely, object detection [4, 5], object recogni-
tion and segmentation [6, 7]. There have also been signifi-
cant attempts at addressing all these tasks jointly [2, 8, 9].
Although these approaches interpret most of the scene suc-
cessfully, regions containing text are overlooked. As an
example, consider an image of a typical street scene taken
from Google Street View in Fig. 1. One of the first things
we notice in this scene is the sign board and the text it con-
tains. However, popular recognition methods ignore the
text, and identify other objects such as car, person, tree,
and regions such as road, sky. The importance of text in
images is also highlighted in the experimental study con-
ducted by Judd et al. [10]. They found that viewers fixate
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on text when shown images containing text and other ob-
jects. This is further evidence that text recognition forms
a useful component in understanding scenes.

In addition to being an important component of scene
understanding, scene text recognition has many poten-
tial applications, such as image retrieval, auto navigation,
scene text to speech systems, developing apps for visu-
ally impaired people [13, 14]. Our method for solving this
task is inspired by the many advancements made in the
object detection and recognition problems [4, 5, 7, 15].
We present a framework for recognizing text that exploits
bottom-up and top-down cues. The bottom-up cues are
derived from individual character detections from an im-
age. Naturally, these windows contain true as well as false
positive detections of characters. We build a conditional
random field (CRF) model [16] on these detections to de-
termine not only the true positive detections, but also the
word they represent jointly. We impose top-down cues
obtained from a lexicon-based prior, i.e., language statis-
tics, on the model. In addition to disambiguating between
characters, this prior also helps us in recognizing words.

The first contribution of this work is a joint framework
with seamless integration of multiple cues—individual char-
acter detections and their spatial arrangements, pairwise
lexicon priors, and higher-order priors—into a CRF frame-
work which can be optimized effectively. The proposed
method performs significantly better than other related
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Figure 2 Challenges in scene text recognition. A few sample images from the SVT and IIIT 5K-word datasets are
shown to highlight the variation in view point, orientation, non-uniform background, non-standard font styles and also
issues such as occlusion, noise, and inconsistent lighting. Standard OCRs perform poorly on these datasets (as seen in
Table 1 and [11, 12]).

Figure 1 A typical street scene image taken from Google
Street View. It contains very prominent sign boards with
text on the building and its windows. It also contains
objects such as car, person, tree, and regions such as road,
sky. Many scene understanding methods recognize these
objects and regions in the image successfully, but overlook
the text on the sign board, which contains rich, useful
information. The goal of this work is to address this gap
in understanding scenes.

energy minimization based methods for scene text recog-
nition. Our second contribution is devising a cropped
word recognition framework which is applicable not only to
closed vocabulary text recognition (where a small lexicon
containing the ground truth word is provided with each
image), but also to a more general setting of the prob-
lem, i.e., open vocabulary scene text recognition (where
the ground truth word may or may not belong to a generic
large lexicon or the English dictionary). The third contri-
bution is comprehensive experimental evaluation, in con-
trast to many recent works, which either consider a subset
of benchmark datasets or are limited to the closed vocab-
ulary setting. We evaluate on a number of cropped word
datasets (ICDAR 2003, 2011 and 2013 [17], SVT [18], and
IIIT 5K-word [19]) and show results in closed and open
vocabulary settings. Additionally, we analyzed the effec-
tiveness of individual components of the framework, the
influence of parameter settings, and the use of convolu-

tional neural network (CNN) based features [20].
The remainder of the paper is organized as follows. In

Section 2 we discuss related work. Section 3 describes our
scene text recognition model and its components. We then
present the evaluation protocols and the datasets used in
experimental analysis in Section 4. Comparison with re-
lated approaches is shown in Section 5, along with imple-
mentation details. We then make concluding remarks in
Section 6.

2. Related Work

The task of understanding scene text has gained a huge
interest for more than a decade [11, 12, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 20, 31]. It is closely related to the prob-
lem of Optical Character Recognition (OCR), which has
a long history in the computer vision and pattern recog-
nition communities [32]. However, the success of OCR
systems is largely restricted to text from scanned docu-
ments. Scene text exhibits a large variability in appear-
ance, as shown in Fig. 2, and can prove to be challenging
even for the state-of-the-art OCR methods (see Table 1
and [11, 12]). The problems in this context are: (1) text
localization, (2) cropped word recognition, and (3) isolated
character recognition. They have been tackled either in-
dividually [21, 27, 33], or jointly [11, 20, 23, 29]. This
paper focuses on addressing the cropped word recognition
problem. In other words, given an image region (e.g., in
the form of a bounding box) containing text, the task is
to recognize this content. The core components of a typi-
cal cropped word recognition framework are: localize the
characters, recognize them, and use statistical language
models to compose the characters into words. Our frame-
work builds on these components, but differs from previous
work in several ways. In the following, we review the prior
art and highlight these differences. The reader is encour-
aged to refer to [34] for a more comprehensive survey of
scene text recognition methods.

A popular technique for localizing characters in an OCR
system is to binarize the image and determine the potential
character locations based on connected components [35].
Such techniques have also been adapted for scene text
recognition [12], although with limited success. This is
mainly because obtaining a clean binary output for scene
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text images is often challenging; see Fig. 3 for examples.
An alternative approach is proposed in [36] using gradient
information to find potential character locations. More re-
cently, Yao et al. [31] proposed a mid-level feature based
technique to localize characters in scene text. We follow
an alternative strategy and cast the character localization
problem as an object detection task, where characters are
the objects. We then define an energy function on all the
potential characters.

One of the earliest works on large-scale natural scene
character recognition was presented in [27]. This work de-
velops a multiple kernel learning approach using a set of
shape-based features. Recent work [11, 37] has improved
over this with histogram of gradient features [15]. We per-
form an extensive analysis on features, classifiers, and pro-
pose methods to improve character recognition further, for
example, by augmenting the training set. In addition to
this, we show that the state-of-the-art CNN features [20]
can be successfully integrated with our word recognition
framework to further boost its performance.

A study on human reading psychology shows that our
reading improves significantly with prior knowledge of the
language [38]. Motivated by such studies, OCR systems
have used, often in post-processing steps [35, 39], statis-
tical language models like n-grams to improve their per-
formance. Bigrams or trigrams have also been used in the
context of scene text recognition as a post-processing step,
e.g., [40]. A few other works [41, 42, 43] integrate character
recognition and linguistic knowledge to deal with recogni-
tion errors. For example, [41] computes n-gram proba-
bilities from more than 100 million characters and uses a
Viterbi algorithm to find the correct word. The method
in [43], developed in the same year as our CVPR 2012
work [37], builds a graph on potential character locations
and uses n-gram scores to constrain the inference algo-
rithm to predict the word. In contrast, our approach uses
a novel location-specific prior (cf. (6)).

