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Abstract

Background estimation in video consists in extracting a foreground-free image from a set of training

frames. Moving and stationary objects may affect the background visibility, thus invalidating the as-

sumption of many related literature where background is the temporal dominant data. In this paper,

we present a temporal-spatial block-level approach for background estimation in video to cope with

moving and stationary objects. First, a Temporal Analysis module obtains a compact representation

of the training data by motion filtering and dimensionality reduction. Then, a threshold-free hierar-

chical clustering determines a set of candidates to represent the background for each spatial location

(block). Second, a Spatial Analysis module iteratively reconstructs the background using these can-

didates. For each spatial location, multiple reconstruction hypotheses (paths) are explored to obtain

its neighboring locations by enforcing inter-block similarities and intra-block homogeneity constraints

in terms of color discontinuity, color dissimilarity and variability. The experimental results show that

the proposed approach outperforms the related state-of-the-art over challenging video sequences in

presence of moving and stationary objects.
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1. Introduction1

Segregating relevant moving objects is widely used in several applications of image processing2

and computer vision. This task often requires to estimate a foreground-free image (or background)3

under several visual challenges such as in Background Subtraction algorithms [1][2]. Background4

estimation (BE) finds applications not only in moving object segregation from video sequences [3] but5

also to represent redundancy in video compression [4], to repair deteriorated images for inpainting [5],6

to implement video-based privacy protection [6] and to obtain object-free images for computational7

photography [7].8

Several state-of-the-art BE approaches easily capture the background by assuming the availability9

of a set of frames without foreground objects (training frames) [1]. This assumption may not be10

correct in many video-surveillance scenarios (e.g. shopping malls, airports or train stations) where11

many foreground objects may exist due to crowds and stationary objects, making very challenging12

the capture of the background. In general, BE faces two problems related with spatio-temporal scene13

variations: Background visibility and photometric factors. The former occurs when pixels or regions of14

the background are seen for short periods of time in the training frames (e.g. due to stationary objects15

or to high-density of moving foreground), thus the predominant temporal data is not the background.16

The latter affects BE performance by modifying the background (illumination changes) or by affecting17

to the employed features (shadows and camouflages). The presence of stationary objects is a major18

limitation in current approaches as background visibility is highly decreased in the training frames.19

To overcome the above-mentioned limitations, we propose a block-level BE approach based on a20

temporal-spatial strategy that reconstructs an object-free background in presence of moving and sta-21

tionary objects. For each spatial location, a temporal analysis module obtains a number of background22

candidates (blocks) via motion filtering, dimensionality reduction and threshold-free hierarchical clus-23

tering. Then, the spatial analysis module selects the most suitable candidate for each spatial location24

according to available candidates in neighboring locations. First, the spatial strategy partially approx-25

imates the background by setting a number of initial locations (seeds) based on the motion activity26

along the training frames. Second, an iterative process estimates the remaining background based27

on inter-block and intra-block smoothness constraints. The experimental work validates the utility of28
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the proposed approach, outperforming selected approaches in various datasets especially when dealing29

with stationary objects.30

The contribution of the proposed approach is fourfold. First, we propose a threshold-free clustering31

technique to determine background candidates without requiring parameter tuning to achieve optimal32

performance [8][9]. Second, we obtain an initial background estimation (seeds selection) containing33

more data than state-of-the-art approaches [8][10][11] without introducing additional errors. Thus,34

fewer spatial locations need to be reconstructed, making the proposed approach less prone to estima-35

tion errors as compared to related approaches. Third, the iterative reconstruction estimates different36

hypotheses of the neighboring background at each location and selects one of them, unlike approaches37

based on single-hypothesis estimations which may have low-accuracy [8][10][11][12]. Fourth, a new38

performance measure is proposed to avoid the use of a unique threshold [8][10][11].39

The paper is organized as follows: Section 2 discusses the related work and Section 3 overviews the40

proposed approach. Sections 4 and 5 describe the temporal and spatial analysis, respectively. Section41

6 shows the experimental work. Finally, Section 7 presents some conclusions.42

2. Related work43

Different terms are used for BE [8][13]: Bootstrapping [9][14], Background estimation [3][12], Back-44

ground generation [15][16] or Background reconstruction [17]. Moreover, BE literature can be catego-45

rized as [18]: Temporal Statistics, Sub-intervals of Stable Intensity, Iterative Model Completion and46