The word recognition problem has been looked at in
two contexts— with [11, 25, 37, 44, 45] and without [22,
19, 46] the use of an image-specific lexicon. In the case of
image-specific lexicon-driven word recognition, also known
as the closed vocabulary setting, a list of words is available
for every scene text image. The task of recognizing the
word now reduces to that of finding the best match from
this list. This is relevant in many applications, e.g., recog-
nizing text in a grocery store, where a list of grocery items
can serve as a lexicon. Wang et al. [44] adapted a multi-
layer neural network for this scenario. In [11], each word
in the lexicon is matched to the detected set of character
windows, and the one with the highest score is reported as
the predicted word. In one of our previous works [45], we
compared features computed on the entire scene text im-
age and those generated from synthetic font renderings of
lexicon words with a novel weighted dynamic time warping
(wDTW) approach to recognize words. In [25] Rodriguez-
Serrano and Perronnin proposed to embed word labels and
word images into a common Euclidean space, wherein the

Figure 3 Binarization results obtained with one of the
state-of-the-art methods [47] are shown for two sample im-
ages. We observed similar poor performance on most of
the images in scene text datasets, and hence do not use
binarization in our framework.

text recognition task is posed as a retrieval problem to find
the closest word label for a given word image. While all
these approaches are interesting, their success is largely
restricted to the closed vocabulary setting and cannot be
easily extended to the more general cases, for instance,
when image-specific lexicon is unavailable. Weinman et
al. [22] proposed a method to address this issue, although
with a strong assumption of known character boundaries,
which are not trivial to obtain with high precision on the
datasets we use. The work in [46] generalizes their previous
approach by relaxing the character-boundary requirement.
It is, however, evaluated only on “roughly fronto-parallel”
images of signs, which are less challenging than the scene
text images used in our work.

Our work belongs to the class of word recognition meth-
ods which build on individual character localization, simi-
lar to methods such as [12, 48]. In this framework, the
potential characters are localized, then a graph is con-
structed from these locations, and then the problem of
recognizing the word is formulated as finding an optimal
path in this graph [49] or inferring from an ensemble of
HMMs [48]. Our approach shows a seamless integration of
higher order language priors into the graph (in the form
of a CRF model), and uses more effective modern com-
puter vision features, thus making it clearly different from
previous works.

Since the publication of our original work in CVPR
2012 [37] and BMVC 2012 [19] papers, several approaches
for scene text understanding (e.g., text localization [50, 29,
51, 52], word recognition [20, 23, 30, 31, 53, 51] and text-
to-image retrieval [13, 51, 54, 55]) have been proposed.
Notably, there has been an increasing interest in explor-
ing deep convolutional network based methods for scene
text tasks (see [20, 30, 44, 51, 52] for example). These ap-
proaches are very effective in general, but the deep convo-
lutional network, which is at the core of these approaches,
lacks the capability to elegantly handle structured output
data. To understand this with the help of an example, let
us consider the problem of estimating human pose [56, 57],
where the task is to predict the locations of human body

3



joints such as head, shoulders, elbows and wrists. These
locations are constrained by human body kinematics and
in essence form a structured output. To deal with such
structured output data, state-of-the-art deep learning al-
gorithms include an additional regression step [56] or a
graphical model [57], thus showing that these techniques
are complementary to the deep learning philosophy. Sim-
ilar to human pose, text is structured output data [58].
To better handle this structured data, we develop our en-
ergy minimization framework [19, 37] with the motivation
of building a complementary approach, which can further
benefit methods built on the deep learning paradigm. In-
deed, we see that combining the two frameworks further
improves text recognition results (Section 5).

3. The Recognition Model

We propose a conditional random field (CRF) model
for recognizing words. The CRF is defined over a set of N
random variables x = {xi|i ∈ V}, where V = {1, 2, . . . , N}.
Each random variable xi denotes a potential character in
the word, and can take a label from the label set L =
{l1, l2, . . . , lk} ∪ ǫ, which is the set of English characters,
digits and a null label ǫ to discard false character detec-
tions. The most likely word represented by the set of
characters x is found by minimizing the energy function,
E : Ln → R, corresponding to the random field. The en-
ergy function E can be written as sum of potential func-
tions:

E(x) =
∑

c∈C

ψc(xc), (1)

where C ⊂ P(V), with P(V) denoting the powerset of V .
Each xc defines a set of random variables included in sub-
set c, referred to as a clique. The function ψc defines a con-
straint (potential) on the corresponding clique c. We use
unary, pairwise and higher order potentials in this work,
and define them in Section 3.2. The set of potential char-
acters is obtained by the character detection step discussed
in Section 3.1. The neighbourhood relations among char-
acters, modelled as pairwise and higher order potentials,
are based on the spatial arrangement of characters in the
word image.

In the following we show an example energy function
composed of unary, pairwise and higher order (of clique
size three) terms on a sample word with four characters.
For a word to be recognized as “OPEN” the following en-
ergy function should be the minimum.

ψ(O,P,E,N) = ψ1(O) + ψ1(P ) + ψ1(E) + ψ1(N)

+ ψ2(O,P ) + ψ2(P,E) + ψ2(E,N)

+ ψ3(O,P,E) + ψ3(P,E,N).

The third order terms ψ3(O,P,E) and ψ3(P,E,N) are
decomposed as follows.

ψ3(O,P,E) = ψa
1 (OPE) + ψa

2 (OPE,O)

+ ψa
2 (OPE,P ) + ψa

2 (OPE,E).

Figure 4 Typical challenges in character detection. (a)
Inter-character confusion: A window containing parts of
the two o’s is falsely detected as x. (b) Intra-character
confusion: A window containing a part of the character B
is recognized as E.

ψ3(P,E,N) = ψa
1 (PEN) + ψa

2 (PEN,P )

+ ψa
2 (PEN,E) + ψa

2 (PEN,N).

3.1. Character Detection

The first step in our approach is to detect potential lo-
cations of characters in a word image. In this work we use
a sliding window based approach for detecting characters,
but other methods, e.g., [31], can also be used instead.

Sliding window detection. This technique has been very
successful for tasks such as, face [59] and pedestrian [15]
detection, and also for recognizing handwritten words us-
ing HMM based methods [60]. Although character detec-
tion in scene images is similar to such problems, it has
its unique challenges. Firstly, there is the issue of dealing
with many categories (63 in all) jointly. Secondly, there
is a large amount of inter-character and intra-character
confusion, as illustrated in Fig. 4. When a window con-
tains parts of two characters next to each other, it may
have a very similar appearance to another character. In
Fig. 4(a), the window containing parts of the characters ‘o’
can be confused with ‘x’. Furthermore, a part of one char-
acter can have the same appearance as that of another.
In Fig. 4(b), a part of the character ‘B’ can be confused
with ‘E’. We build a robust character classifier and adopt
an additional pruning stage to overcome these issues.

The problem of classifying natural scene characters typ-
ically suffers from the lack of training data, e.g., [27] uses
only 15 samples per class. It is not trivial to model the
large variations in characters using only a few examples.
To address this, we add more examples to the training set
by applying small affine transformations [61, 62] to the
original character images. We further enrich the training
set by adding many non-character negative examples, i.e.,
from the background. With this strategy, we achieve a
significant boost in character classification accuracy (see
Table 3).

We consider windows at multiple scales and spatial lo-
cations. The location of the ith window, di, is given by
its center and size. The set K = {c1, c2, . . . , ck}, denotes
label set. Note that k = 63 for the set of English charac-
ters, digits and a background class (null label) in our work.
Let φi denote the features extracted from a window loca-
tion di. Given the window di, we compute the likelihood,
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Figure 5 Distribution of aspect ratios of few digits and
characters: (a) 0 (b) 2 (c) B (d) Y. The aspect ratios are
computed on character from the IIIT-5K word training
set.

p(cj |φi), of it taking a label cj for all the classes in K. In
our implementation, we used explicit feature representa-
tion [63] of histogram of gradient (HOG) features [15] for
φi, and the likelihoods p are (normalized) scores from a one
vs rest multi-class support vector machine (SVM). Imple-
mentation details of the training procedure are provided
in Section 5.1.

This basic sliding window detection approach produces
many potential character windows, but not all of them are
useful for recognizing words. We discard some of the weak
detection windows using the following pruning method.

Pruning windows. For every potential character window,
we compute a score based on: (i) SVM classifier confi-
dence, and (ii) a measure of the aspect ratio of the charac-
ter detected and the aspect ratio learnt for that character
from training data. The intuition behind this score is that,
a strong character window candidate should have a high
classifier confidence score, and must fall within some range
of the sizes observed in the training data. In order to de-
fine the aspect ratio measure, we observed the distribution
of aspect ratios of characters from the IIIT-5K word train-
ing set. A few examples of these distributions are shown in
Fig. 5. Since they follow a Gaussian distribution, we chose
this score accordingly. For a window di with an aspect
ratio ai, let cj denote the character with the best classifier
confidence value given by Sij . The mean aspect ratio for
the character cj computed from training data is denoted
by µaj

. We define a goodness score (GS) for the window
di as:

GS(di) = Sij exp

(

−
(µaj

− ai)
2

2σ2
aj

)

, (2)

where σaj
is the variance of the aspect ratio for character

cj in the training data. A low goodness score indicates
a weak detection, which is then removed from the set of
candidate character windows.

We then apply character-specific non-maximum sup-
pression (NMS), similar to other sliding window detection
methods [5], to address the issue of multiple overlapping
detections for each instance of a character. In other words,
for every character class, we select detections which have a
high confidence score, and do not overlap significantly with
any of the other stronger detections of the same character
class. We perform NMS after aspect ratio pruning to avoid
wide windows with many characters suppressing weaker
single character windows they overlap with. The pruning
and NMS steps are performed conservatively, to discard
only the obvious false detections. The remaining false pos-
itives are modelled in an energy minimization framework
with language priors and other cues, as discussed below.

3.2. Graph Construction and Energy Formulation

We solve the problem of minimizing the energy func-
tion (1) on a corresponding graph, where each random
variable is represented as a node in the graph. We begin
by ordering the character windows based on their horizon-
tal location in the image, and add one node each for every
window sequentially from left to right. The nodes are then
connected by edges. Since it is not natural for a window on
the extreme left to be strongly related to another window
on the extreme right, we only connect windows which are
close to each other. The intuition behind close-proximity
windows is that they could represent detections of two sep-
arate characters. As we will see later, the edges are used to
encode the language model as top-down cues. Such pair-
wise language priors alone may not be sufficient in some
cases, for example, when an image-specific lexicon is un-
available. Thus, we also integrate higher order language
priors in the form of n-grams computed from the English
dictionary by adding an auxiliary node connecting a set of
n character detection nodes.

Each (non-auxiliary) node in the graph takes one label
from the label set L = {l1, l2, . . . , lk} ∪ ǫ. Recall that each
lu is an English character or digit, and the null label ǫ is
used to discard false windows that represent background
or parts of characters. The cost associated with this label
assignment is known as the unary cost. The cost for two
neighbouring nodes taking labels lu and lv is known as the
pairwise cost. This cost is computed from bigram scores
of character pairs in the English dictionary or an image-
specific lexicon. The auxiliary nodes in the graph take
labels from the extended label set Le. Each element of
Le represents one of the n-grams present in the dictionary
and an additional label to assign a constant (high) cost to
all n-grams that are not in the dictionary. The proposed
model is illustrated in Fig. 6, where we show a CRF of
order four as an example. Once the graph is constructed,
we compute its corresponding cost functions as follows.
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Figure 6 The proposed model illustrated as a graph. Given a word image (shown on the left), we evaluate character
detectors and obtain potential character windows, which are then represented in a graph. These nodes are connected
with edges based on their spatial positioning. Each node can take a label from the label set containing English characters,
digits, and a null label (to suppress false detections). To integrate language models, i.e., n-grams, into the graph, we
add auxiliary nodes (shown in red), which constrain several character windows together (sets of 4 characters in this
example). Auxiliary nodes take labels from a label set containing all valid English n-grams and an additional label to
enforce high cost for an invalid n-gram.

3.2.1. Unary cost

The unary cost of a node taking a character label is
determined by the SVM confidence scores. The unary term
ψ1, which denotes the cost of a node xi taking label lu, is
defined as:

ψ1(xi = lu) = 1− p(lu|xi), (3)

where p(lu|xi) is the SVM score of character class lu for
node xi, normalized with Platt’s method [64]. The cost of
xi taking the null label ǫ is given by:

ψ1(xi = ǫ) = max
u

p(lu|xi) exp

(

−
(µau

− ai)
2

σ2
au

)

, (4)

where ai is the aspect ratio of the window corresponding
to node xi, µau

and σau
are the mean and variance of

the aspect ratio respectively of the character lu, computed
from the training data. The intuition behind this cost
function is that, for taking a character label, the detected
window should have a high classifier confidence and its
aspect ratio should agree with that of the corresponding
character in the training data.