Optimal Labeling. In this section, we instead review related approaches focusing on the applied strat-47

egy: temporal and spatial. These strategies may use data in a batch or an online fashion, operating48

at pixel or region (block) level.49

Approaches using temporal strategies are common in Background Subtraction [18], where the first50

frame is taken as the background image, which is updated by the successive frames [14][19][20]. Beyond51

these techniques, Robust Principal Component Analysis (RPCA) [21] models the background image of52

a video sequence by low-rank subspace analysis while the foreground is represented by the correlated53

sparse outliers. However, RPCA methods lose the temporal and spatial structure when representing54

each frame as a column vector, thus limiting the initialization capabilities. EigenBackground (EB)55
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methods compute a basis of eigenvectors from the training frames to model the background at im-56

age [22] or block [23] level. EB methods require a temporal consistency of the background for successful57

performance where short-term background occlusions are assumed [24]. RPCA and EB methods do not58

consider multiple basis to account for the range of appearances exhibited in the training frames and the59

relations between the basis of adjacent spatial locations, thus decreasing their performance in presence60

of slow-motion or stationary foreground. The temporal median at pixel level is widely used [25][26],61

but stationary objects for more than 50% of the training frames are included in the background. Mo-62

tion information can be used to remove foreground objects from the background model such as optical63

flow [27][28][29] or inter-frame differences [9][15][29]. Temporal continuous stability of pixel intensity64

is also employed to obtain hypotheses for the background model in each spatial location [27][28][30]65

where non-continuous intervals are wrongly assumed as different background representations. There-66

fore, clustering of non-continuous intervals is preferred to address such assumption [8][10][11][12][31].67

Furthermore, temporal variability of pixel values is used to keep occluded background values and to68

avoid wrong model updates with foreground data [3].69

Although some approaches only use temporal analysis [26][30], a spatial analysis is needed in pres-70

ence of moving and stationary objects since background may no longer be the dominant temporal in-71

formation in the training frames. Smoothness constraints may be imposed in the background to decide72

whether new pixels or blocks belong to the background employing features such as color [15]. In [8] and73

[10], the Discrete Cosine Transform (DCT) is embedded in a Markov Random Field (MRF) framework74

to introduce smoothness in neighbors while iterative background estimations correct possible errors75

[8]. Alternatively, DCT can be replaced by the Hadamard transform to decrease computational com-76

plexity, which is combined with iterative corrections based on gradient features between candidates77

and their neighbors [11]. Smoothness can also be cast as finding the best partially-overlapping block78

between candidates and the already set background locations [12]. Moreover, block-level color and79

gradient constraints with the neighborhood can be applied to estimate the background [32]. Further-80

more, other approaches encode spatial smoothness and temporal information in energy minimization81

frameworks such as Loopy Belief Propagation [33][34], Graph Cuts [5], Conditional Mixed-State MRFs82

[17] or dynamic MRFs [3]. Recently, [35] introduces spatial constraints through image segmentation.83
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Additionally, spatial information also considers optical flow in the neighborhood [28], correcting its84

density by handling objects moving at different depths [27].85

In summary, several BE strategies have been proposed where recent approaches use temporal86

information and apply smoothness constraints over the estimated background. The main limitation of87

current approaches involves situations of low background visibility where existing smoothness schemes88

do not successfully deal with stationary objects.89

3. Proposed approach: Overview90

The proposed approach performs a temporal-spatial analysis at block level (see Figure 1) over a91

set of T training frames It, F = {I1...IT }, to extract the reconstructed background image B free of92

moving and stationary objects. First, the Splitting module divides each It into non-overlapping blocks93

Rs
t of size W ×W , where s is the bi-dimensional index for the spatial location of each block. Second,94

the Temporal Analysis module creates a number of background candidates Cs
l for each spatial location95

s, where l ∈ {1 . . . N s} and N s ≤ T is the number of candidates. The Temporal Analysis consists of96

the Motion Filtering stage to discard Rs
t blocks where moving objects exist and the Dimensionality97

Reduction stage to decrease the amount of data analyzed by the Clustering stage which obtains a set98

of background candidates. Finally, the Spatial Analysis module reconstructs the background of each99

spatial location s, partially estimated in the Seed Selection stage, by the Multipath Reconstruction stage100

to iteratively fill each spatial location s with the optimal candidate Cs
∗ using inter-block and intra-block101

smoothness constraints. The temporal and spatial analysis modules are described in Section 4 and102

Section 5, respectively. The key symbols we use in this paper are given in Table 1.103

4. Temporal Analysis104

The Temporal Analysis module generates the background candidates of each spatial location s. It105

contains three stages (Figure 1): Motion Filtering, Dimensionality Reduction and Clustering.106
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Table 1: Key symbols and notations

Symbol Notation

t Temporal index.

p Bi-dimensional index for pixel locations.

s Bi-dimensional index for block locations.

F Set of T training frames to reconstruct the background image.

It Training frame at time t.

B Reconstructed background image using F.

Rs
t W ×W block of It at time t and location s.

λs
t Score for block-level activity at location s.

Ys Set containing Ms motion-filtered blocks Rs
t .

Us
v PCA-reduced block v at location s, where v ∈ [1,Ms].

Zs Set containing Ms PCA-reduced blocks Us
v .

Ns Number of clusters at location s.

l Index to denote a cluster at location s, where l ∈ [1, Ns].

Ks
l Cluster l at location s that groups Us

t (i.e. Rs
t).

Ps
b Cluster partition at location s with b clusters.

θSI(Ps
b) Score for cluster partition Ps

b (Silhouette).

θDB(Ps
b) Score for cluster partition Ps

b (Davies-Bouldin).

Ps
∗ Optimal partition at location s. It contains Ns clusters.

Cs
l Candidate to be background (i.e. represents the cluster Ks

l ).

Ss Seed block at location s.