3.2.2. Pairwise cost

The pairwise cost of two neighbouring nodes xi and xj
taking a pair of labels lu and lv respectively is determined
by the cost of their joint occurrence in the dictionary. This
cost ψ2 is given by:

ψ2(xi = lu, xj = lv) = λl exp(−βp(lu, lv)), (5)

where p(lu, lv) is the score determining the likelihood of the
pair lu and lv occurring together in the dictionary. The pa-
rameters λl and β are set empirically as λl = 2 and β = 50
in all our experiments. The score p(lu, lv) is commonly
computed from joint occurrences of characters in the lexi-
con [41, 42, 43, 65]. This prior is effective when the lexicon

size is small, but it is less so as the lexicon increases in size.
Furthermore, it fails to capture the location-specific infor-
mation of pairs of characters. As a toy example, consider
a lexicon with only two words CVPR and ICPR. Here,
the character pair (P,R) is more likely to occur at the end
of the word, but a standard bigram prior model does not
incorporate this location-specific information.

To overcome the lack of location-specific information,
we devise a node-specific pairwise cost by adapting [66]
to the scene text recognition problem. We divide a given
word image into T parts, where T is an estimate of the
number of characters in the image. This estimate T is
given by the image width divided by the average character
window width, with the average computed over all the de-
tected characters in the image. To determine the pairwise
cost involving windows in the t th image part, we define
a region of interest (ROI) which includes the two adjacent
parts t− 1, t+1, in addition to t. With this, we do a ROI
based search in the lexicon. In other words, we consider all
the character pairs involving characters in locations t− 1,
t and t + 1 in all the lexicon words to compute the likeli-
hood of a pair occurring together. Note that the extreme
cases (involving the leftmost and rightmost character in
the lexicon word) are treated appropriately by considering
only one of the two pairs.

This pairwise cost using the node-specific prior is given
by:

ψ2(xi = lu, xj = lv) =

{

0 if (lu, lv) ∈ roi,
λl otherwise.

(6)

We evaluated our approach with both the pairwise terms
(5) and (6), and found that the node-specific prior (6)
achieves better performance. The cost of nodes xi and xj
taking label lu and ǫ respectively is defined as:

ψ2(xi = lu, xj = ǫ) = λo exp(−β(1−O(xi, xj))
2), (7)
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where O(xi, xj) is the overlap fraction between windows
corresponding to the nodes xi and xj . The pairwise cost
ψ2(xi = ǫ, xj = lu) is defined similarly. The parameters
are set empirically as λo = 2 and β = 50 in our experi-
ments. This cost ensures that when two character windows
overlap significantly, only one of them are assigned a char-
acter/digit label in order to avoid parts of characters being
labelled.

3.2.3. Higher order cost

Let us consider a CRF of order n = 3 as an example
to understand this cost. An auxiliary node corresponding
to every clique of size 3 is added to represent this third
order cost in the graph. The higher order cost is then
decomposed into unary and pairwise terms with respect
to this node, similar to [67]. Each auxiliary node in the
graph takes one of the labels from the extended label set
{L1, L2, . . . , LM}∪LM+1, where labels L1 . . . LM represent
all the trigrams in the dictionary. The additional label
LM+1 denotes all those trigrams which are absent in the
dictionary. The unary cost ψa

1 for an auxiliary variable yi
taking label Lm is:

ψa
1 (yi = Lm) = λa exp(−βP (Lm)), (8)

where λa is a constant. We set λa = 5 empirically, in all
our experiments, unless stated otherwise. The parameter
β controls penalty between dictionary and non-dictionary
n-grams, and is empirically set to 50. The score P (Lm)
denotes the likelihood of trigram Lm in the English, and
is further described in Section 3.2.4. The pairwise cost be-
tween the auxiliary node yi taking a label Lm = lulvlw and
the left-most non-auxiliary node in the clique, xi, taking
a label lr is given by:

ψa
2 (yi = Lm, xi = lr) =







0 if r = u

0 if lr = ǫ

λb otherwise,
(9)

where λb penalizes a disagreement between the auxiliary
and non-auxiliary nodes, and is empirically set to 1. The
other two pairwise terms for the second and third nodes
are defined similarly. Note that when one or more xi’s
take null label, the corresponding pairwise term(s) be-
tween xi(s) and the auxiliary node are set to 0.

3.2.4. Computing language priors

We compute n-gram based priors from the lexicon (or
dictionary) and then adapt standard techniques for smooth-
ing these scores [41, 68, 69] to the open and closed vocab-
ulary cases.

Our method uses the score denoting the likelihood of
joint occurrence of pair of labels lu and lv represented
as P (lu, lv), triplets of labels lu, lv and lw denoted by
P (lu, lv, lw) and even higher order (e.g., fourth order). Let
C(lu) denote the number of occurrences of lu, C(lu, lv) be
the number of joint occurrences of lu and lv next to each

other, and similarly C(lu, lv, lw) is the number of joint oc-
currences of all three labels lu, lv, lw next to each other.
The smoothed scores [68] P (lu, lv) and P (lu, lv, lw) are
now:

P (lu, lv) =







0.4 if lu, lv are digits,
C(lu,lv)
C(lv)

if C(lu, lv) > 0,

αluP (lv) otherwise,

(10)

P (lu, lv, lw) =















0.4 if lu, lv, lw are digits,
C(lu,lv,lw)
C(lv,lw) if C(lu, lv, lw) > 0,

αluP (lv, lw) else if C(lu, lv) > 0,
αlu,lvP (lw) otherwise,

(11)
Image-specific lexicons (small or medium) are used in the
closed vocabulary setting, while in the open vocabulary
case we use a lexicon containing half a million words (hence-
forth referred to as large lexicon) provided by [22] to com-
pute these scores. The parameters αlu and αlu,lv are learnt
on the large lexicon using SRILM toolbox.3 They deter-
mine the low score values for n-grams not present in the
lexicon. We assign a constant value (0.4) when the labels
are digits, which do not occur in the large lexicon.

3.2.5. Inference

Having computed the unary, pairwise and higher order
terms, we use the sequential tree-reweighted message pass-
ing (TRW-S) algorithm [70] to minimize the energy func-
tion. The TRW-S algorithm maximizes a concave lower
bound of the energy. It begins by considering a set of trees
from the random field, and computes probability distribu-
tions over each tree. These distributions are then used
to reweight the messages being passed during loopy belief
propagation [71] on each tree. The algorithm terminates
when the lower bound cannot be increased further, or the
maximum number of iterations has been reached.

In summary, given an image containing a word, we:
(i) locate the potential characters in it with a character
detection scheme, (ii) define a random field over all these
potential characters, (iii) compute the language priors and
integrate them into the random field model, and then (iv)
infer the most likely word by minimizing the energy func-
tion corresponding to the random field.

4. Datasets and Evaluation Protocols

Several public benchmark datasets for scene text un-
derstanding have been released in recent years. ICDAR [17]
and Street View Text (SVT) [18] datasets are two of the
initial datasets for this problem. They both contain data
for text localization, cropped word recognition and iso-
lated character recognition tasks. In this paper we use
the cropped word recognition part from these datasets.

3Available at: http://www.speech.sri.com/projects/srilm/
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Table 1 Our IIIT 5K-word dataset contains a few less
challenging (Easy) and many very challenging (Hard) im-
ages. To present analysis of the dataset, we manually di-
vided the words in the training and test sets into easy
and hard categories based on their visual appearance. The
recognition accuracy of a state-of-the-art commercial OCR
– ABBYY9.0 – for this dataset is shown in the last col-
umn. Here we also show the total number of characters,
whose annotations are also provided, in the dataset.

Training Set

#words #characters ABBYY9.0(%)

Easy 658 - 44.98

Hard 1342 - 16.57

Total 2000 9658 20.25

Test Set

#words #characters ABBYY9.0(%)

Easy 734 - 44.96

Hard 2266 - 5.00

Total 3000 15269 14.60

Although these datasets have served well in building in-
terest in the scene text understanding problem, they are
limited by their size of a few hundred images. To address
this issue, we introduced the IIIT 5K-word dataset [19],
containing a diverse set of 5000 words. Here, we provide
details of all these datasets and the evaluation protocol.

SVT. The street view text (SVT) dataset contains images
taken from Google Street View. As noted in [72], most of
the images come from business signage and exhibit a high
degree of variability in appearance and resolution. The
dataset is divided into SVT-spot and SVT-word, meant
for the tasks of locating and recognizing words respectively.
We use the SVT-word dataset, which contains 647 word
images.

Our basic unit of recognition is a character, which
needs to be localized before classification. Failing to detect
characters will result in poorer word recognition, making it
a critical component of our framework. To quantitatively
measure the accuracy of the character detection module,
we created ground truth data for characters in the SVT-
word dataset. This ground truth dataset contains around
4000 characters of 52 classes, and is referred to as as SVT-
char, which is available for download [73].

ICDAR 2003 dataset. The ICDAR 2003 dataset was orig-
inally created for text detection, cropped character clas-
sification, cropped and full image word recognition, and
other tasks in document analysis [17]. We used the part
corresponding to the cropped word recognition called ro-
bust word recognition. Following the protocol of [11], we
ignore words with less than two characters or with non-

Table 2 Analysis of the IIIT 5K-word dataset. We show
the percentage of non-dictionary words (Non-dict.), in-
cluding digits, and the percentage of words containing only
digits (Digits) in the first two rows. We also show the per-
centage of words that are composed from valid English
trigrams (Dict. 3-grams), four-grams (Dict. 4-grams) and
five-grams (Dict. 5-grams) in the last three rows. These
statistics are computed using the large lexicon.

IIIT 5K train IIIT 5K test
Non-dict. words 23.65 22.03
Digits 11.05 7.97
Dict. 3-grams 90.27 88.05
Dict. 4-grams 81.40 79.27
Dict. 5-grams 68.92 62.48

alphanumeric characters, which results in 859 words over-
all. For subsequent discussion we refer to this dataset
as ICDAR(50) for the image-specific lexicon-driven case
(closed vocabulary), and ICDAR 2003 when this lexicon
is unavailable (open vocabulary case).

ICDAR 2011/2013 datasets. These datasets were intro-
duced as part of the ICDAR robust reading competitions [74,
75]. They contain 1189 and 1095 word images respectively.
We show case-sensitive open vocabulary results on both
these datasets. Also, following the ICDAR competition
evaluation protocol, we do not exclude words containing
special characters (such as &, :), and report results on the
entire dataset.

IIIT 5K-word dataset. The IIIT 5K-word dataset [19, 73]
contains both scene text and born-digital images. Born-
digital images—category of images which has gained in-
terest in ICDAR 2011 competitions [74]—are inherently
low-resolution, made for online transmission, and have a
variety of font sizes and styles. This dataset is not only
much larger than SVT and the ICDAR datasets, but also
more challenging. All the images were harvested through
Google image search. Query words like billboard, sign-
board, house number, house name plate, movie poster
were used to collect images. The text in the images was
manually annotated with bounding boxes and their corre-
sponding ground truth words. The IIIT 5K-word dataset
contains in all 1120 scene images and 5000 word images.
We split it into a training set of 380 scene images and
2000 word images, and a test set of 740 scene images and
3000 word images. To analyze the difficulty of the IIIT
5K-word dataset, we manually divided the words in the
training and test sets into easy and hard categories based
on their visual appearance. An annotation team consisting
of three people have done three independent splits. Each
word is then tagged as either being easy or hard by tak-
ing a majority vote. This split is available on our project
page [73]. Table 1 shows these splits in detail. We observe
that a commercial OCR performs poorly on both the train
and test splits. Furthermore, to evaluate components like
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character detection and recognition, we also provide anno-
tated character bounding boxes. It should be noted that
around 22% of the words in this dataset are not in the
English dictionary, e.g., proper nouns, house numbers, al-
phanumeric words. This makes this dataset suitable for
open vocabulary cropped word recognition. We show an
analysis of dictionary and non-dictionary words in Table 2.

Evaluation protocol. We evaluate the word recognition ac-
curacy in two settings: closed and open vocabulary. Fol-
lowing previous work [11, 53, 19], we evaluate case-insensitive
word recognition on SVT, ICDAR 2003, IIIT 5K-word,
and case-sensitive word recognition on ICDAR 2011 and
ICDAR 2013. For the closed vocabulary recognition case,
we perform a minimum edit distance correction, since the
ground truth word belongs to the image-specific lexicon.
On the other hand, in the case of open vocabulary recogni-
tion, where the ground truth word may or may not belong
to the large lexicon, we do not perform edit distance based
correction. We perform many of our analyses on the IIIT
5K-word dataset, unless otherwise stated, since it is the
largest dataset for this task, and also comes with charac-
ter bounding box annotations.