ξs Activity score to compute seeds at location s.

B̃
Iteratively reconstructed background image. B̃ is

initialized with S and contains blocks B̃s.

Vs
8 8-connected block neighborhood at location s.

Vs
4 4-connected block neighborhood at location s.

Φ
(
Cs′

l

)
Inter-block color discontinuity for candidate Cs′

l .

Ψ
(
Cs′

l

)
Intra-block heterogeneity for candidate Cs′

l .

Ω
(
Cs′

l

)
Inter-block color dissimilarity for candidate Cs′

l .

C̃s′,m
Φ Temporary candidate selected using Φ, at location s′ for path m.

C̃s′,m
Ψ Temporary candidate selected using Ψ, at location s′ for path m.

C̃s′,m
Ω Temporary candidate selected using Ω, at location s′ for path m

C̃s′,m Temporary candidate selected at location s′ for path m.

Is selected among C̃s′,m
Φ , C̃s′,m

Ψ and C̃s′,m
Ω .

Cs′
∗ Selected candidate at location s′.

GT Ground-truth background image that contains blocks GT s.

Bs
best

Best background selecting at each location s the blocks B̃s

with lowest distance to GT s.
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(k should be small). λst takes the value 1(0) when motion (no motion) is detected, thus rejecting113

(keeping) the associated block Rs
t . Note that Eq. 1 implies the visualization of the background for k114

consecutive frames, as often assumed in existing literature [8][27]. Finally, the selected data to compose115

the background at each location s is represented by Ys = {Rs
v}v=1...MS , where M s is the number of116

blocks without motion and M s ≤ T, ∀s.117

4.2. Dimensionality Reduction118

To further reduce the data to process, we apply Principal Component Analysis (PCA) [37] to Ys
119

as the useful data to generate background candidates is driven by the block variance. Pixel locations120

with variations over time are relevant to group blocks whereas pixel locations without variability are121

redundant. PCA determines a transformation basis to project data where pixels with low variance122

over time are removed. PCA is applied to all blocks in Ys, where each block is previously rasterized123

into a column vector of size 3W 2 by concatenating its RGB channels. Finally, we obtain a matrix124

Zs = {U s
v}v=1...Ms , where |U s

v | ≤ |Rs
v| and | · | denotes the cardinality, i.e. the number of elements,125

representing the data in the PCA domain which is used exclusively for the clustering stage (Subsection126

4.3). Note that the Spatial Analysis module (Section 5) uses the W ×W blocks Rs
t to estimate the127

background image B instead of the PCA-reduced data U s
v .128

4.3. Clustering129

This stage generates a number of candidates Cs
l to be the background Bs for each location s. Instead130

of using the raw data, we group the PCA-reduced data Zs into clusters Ks
l which are structured131

as partitions Ps
Ns = {Ks

1 . . .K
s
Ns} where N s is the total number of clusters. As the optimum N s

132

is not known for each s, hypotheses for the partitions are created for different values of N s. The133

optimal partition is found by validation indexes that maximize inter-cluster differences and intra-134

cluster similarities. The proposed approach provides a threshold-free clustering that leads to sub-135

optimal solutions containing the desired candidates. The candidates Cs
l represent each cluster Ks

l136

where the best candidate Cs
∗ is selected in the Spatial Analysis module (Section 5).137

For generating the clusters, we employ agglomerative hierarchical clustering (AHC) [38] over ma-138

trices Zs where the distance between two clusters is defined as the highest Euclidean distance among139
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Figure 2: Example of a dendrogram to detect the optimal clustering partition Ps
∗ for a 8-block set. Only partitions

between Ns
min and Ns

max are considered (dashed lines). Ps
4 is selected as optimal partition as it has the highest

θSI(Ps
b) + θDB(Ps

b), thus Ns = 4 . Albeit clustering uses PCA-reduced blocks Us
v , we show the associated blocks Rs

t for
visualization purposes.

members U s
v of both clusters. The AHC cluster structure can be represented as dendrograms, i.e.140

tree-like diagrams depicting partition hypotheses at different cluster distances. Thus, we limit the141

number of clustering hypotheses between a minimum and maximum value (N s
min and N s

max, respec-142

tively). N s
min is set to 1 (i.e. one cluster) which corresponds to an always-visible background. For143

each location s, N s
max is set to the number of identified Sub-intervals of Stable Intensity (SSI) [27][28],144

as SSIs may be caused by objects or background. SSIs are continuous temporal intervals without145

intensity variations, computed at block level using motion information from Eq. 1. Finally, partition146

hypotheses {Ps
b}b=Ns

min,...,N
s
max

are generated where b is the number of clusters in the partition. Figure147

2 shows a dendrogram for clustering eight blocks and an example of SSIs on top of Figure 2, where148

N s
max = 5.149

Subsequently, clustering validation determines the best partition Ps
∗ containing the optimal number150

of clusters N s. This validation employs the Silhouette θSI and Davies-Bouldin θDB indexes [39]. θSI151

measures the compactness and separation among clusters; a higher average value of this measure152

implies a better quality of the cluster. θDB measures the similarity between each cluster and its153
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5. Spatial Analysis165

This module obtains each background block Bs by selecting the best candidate Cs
∗ among the166

set of background candidates Cs
l . For each location, a multipath reconstruction of the background167

is proposed to enforce background smoothness among selected candidates in neighboring locations.168

The reconstruction process is divided in two stages (see Figure 1): Seed Selection and Multipath169

Reconstruction. For the latter, the explanation is divided into Sequential Multipath Reconstruction170

(Subsection 5.2) and Rejection based Multipath Reconstruction (Subsection 5.3) for readability.171

5.1. Seed Selection172

An initial partial background estimation is provided for selected locations by seed blocks Ss defined173

as highly-reliable background candidates. Existing approaches often establish this candidate-seed174

correspondence for the s locations with one cluster and, therefore, a unique candidate Cs
l for Bs to175

be selected [8][10][11]. When these single-candidate clusters do not exist, a major cluster Ĉs
l′ at each176

spatial location s can be identified as the cluster with maximum size:177

Ĉs
l′ = Cs

l′ : |Ks
l′ | > |Ks

l | ,∀l = 1, . . . , N s, (5)

where major clusters are selected as seeds when their cardinality is equal to the maximum one for178

all locations max
s
{|Ks

l′ |}. However, Eq. (5) initializes few blocks where stationary objects may be179

temporally dominant and be wrongly selected as seeds. Errors in this initial background estimation180

are critical since they are propagated in the subsequent stages.181

We address such limitation by proposing a unified analysis of stationarity and motion activity182

along training frames. We detect locations s with low motion or without stationary objects over time183

as suitable locations to initialize with seeds. For such detection, we assume that stationary objects184

occluding the background in I1 are not going to remain in the same location in IT . This assumption185

is reasonable, as objects not moving for all training frames can be considered as background. Hence,186

an activity score at block level ξs is computed as:187

ξs = max

{
f (Ip1 ,F

p \ {Ip1 }) + f (IpT ,F
p \ {IpT })

}
∀p∈s

, (6)
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where p is a pixel location; Fp, Ip1 and IpT are the gray-level pixel values at location p of the training188

sequence, initial frame and final frames, respectively; Fp \ {Ip1 } and Fp \ {IpT } are the set of training189

frames except the initial and final ones, respectively. The function f (·, ·) computes the average value190

for the absolute pixel-level difference:191

f (Ipt , I
p) =

1

|Ip|

|Ip|∑
q=1


1 if

∣∣Ipt − Ipq ∣∣ > τ

0 otherwise

, (7)

where Ip =
{
Ipq
}

is a generic set of pixels at location p and τ is a detection threshold computed192

automatically [36]. The forward activity score f (Ip1 ,Fp \ {Ip1 }) compares the pixels of the first frame193

against the other frames. Similarly, the backward activity score f (IpT ,Fp \ {IpT }) compares the pixels194

of the last frame against the other frames. Finally, the initial background estimation with seeds Ss is195

obtained only in locations with minimum ξs:196

Ss =


Ĉs

l if ξs = min{ξs′}∀s′∈I

Ø otherwise

, (8)

where Ĉs
l is the major cluster and the empty locations s will be filled by the Multipath Reconstruction.197

Figure 4 presents an example of the activity scores where locations with minimum ξs conform the seeds198

Ss. The initial partial background B̃ to be reconstructed is obtained using the seeds, i.e. B̃s = Ss, ∀s.199

5.2. Sequential Multipath Reconstruction200

This subsection describes the framework for Sequential Multipath Reconstruction (SMR) to itera-201

tively reconstruct the background from the initial estimation (Eq. 8).202

If we consider the location index s as a bi-dimensional vector (i.e. Bs ≡ B(i,j)), the 4-connected203

neighborhood Vs
4 is defined as:204

Vs
4 =

{
B(i−1,j), B(i,j+1), B(i+1,j), B(i,j−1)

}
, (9)

whereas the 8-connected neighborhood Vs
8 is defined as:205
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Algorithm 1 Sequential Multipath Reconstruction (SMR)

Input: Ss seeds and Cs
l candidates

Output: B : Bs 6= Ø, ∀s.
1: while (∃ B̃s = Ø)
2: Selection of s : B̃s 6= Ø
3: for m = 1 to 8 do
4: for s′ ∈ Vs

8

5: if B̃s′ = Ø then
6: Select C̃s′,m with Eq. 12
7: end
8: end
9: end

10: for s′ ∈ Vs
4

11: Select Cs′
∗ with Eq. 13

12: B̃s′ = Cs′
∗

13: end
14: end
15: B = B̃

summary of SMR is given in Algorithm 1.234

5.3. Rejection based Multipath Reconstruction235

SMR focuses on smoothness between adjacent blocks (external continuity, Φ similarity in Eq. 11)236

and, therefore, objects far from block boundaries may be unnoticed (e.g. stationary objects). These237

objects may have the minimum Φ value and be wrongly selected as the best candidate (Eq. 13).238

Moreover, another source of error exists as all external borders are not analyzed in Vs
8 .239