5. Experiments

Given an image region containing text, cropped from
a street scene, our task is to recognize the word it con-
tains. In the process, we develop several components (such
as a character recognizer) and also evaluate them to jus-
tify our choices. The proposed method is evaluated in
two settings, namely, closed vocabulary (with an image-
specific lexicon) and open vocabulary (using an English
dictionary for the language model). We compare our re-
sults with the best-performing recent methods for these
two cases. For baseline comparisons we choose commercial
OCR namely ABBYY [78] and a public implementation of
a recent method [79] in combination with an open source
OCR.

5.1. Character Classifier

We use the training sets of ICDAR 2003 character [17]
and Chars74K [27] datasets to train the character classi-
fiers. This training set is augmented with 48× 48 patches
harvested from scene images, with buildings, sky, road and
cars, which do not contain text, as additional negative
training examples. We then apply affine transformations
to all the character images, resize them to 48 × 48, and
compute HOG features. Three variations (13, 31 and 36-
dimensional) of HOG were analyzed (see Table 3). We
then use an explicit feature map [63] and the χ2 kernel to
learn the SVM classifier. The SVM parameters are esti-
mated by cross-validating on a validation set. The explicit
feature map not only allows a significant reduction in clas-
sification time, compared to non-linear kernels like RBF,
but also achieves a good performance.

The two main differences from our previous work [37]
in the design of the character classifier are: (i) enriching
the training set, and (ii) using an explicit feature map
and a linear kernel (instead of RBF). Table 3 compares
our character classification performance with [11, 27, 37,
76, 77, 43] on several test sets. We achieve at least 4%
improvement over our previous work (RBF [37]) on all
the datasets, and also perform better than [11, 27]. We
are also comparable to a few other recent methods [43,
76], which show a limited evaluation on the ICDAR 2003
dataset. Following an evaluation insensitive to case (as
done in a few benchmarks, e.g., [20, 53], we obtain 77% on
ICDAR 2003, 75% on SVT-char, 79% on Chars74K, and
75% on IIIT 5K-word. It should be noted that feature
learning methods based on convolutional neural networks,
e.g., [77, 20], show an excellent performance. This inspired
us to integrate them into our framework. We used publicly
available features [20]. This will be further discussed in
Section 5.3. We could not compare with other related
recent methods [30, 23] since they did not report isolated
character classification accuracy.

In terms of computation time, linear SVMs trained
with HOG-13 features outperform others, but since our
main focus is on word recognition performance, we use the
most accurate combination, i.e., linear SVMs with HOG-
36. We observed that this smart selection of training data
and features not only improves character recognition ac-
curacy but also improves the second and third best pre-
dictions for characters.

5.2. Character Detection

Sliding window based character detection is an impor-
tant component of our framework, since our random field
model is defined on these detections. We use windows of
aspect ratio ranging from 0.1 to 2.5 for sliding window
and at every possible location of the sliding window, we
evaluate a character classifier. This provides the likeli-
hood of the window containing the respective character.
We pruned some of the windows based on their aspect ra-
tio, and then used the goodness measure (2) to discard
the windows with a score less than 0.1 (refer Section 3.1).
Character-specific NMS is done on the remaining windows
with an overlap threshold of 40%, i.e., if two detections
have more than 40% overlap and represent the same char-
acter class, we suppress the weaker detection. We evalu-
ated the character detection results with the intersection
over union measure and a threshold of 50%, following IC-
DAR 2003 [17] and PASCAL-VOC [80] evaluation proto-
col. Our sliding window approach achieves recall of 80%
on the IIIT 5K-word dataset, significantly better than us-
ing a binarization scheme for detecting characters and also
superior to techniques like MSER [81] and CSER [79] (see
Table 7 and Section 5.4).

5.3. Word Recognition

Closed vocabulary recognition. The results of the proposed
CRF model in closed vocabulary setting are presented
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Table 3 Character classification accuracy (in %). A smart choice of features, training examples and classifier is key to
improving character classification. We enrich the training set by including many affine transformed (AT) versions of the
original training data from ICDAR and Chars74K (c74k). The three variants of our approach (H-13, H-31 and H-36)
show noticeable improvement over several methods. The character classification results shown here are case sensitive
(all rows except the last two). It is to be noted that [27] only uses 15 training samples per class. The last two rows
show a case insensitive (CI) evaluation. ∗We do not evaluate the convolutional neural network classifier in [20] (CNN
feat+classifier) on the c74K dataset, since the entire dataset was used to train the network.

Method SVT ICDAR c74K IIIT 5K Time
Exempler SVM [76] - 71 - - -
Elagouni et al. [43] - 70 - - -
Coates et al. [77] - 82 - - -
FERNS [11] - 52 47 - -
RBF [37] 62 62 64 61 3ms
MKL+RBF [27] - - 57 - 11ms
H-36+AT+Linear 69 73 68 66 2ms
H-31+AT+Linear 64 73 67 63 1.8ms
H-13+AT+Linear 65 72 66 64 0.8ms

H-36+AT+Linear (CI) 75 77 79 75 0.8ms
CNN feat+classifier [20] (CI) 83 86 ∗ 85 1ms

in Table 4. We compare our method with many recent
works for this task. To compute the language priors we
use lexicons provided by authors of [11] for SVT and IC-
DAR(50). The image-specific lexicon for every word in the
IIIT 5K-word dataset was developed following the method
described in [11]. These lexicons contain the ground truth
word and a set of distractors obtained from randomly cho-
sen words (from all the ground truth words in the dataset).
We used a CRF with higher order term (n=4), and similar
to other approaches, applied edit distance based correction
after inference. The constant λa in (8) to 1, given the small
size of the lexicon.

The gain in accuracy over our previous work [37], seen
in Table 4, can be attributed to the higher order CRF and
an improved character classifier. The character classifier
uses: (i) enriched training data, and (ii) an explicit feature
map, to achieve about 5% gain (see Section 5.1 for details).
Other methods, in particular, our previous work on holis-
tic word recognition [45], label embedding [25] achieve a
reasonably good performance, but are restricted to the
closed vocabulary setting, and their extension to more
general settings, such as the open vocabulary case, is un-
clear. Methods published since our original work [37], such
as [23, 53], also perform well. Very recently, methods based
on convolutional neural networks [30, 20] have shown very
impressive results for this problem. It should be noted
that such methods are typically trained on much larger
datasets, for example, 10M compared to 0.1M typically
used in state-of-the-art methods, which are not publicly
available [30]. Inspired by these successes, we use a CNN
classifier [20] to recognize characters, instead of our SVM
classifier based on HOG features (see Sec. 3.1). We show
results with this CNN classifier on SVT, ICDAR 2003 and
IIIT-5K word datasets in Table 4 and observe significant
improvement in accuracy, showing its complementary na-

ture to our energy based method. However, there remains
a difference in performance between the deep feature based
method [20] and [This work, CNN]. This is primarily due
to use of CNN features for learning classifiers for individ-
ual character as well as bi-grams in [20]. In contrast, our
method only uses the pre-trained character classifier pro-
vided by [20]. Nevertheless, the improvement observed
over [This work, HOG] does show the complementary na-
ture of the two approaches, and integrating the two further
would be an interesting avenue for future research.