Extending SMR, we propose a Rejection based Multipath Reconstruction (RMR) scheme to overcome240

these limitations by rejecting reconstructions with high uncertainty, i.e. where some candidates Cs′

l241

have similar Φ value to the selected Cs′

∗ in Eq. 13. We disambiguate such selection by analyzing internal242

variations via intra-block heterogeneity Ψ and similarities to adjacent neighbors via inter-block color243

dissimilarity Ω. Figure 7 presents the diagram of operations performed by RMR.244

RMR starts from an initial background estimation B̃ containing seeds Ss and empty locations (Es-245

timate initial background stage in Figure 7). Then, RMR iteratively chooses a location s to reconstruct246

its empty neighbors via multiple paths m ∈ {1 . . . 8} similarly to SMR (Find location s stage in Figure247

7).248

For each m-path, we then obtain the best candidate C̃s′,m
Φ using Φ as in Eq. 12. To infer high249
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𝐶𝐶𝑙𝑙𝐬𝐬
′ 𝐶̃𝐶𝐬𝐬′′

𝐩𝐩′′𝐩𝐩′

Figure 8: Scheme used to compute the inter-block color dissimilarity measure Ω. Pixel distances between p′ and p′′

from blocks Cs′
l and C̃s′′are computed.

inter-block color dissimilarity Ω to the subset of candidates Cs′

l ∈ Cs′,m
l :255

Ψ
(
Cs′

l

)
=

64∑
q=1

∣∣∣Aq(Cs′
l )
∣∣∣2 , (15)

256

Ω
(
Cs′

l

)
=

1∣∣Vs′
4

∣∣ ∑
s′′∈Vs′

4

∑
p′ ∈ s′

p′′ ∈ s′′

1− g
(
Cs′

l

(
p′
)
, C̃s′′ (p′′)) , (16)

where Aq are the coefficients of the Discrete Cosine Transform (A1 is set to 0 to remove zero-frequency257

data) [41] and g (·, ·) is the cosine similarity [42] between two pixels p′ and p′′ from blocks Cs′

l and258

C̃s′′ . Figure 8 illustrates the scheme to compute Ω between blocks Cs′

l and C̃s′′ . Ψ(Cs′

l ) measures259

the variability of RGB values for the block considered whereas Ω(Cs′

l ) measures the average pixel-level260

difference between RGB values of pixels in Cs′

l and C̃s′′ . Figure 9 presents a comparative example of261

the Vs
4 reconstruction. SMR selects a wrong candidate when an artifact appears in Figure 9(a) (e.g.262

block Cs′

∗ with part of a blue bus occluding the background). As the measures Ψ and Ω have high263

values for this artifact, RMR correctly reconstructs the background as depicted in Figure 9(b). Note264

that the use of inter-block measures (Φ and Ω) minimizes discontinuities between blocks, thus reducing265

the block effect.266

For each m-path, we apply Ψ(Cs′

l ) and Ω(Cs′

l ) to the subset of candidates Cs′

l ∈ Cs′,m
l in order to267

obtain two additional best candidates C̃s′,m
Ψ and C̃s′,m

Ω as:268

C̃s′,m
Ψ = argmin

∀Cs′
l ∈C

s′
l , l∈{1...Ns′}

Ψ(Cs′

l ), (17)

269

C̃s′,m
Ω = argmin

∀Cs′
l ∈C

s′
l , l∈{1...Ns′}

Ω(Cs′

l ). (18)
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the candidate C̃s′,m for each m-path (Multi-candidate selection stage in Figure 7) using a set of rules:281

C̃s′,m =


C̃s′,m

Φ if C̃s′,m
Φ = C̃s′,m

Ψ = C̃s′,m
Ω

C̃s′,m
Ψ if C̃s′,m

Φ 6= C̃s′,m
Ψ

C̃s′,m
Ω if C̃s′,m

Φ = C̃s′,m
Ψ ∧ C̃s′,m

Ω 6= C̃s′,m
Φ

, (20)

where C̃s′,m
Φ is selected when all blocks are the same, C̃s′,m

Ψ is selected when it has better homogeneity282

than C̃s′,m
Φ as this may denote the presence of an artifact and C̃s′,m

Ω is selected when the second283

condition does not occur and C̃s′,m
Ω has better color similarity than C̃s′,m

Φ with its neighbors, i.e. there284

is a block with better Ω denoting that C̃s′,m
Φ may contain an artifact.285

After selecting the m-candidates C̃s′,m
Φ , C̃s′,m

Ψ and C̃s′,m
Ω for all m-paths in Eq. (20), we combine286

them to obtain the best candidate Cs′

∗ for the location s′:287

Cs′
∗ = argmin

m∈{1,...,8}
Γ
(
C̃s′,m

Φ , C̃s′,m
Ψ , C̃s′,m

Ω

)
, (21)

where Γ combines the Φ, Ψ and Ω measures for the candidates for each m-path as:288

Γ =



Φ(C̃s′,m) if C̃s′,m = C̃s′,m
Φ

Φ(C̃s′,m
Ψ ) + Ψ(C̃s′,m

Ψ ) + Ω(C̃s′,m
Ψ ) if (C̃s′,m = C̃s′,m

Ψ )∧

(Ω(C̃s′,m
Ψ ) ≤ Ω(C̃s′,m

Φ ))