Open vocabulary recognition. In this setting we use a lexi-
con of 0.5 million words from [22] instead of image-specific
lexicons to compute the language priors. Many charac-
ter pairs are equally likely in such a large lexicon, thereby
rendering pairwise priors is less effective than in the case
of a small lexicon. We use priors of order four to ad-
dress this (see also analysis on the CRF order in Sec-
tion 5.4). Results on various datasets in this setting are
shown in Table 5. We compare our method with recent
work by Feild and Miller [26] on the ICDAR 2003 dataset,
where our method with HOG features shows a comparable
performance. Note that [26] additionally uses web-based
corrections, unlike our method, where the results are ob-
tained directly by performing inference on the higher order
CRF model. On the ICDAR 2011 and 2013 datasets we
compare our method with the top performers from the
respective competitions. Our method outperforms the IC-
DAR 2011 robust reading competition winner (TH-OCR
method) method by 17%. This performance is also better
than a recently published work from 2014 by Weinman et
al. [23]. On the ICDAR 2013 dataset, the proposed higher
order model is significantly better than the baseline and
is in the top-5 performers among the competition entries.
The winner of this competition (PhotoOCR) uses a large
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Table 4 Word recognition accuracy (in %): closed vo-
cabulary setting. We present results of our proposed
higher order model (“This work”) with HOG as well as
CNN features. See text for details.

Method Accuracy

ICDAR 2003 (50) dataset

Baseline (ABBYY) [78] 56.04
Baseline (CSER+tesseract) [79] 57.27
Novikova et al. [24] 82.80
Our Holistic recognition [45] 89.69
Deep learning approaches
Wang et al. [44] 90.00
Deep features [20] 96.20
Other energy min. approaches
PLEX [11] 72.00
Shi et al. [53] 87.04
Our variants:
Pairwise CRF [37] 81.74
Higher order [This work, HOG] 84.07
Higher order [This work, CNN] 88.02

SVT-Word dataset

Baseline(ABBYY) [78] 35.00
Baseline (CSER+tesseract) [79] 37.71
Novikova et al. [24] 72.90
Our Holistic recognition [45] 77.28
Deep learning approaches
Wang et al. [44] 70.00
PhotoOCR [30] 90.39
Deep features [20] 86.10
Other energy min. approaches
PICT [72] 59.00
PLEX [11] 57.00
Shi et al. [53] 73.51
Weinman et al. [23] 78.05
Our variants:
Pairwise CRF [37] 73.26
Higher order [This work, HOG] 75.27
Higher order [This work, CNN] 78.21

IIIT 5K-Word (Small)

Baseline(ABBYY) [78] 24.50
Baseline (CSER+tesseract) [79] 33.07
Rodriguez & Perronnin [25] 76.10
Strokelets [31] 80.20
Our variants:
Pairwise CRF [37] 66.13
Higher order [This work, HOG] 71.80
Higher order [This work, CNN] 78.07

proprietary training dataset, which is unavailable publicly,
making it infeasible to do a fair comparison. Other meth-
ods (NESP [82], MAPS [83], PLT [84]) use many prepro-
cessing techniques, followed by off-the-self OCR. Such pre-
processing techniques are highly dataset dependent and
may not generalize easily to all the challenging datasets

we use. Despite the lack of these preprocessing steps, our
method shows a comparable performance. On the IIIT
5K-word dataset, which is large (three times the size of
ICDAR 2013 dataset) and challenging, the only published
result to our knowledge is Strokelets [31] from CVPR 2014.
Our method performs 7% better than Strokelets. Using
CNN features instead of HOG further improves our word
recognition accuracy, as shown in Table 5.

The main focus of this work is on evaluating datasets
containing scene text images or a mixture of scene text
and born-digital images. Nevertheless, we also tested our
method on the born-digital image dataset from the recent
ICDAR 2013 competition. Our approach with pre-trained
CNN features achieves 78% accuracy on this dataset, which
is comparable to other top performers (80.40%, 80.26%,
79.40%), and lower than PhotoOCR (82%), the competi-
tion winner using an end-to-end deep learning approach.

To sum up, our proposed method performs well consis-
tently on several popular scene text datasets. Fig. 7 shows
the qualitative performance of the proposed method on a
few sample images. The higher order CRF outperforms
the unary and pairwise CRFs. This is intuitive due to
the better expressiveness of the higher order potentials.
One of the failure cases is shown in the last row in Fig. 7,
where the higher order potential is computed from a lex-
icon which does not have sufficient examples to handle
alphanumeric words.

5.4. Further Analysis

Lexicon size. The size of the lexicon plays an important
role in the word recognition performance. With a small-
size lexicon, we obtain strong language priors which help
overcome inaccurate character detection and recognition
in the closed vocabulary setting. A small lexicon provides
much stronger priors than the large lexicon in this case, as
the performance degrades with increase in the lexicon size.
We show this behaviour on the IIIT 5K-word dataset in
Table 6 with small (50), medium (1000) and large (0.5
million) lexicons. We also compare our results with a
state-of-the-art methods [25, 31]. We observe that [25, 31]
shows better recognition performance with the small lex-
icon, when we use HOG features, but as the size of the
lexicon increases, our method outperforms [25].

Alternatives for character detection.. While our sliding
window approach for character detection performs well in
several scenarios, including text that is not aligned with
the image axes to a small extent (e.g., rows 4 - 6 in Fig-
ure 7), there are other alternatives. In particular, we inves-
tigated the use of binarization, MSER [81], and CSER [49]
algorithms. In the first experiment, we replaced our detec-
tion module with a binarization based character extraction
scheme – either a traditional binarization technique [85] or
a more recent random field based approach [47]. A con-
nected component analysis was performed on the binarized
images to obtain a set of potential character locations. We
then defined the CRF on these characters and performed
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Table 5 Word recognition accuracy (in %): open vocabulary
setting. The results of our proposed higher order model (“This
work”) with HOG as well as CNN features are presented here.
Since the network used here to compute CNN features, i.e. [20],
is learnt on data from several sources (e.g., ICDAR 2013), we
evaluated with CNN features only on ICDAR 2003 and IIIT-5K
word datasets, as recommended by the authors. Note that we
also compare with top performers (as given in [74, 75]) in the
ICDAR 2011 and 2013 robust reading competitions. We follow
standard protocols for evaluation – case sensitive on ICDAR
2011 and 2013 and case insensitive on ICDAR 2003 and IIIT
5K-Word.

Method Accuracy

ICDAR 2003 dataset

Baseline (ABBYY) 46.51
Baseline (CSER+tesseract) [79] 50.99
Feild and Miller [26] 62.76
Our variants
Pairwise [37] 50.99
Higher order [This work, HOG] 63.02
Higher order [This work, CNN] 67.67

ICDAR 2011 dataset

Baseline (ABBYY) 46.00
Baseline (CSER+tesseract) [79] 51.98
Weinman et al. [23] 57.70
Feild and Miller [26] 48.86
ICDAR’11 competition [74]
TH-OCR System 41.20
KAIST AIPR System 35.60
Neumann’s Method 33.11
Our variants
Pairwise [37] 48.11
Higher order [This work, HOG] 58.03

ICDAR 2013 dataset

Baseline (ABBYY) 45.30
Baseline (CSER+tesseract) [79] 50.26
ICDAR’13 competition [75]
PhotoOCR [30] 82.83
NESP [82] 64.20
MAPS [83] 62.74
PLT [84] 62.37
PicRead [24] 57.99
POINEER [22, 23] 53.70
Field’s Method [26] 47.95
TextSpotter [12, 29, 49] 26.85
Our variants
Pairwise [37] 49.86
Higher order [This work, HOG] 60.18

IIIT 5K-Word

Baseline (ABBYY) 14.60
Baseline (CSER+tesseract) [79] 25.00
Stroklets [31] 38.30
Our variants
Pairwise [37] 32.00
Higher order [This work, HOG] 44.50
Higher order [This work, CNN] 46.73

inference to get the text contained in the image. These
results are summarized in Table 7. We observe that bina-

Table 6 Studying the influence of the lexicon size – small
(S), medium (M), large (L) – on the IIIT 5K-word dataset
in the closed vocabulary setting.

Method S M L
Rodriguez & Perronnin [25] 76.10 57.50 -
Strokelets [31] 80.20 69.30 38.30
Higher order [This work, HOG] 71.80 62.17 44.50
Higher order [This work, CNN] 78.07 70.13 46.73

rization based methods perform poorly compared to our
model using a sliding window detector, both in terms of
character-level recall and word recognition. They fail in
extracting characters in the presence of noise, blur or large
foreground-background variations. MSER [81] or related
algorithms (e.g., CSER [49]) may also help to deal with
text that is not axis-oriented, but they are not necessar-
ily ideal for character extraction compared to a sliding
window method. To study this, we replaced our sliding
window based character detection scheme with either one
of these approaches. From Table 7 we observe that slid-
ing window character extraction is marginally better than
CSER and significantly better than MSER. One of the
reasons for this is that the classifier used in the sliding
window detector is trained on a large variety of character
classes and is less prone to errors than the MSER equiv-
alent. These results further justify our choice of sliding
window based character detection, although the challeng-
ing problem of effectively dealing with text that is not
axis-oriented remains an interesting task for the future.

Effect of pruning. We propose a pruning step to discard
candidates based on a combination of character-specific
aspect ratio and classification scores (2), instead of sim-
ply using extreme aspect ratio to discard character candi-
dates. This pruning helps in removing many false positive
windows, and thus improves recognition performance. We
conducted an experiment to study the effect of pruning
on the IIIT-5K dataset in the open vocabulary setting,
and observed a gain of 4.23% (46.73% vs 42.50%) due to
pruning.

CRF order. We varied the order of the CRF from two to
six and obtained accuracy of 32%, 43%, 45%, 43%, 42% re-
spectively on the IIIT 5K-word dataset in the open vocab-
ulary setting. Increasing the CRF order beyond four forces
a recognized word to be one from the dictionary, which
leads to poor recognition performance for non-dictionary
words, and thus deteriorates the overall accuracy. Empir-
ically, the fourth order prior shows the best performance.

Limits of statistical language models. Statistical language
models have been very useful in improving traditional OCR
performance, but they are indeed limited [65, 86]. For in-
stance, using a large weight for language prior potentials
may bias the recognition towards the closest dictionary
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Table 7 Character recall (C. recall) and recognition
accuracy, with unary only (Unary), unary and pairwise
(Pairwise) and the full higher order (H. order) models, (all
in %), on the IIIT 5K-word dataset with various character
extraction schemes (Char. method). See text for details.

Char. method C. recall Unary Pairwise H. order
Otsu [85] 56 17.07 20.20 24.87
MRF model [47] 62 20.10 22.97 28.03
MSER [81] 72 23.20 28.50 34.70
CSER [49] [79] 78 24.50 30.00 42.87
Sliding window 80 25.83 32.00 44.50

word. This is especially true when the character recogni-
tion part of the pipeline is weak. We study such impact
of language models in this experiment. Our analysis on
the IIIT 5K-word dataset suggests that many of the non-
dictionary words are composed of valid English n-grams
(see Table 2). However, there are few exceptions, e.g.,
words like 35KM, 21P, which are composed of digits and
characters; see last row of Fig. 7. Using language mod-
els has an adverse effect on the recognition performance
in such cases. This results in inferior recognition perfor-
mance on non-dictionary words as compared to dictionary
words, e.g. on IIIT-5K dataset our method achieves 51%
and 24% word recognition accuracy on dictionary and non-
dictionary words respectively.

6. Summary

This paper proposes an effective method to recognize
scene text. Our model combines bottom-up cues from
character detections and top-down cues from lexicon. We
jointly infer the location of true characters and the word
they represent as a whole. We evaluated our method ex-
tensively on several challenging street scene text datasets,
namely SVT, ICDAR 2003/2011/2013, and IIIT 5K-word
and showed that our approach significantly advances the
energy minimization based approach for scene text recog-
nition. In addition to presenting the word recognition re-
sults, we analyzed the different components of our pipeline,
presenting their pros and cons. Finally, we showed that
the energy minimization framework is complementary to
the resurgence of convolutional neural network based tech-
niques, which can help build better scene understanding
systems.
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