Φ(C̃s′,m
Ψ ) + Ψ(C̃s′,m

Ψ ) if C̃s′,m = C̃s′,m
Ψ

Φ(C̃s′,m
Ω ) + Ω(C̃s′,m

Ω ) if C̃s′,m = C̃s′,m
Ω

, (22)

where the location s′ ∈ Vs
4; Φ, Ψ and Ω are the normalized measures to the range [0,1] by their289

maximum value for all m-paths. Each case represents a different rejection, where the first one is290

applied when no rejection is detected in s′, while the second, third and fourth cases apply to rejections291

due to Ψ and Ω, only Ψ and only Ω, respectively. This reconstruction of Vs
4 updates B̃ and it is292

iteratively performed until the entire background B̃ is reconstructed (Background B̃ completed? stage293

in Figure 7). The final estimated background B corresponds to the last iterative update of B̃. A294

summary of RMR is presented in algorithm 2.295
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Algorithm 2 Rejection based Multipath Reconstruction (RMR)

Input: Ss seeds and Cs
l candidates

Output: B : Bs 6= Ø, ∀s.
1: while (∃ B̃s = Ø)
2: K = Ø (set of currently rejected locations)
3: Selection of s : B̃s 6= Ø ∧ s /∈ K
4: Assigned = 0
5: allR = 0
6: while (Assigned = 0)
7: Rejection = 0
8: for m = 1 to 8 do
9: for s′ ∈ Vs

8

10: if B̃s′ = Ø then
11: Select C̃s′,m

Φ , C̃s′,m
Ψ , C̃s′,m

Ω with Eqs. 12, 17, 18

12: if C̃s′,m
Ψ 6= C̃s′,m

Φ ∨ C̃s′,m
Ω 6= C̃s′,m

Φ ∧ allR = 0 then
13: add s to K
14: Rejection = 1
15: break
16: else
17: Select C̃s′,m with Eq. 20
18: end
19: end
20: end
21: if Rejection = 1 then
22: break
23: end
24: end
25: if Rejection = 1 then
26: if all s are rejected then
27: K = Ø, Rejection = 0
28: allR = 1
29: else
30: break
31: else
32: Assigned = 1
33: for s′ ∈ Vs

4

34: Select Cs′
∗ using Eq. 21

35: B̃s′ = Cs′
∗

36: end
37: end
38: end
39: end
40: B = B̃

6. Experimental work296

We evaluate the temporal and spatial analysis of the proposed approach, Rejection based Multipath297

Reconstruction (RMR), and provide comparisons against representative state-of-the-art approaches.298
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Table 2: Dataset description. Key. #f: Number of frames. T: Type. I: Indoor. O: Outdoor. S: Stationary region
complexity. V: Visibility of empty scene complexity. SI: Shadows and Illumination changes complexity. L, M and H
mean low, medium and high levels, respectively.

ID Video Dataset #f T S V SI

1 AB H AVSS 2007 400 I H M M

2 PV E AVSS 2007 500 I H L M

3 BSM LIMU 400 O H L L

4 SQ CUHK 500 O H L L

5 FGA Wallflower 400 I H L L

6 TREC1 TRECVID 498 I H H M

7 TREC2 TRECVID 699 I L H M

8 MO Wallflower 300 I H L L

9 PETS1 PETS 2009 221 O L H H

10 PETS2 PETS 2009 240 O M H H

11 PETS3 PETS 2009 378 O H H M

12 Test SAIVT Campus 500 I L M M

13 Train SAIVT Campus 500 I L H H

14 TREC3 TRECVID 400 I M M M

15 AB Box CDNET 500 O H M L

16 bootstrap Wallflower 294 I L L H

17 ca vignal PBI 258 O M L L

18 cam4 TRECVID 300 I M L L

19 guardia PBI 400 O H M L

20 hall m COST 300 I M M L

21 parking CDNET 400 O H L L

22 sofa CDNET 400 I H L L

23 st light CDNET 400 O H H L

24 traffic IDIAP 500 O H L L

25 tramp CDNET 400 O H H L

26 vid16 LIRIS 2012 380 I H L L

27 vid22 LIRIS 2012 345 I M M L

28 vid36 LIRIS 2012 128 I M M L

29 winter CDNET 500 O H L M

to duration and size of the background visualized along time; Shadows and Illumination changes,307

according to the amount of these photometric factors. The ID of the video sequences displayed in308

Table 2 is used to report results. Additionally, comparisons are provided for the SBMI2015 dataset13
309

[50] that contains 7 video sequences with their ground-truth images for the task of BE.310

13http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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6.1.2. Evaluation measures311

We compute performance via six different error measures adopted from SBMI2015 [50]. Three312

SBMI2015 measures employ the absolute gray-level difference ∆, which is defined for each pixel as:313

∆ (p) = |B(p)−GT (p)|Y , (23)

where B and GT denote the estimated and the ground-truth backgrounds, respectively. |·|Y is the314

pixel-level absolute difference using the luminance information Y. The first measure, Average Gray-315

level Error (AGE), is the mean ∆ value over the image. The second measure, Average of Error pixels316

(AE), determines pixel errors by thresholding ∆ with α = 20 and computes the percentage of error317

pixels in the image. The third measure, Average of Clustered Error pixels (ACE), considers the average318

number of error pixels where their 4-connected neighbors are error pixels. The lower the value, the319

better performance for AGE, AE and ACE. The remaining three measures are Peak-Signal-to-Noise-320

Ratio (PSNR), Multi-Scale Structural Similarity index (MS-SSIM) and Color image Quality Measure321

(CQM). The higher the value, the better performance for these three measures.322

Additionally, we propose a threshold-free error measure to avoid the threshold dependency exhibited323

by AE. A number of thresholds αi are employed to generate a curve with the corresponding AE values324

where the Area Under the Curve (AUC) is reported for performance evaluation.325

6.1.3. Parametrization326

For the proposed approach, we use W = 16 as the block size similarly to [8][10][11]. We heuristically327

set k = 3 for inter-frame differences in Eq. 1 to increase the motion detected as compared to consecutive328

frame differences. Finally, ρ = 5 is heuristically set to select candidates with color discontinuity similar329

to the minimum value in Eq. 14, as they may be part of the background. Note that we use less heuristic330

parameters than related state-of-the-art approaches [8][9][10][11].331

6.2. Temporal analysis evaluation332

We compare the proposed clustering to generate background candidates (Subsection 4.3) against333

the sequential clustering of algorithm DCT [8], which is chosen as a top-ranked state-of-the-art result334
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Table 3: Seed selection technique evaluation. Comparison between the selection described in DCT algorithm [8] and the
proposed approach in RMR. As measures, we report the reconstruction percentage (RP) of the initial B̃ and AE. ID
denotes the number of the video sequence referenced in Table 2. The higher RP the better. The lower AE the better.
Green, black and red denotes better, equal and worse result than [8], respectively.

RP AE

ID DCT [8] RMR DCT [8] RMR

1 4.11 12.80 0.14 1.92

2 3.62 4.11 3.70 3.40

3 0.33 13.33 0.00 0.00

4 0.48 34.30 0.00 0.2

5 1.25 1.25 0.39 0.017

6 5.31 24.88 0.00 0.00

7 0.72 2.17 0.13 0.00

8 13.75 1.25 0.00 0.00

9 14.12 56.71 0.00 0.00

10 0.23 26.62 0.00 0.16

11 3.70 18.29 0.00 0.00

12 13.89 18.18 0.05 0.00

13 1.52 10.10 0.00 0.00

14 6.28 15.22 0.00 0.89

15 0.41 12.35 0.00 0.00

16 1.25 3.75 0.00 0.00

17 22.22 11.11 0.00 3.13

18 51.25 5.00 5.68 0.00

19 39.16 46.15 0.00 0.00

20 2.120 31.82 0.00 0.10

21 62.67 59.00 0.25 0.00

22 15.33 45.00 0.00 0.00

23 12.33 14.00 0.00 0.00

24 0.97 17.87 0.00 0.00

25 0.21 0.21 0.00 0.00

26 0.48 1.69 0.00 0.00

27 0.24 40.58 0.00 0.00

28 0.24 0.24 0.00 0.00

29 12.00 23.67 0.00 0.00

Mean 10.01 19.02 0.004 0.004

6.3. Seed selection technique evaluation347

We compare the performance of the RMR Seed Selection with the one proposed in DCT [8] where348

seed locations are selected when only a single candidate exists. As shown in Table 3, RMR initializes349

a higher percentage of the reconstructed background B̃ (19.02%) than DCT (10.01%), measured with350
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Table 5: Comparison in terms of AUC and SBMI2015 error measures for the SBMI dataset. The lower AUC, AGE, AE
and ACE the better performance, while the higher MS-SSIM, PSNR and CQM the better the performance. Methods
are presented in descending ranking order according to AUC for α ∈ [15, 30]. Note that CQM measure is not computed
for FPCP and LRGemoCG as background is obtained in gray-scale.The percentage of improvement compared to best
state-of-the-art approach is shown under RMR performance.

Approach
AUC

AGE AE ACE MS-SSIM PSNR CQM
α ∈ [0, 15] α ∈ [15, 30]

RMR
692.06 79.49 9.75 5.21 3.61 0.964 28.52 39.54

+6.1% +50.0% +23.9% +50.2% +49.1% +6.5% +8.6% -1.7%

DCT 743.88 158.97 12.81 10.47 7.09 0.905 26.25 37.50

SGMM-SOD 755.26 209.84 16.19 13.34 9.83 0.884 25.73 35.52

RSM 737.00 236.63 17.00 15.96 10.55 0.816 23.30 35.13

IMBS-1 852.01 247.03 19.40 16.57 8.85 0.831 22.78 33.67

IMBS-2 834.12 279.84 20.72 19.25 10.32 0.795 22.37 33.60

LOBSTER 800.89 347.98 19.06 24.52 14.86 0.812 20.99 31.66

3dSOBS+ 794.30 381.02 22.17 25.95 20.78 0.772 21.92 35.94

MED 771.76 393.81 21.31 27.19 22.39 0.806 23.41 37.27

Fuzzy 809.71 449.53 18.87 32.28 26.44 0.882 24.46 40.23

SuBSENSE 819.26 453.56 20.89 31.79 23.46 0.845 22.63 37.09

SC-SOBS 912.81 497.13 22.91 35.26 24.91 0.810 21.00 36.77

FPCP 1003.50 646.32 22.53 46.34 40.84 0.891 21.59 -

LRGeomCG 1012.30 656.29 22.90 47.37 40.26 0.885 21.41 -

being the best state-of-the-art approaches SGMM-SOD and DCT as both use smoothness constraints.393

Improvements can be analyzed regarding two sets of measures; the first includes AUC (significant394

AUC interval α ∈ [15, 30]), AGE, AE and ACE; and the second one includes MS-SSIM, PSNR and395

CQM. For the first set of measures, we reduce the error in a range of 10.3 % (AGE) to 25.0% (AUC)396

compared to SGMM-SOD. For the second set of measures, the improvement compared to SGMM-SOD397

ranges from 1.6% (MS-SSIM) to 6.3% (PSNR). Additionally, experiments in the SBMI2015 dataset398

have been carried out (see Table 5) where again the proposed approach RMR outperforms the related399

work and where best compared approaches are again SGMM-SOD and DCT.400

In Figure 15, sequence results are shown in terms of AUC against the DCT and SGMM-SOD401

approach (best related works), for α ∈ [15, 30]. As shown in Figure 15, the proposed approach is402

better than DCT in 23 sequences and worse in 6, while compared to SGMM-SOD the proposed403

approach is better in 19 and worse in 10. The reasons of performance decrease can be compiled into404

failure of background smoothness assumption (sequences 4, 20 and 23), block effect (sequences 13 and405
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Figure 16: Qualitative results showing the estimated background B of top selected approaches for the BE task. From
top to bottom rows: 3 (BSM ), 4 (CUHK ), 6 (TREC1 ), 19 (guardia), 24 (traffic) and 29 (winter) are examples with high
complexity of stationarity solved successfully, while many approaches of the literature fail; 6 (TREC1 ) and 13 (Train)
are examples where the background is successfully estimated under low visibility conditions; 25 (tramp) is an example
of erroneous reconstruction due to non compliance of the rejection conditions. Each column corresponds to the results
of a selected approach (first column is the manually extracted GT ).
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(IMBS-2, LOBSTER, SuBSENSE, 3dSOBS+ and SC-SOBS) are much faster than DCT and RMR at422

the cost of significant performance decreases because of the background assumptions, i.e. foreground423

is not representative in the training frames, which does not apply to stationary objects or crowds.424

Therefore, the spatial constrains introduced by RMR or DCT are needed to improve performance for425

background estimation in complex situations. One exception is SGMM-SOD that removes foreground426

ghosts based on spatial constraints, allowing a faster background update when stationary objects leave427

the scene. However, such update depends on the temporal duration of the stationary objects and428

training frames, obtaining errors when background has low visibility (see sequences 19, 24 and 29 in429

Figure 16) whereas RMR does not have such duration constraints.430

The computational cost of the proposed approach is mainly due to the Clustering and Multipath431

Reconstruction stages, that consume approximately 28% and 70% of processing time. Our unoptimized432

MATLAB implementation of the proposed approach has an average running time of 5.3 µs/pixel (e.g.433

200 color 350x240 frames with average resolution of 240x349 in around 4.5 minutes). Regarding the434

state-of-the-art, our approach performs similarly to other approaches. For example, RPCA methods435

use MATLAB implementations to run between 9.82 and 476 µs/pixel [21]. More complex background436

initialization approaches report a running time ranging from 65 to 312 µs/pixel [33][12], all using437

MATLAB. The current implementation of the proposed approach is currently restricted to offline438

operation, however significant speedups can be achieved by using other programming languages or by439

parallel processing.440

7. Conclusions441

We presented a block-wise BE approach to estimate the background of video sequences with mov-442

ing and stationary objects. A clustering approach without the need of thresholds is performed over443

motion-filtered and dimension reduced data, which determines the candidates blocks to be background.444

Subsequently, a Rejection based Multipath Reconstruction based on background smoothness constraints445

selects the most suitable candidate. This multipath scheme includes a Seed Selection stage to initially446

estimate the background which is locally reconstructed using different paths (hypotheses), thus in-447

creasing the robustness against errors. An evaluation metric based on a sweep of threshold values is448
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proposed to avoid the threshold dependency of existing metric AE. The experiments validate the per-449

formance of the clustering analysis and the Seed Selection technique and provide comparisons against450

related work, demonstrating the advantages of the proposed approach. The results show that BE is451

highly complex since no algorithm is able to correctly perform in all situations.452

As future work, we will explore the use of multi-resolution schemes, the improvement of background453

smoothness (e.g. by applying deblocking filters [58]) and the initialization-maintenance-detection in-454

teraction to improve Background Subtraction performance.455
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