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Abstract

We present ASIST, a technique for transforming point clouds by replacing objects with their semantically equivalent counterparts.
Transformations of this kind have applications in virtual reality, repair of fused scans, and robotics. ASIST is based on a unified
formulation of semantic labeling and object replacement; both result from minimizing a single objective. We present numerical tools
for the efficient solution of this optimization problem. The method is experimentally assessed on new datasets of both synthetic and
real point clouds, and is additionally compared to two recent works on object replacement on data from the corresponding papers.
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1. Introduction

The problem we tackle in this paper is the transformation of
3D scenes. In particular, we are interested in the subclass of
transformations which preserve semantic invariance: objects
within the scene are to be replaced by other objects from the

o ssame class. Thus, a nightstand should be replaced by another
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nightstand, and not a packing box. While a particular pack-
ing box may be geometrically similar to the nightstand, it is
semantically different and should therefore not be used as the
replacement. Of course, to the extent possible, we would like
to preserve geometric similarity as well; the nightstand should
ideally be replaced by a nightstand with similar proportions,
shape, position, and orientation. An example is given in Figure
[

Semantically invariant scene transformation has a number
of interesting applications. In the area of virtual reality, these
transformations are useful for designing virtual scenes match-
ing the underlying real scene in which the user is located. While
not critical when the user is stationary, accurate object place-
ment is crucial in any scenario in which the user moves through-
out the scene. For example, semantic invariance means that in
sitting on a virtual chair, the user is actually sitting on a real
chair. Beyond preventing injury, this leads to a more realistic
VR experience. In a different application, semantically invari-
ant transformations may be used in the repair of point clouds ac-
quired by the stitching together of many depth images, such as
in [[1]. These fused scans typically have occlusions, holes, and
other artifacts, which could be mitigated by the replacement of
scene objects with their pristine versions, based on CAD mod-
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Figure 1: Example output of the ASIST algorithm. Left: point cloud of
a scene acquired using the Kinect sensor. Right: ASIST output. Note that
semantic invariance has been preserved: chairs replace chairs, and likewise for
tables.

els. A third application involves mobile robotics systems. Col-
lision avoidance — a necessary component of mobile robotics —
is aided by more complete 3D data, and these systems would
enjoy benefits similar to the point cloud repair scenario.

While semantically invariant scene transformation is not as
standard a problem as, say, object detection or recognition,
there have been a few studies in this direction in the last few
years. Both Nan et al. [2]] and Li ef al. [3] present approaches
to very similar problems, though the approaches themselves dif-
fer from ours. In Nan et al. [2]], patches of the scene which are
likely candidates for replacement are greedily added, and the re-
sulting patch collection is matched against an object database.
Li et al. [3]] instead use collections of keypoints, which are then
similarly matched against a database. By contrast, Gupta et
al. [4] present a complex pipeline rather than a single algorithm.
The pipeline involves many stages, including amongst others:
contour detection, perceptual grouping, a convolutional neural
network for object detection, instance segmentation, a second
convolutional neural network for pose estimation, and registra-
tion. It is also noteworthy that [4] is aimed at RGB-D images,
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rather than point clouds. Other works which are related, though
perhaps not as closely, are SLAM++ of Salas et al. [5], and the
Sliding Shapes approach of Song and Xiao [6].

Contributions. We refer to our approach to the problem as
ASIST: Automatic Semantically Invariant Scene Transforma-
tion. ASIST is formulated as a single unified algorithm. Specif-
ically, both the semantic labeling of the point cloud as well as
the replacement of objects within the point cloud are presented
as the solution to a single optimization problem. This contrasts
most strongly with the work of Gupta et al. [4], which - while
presenting very impressive results - is a complex system com-
posed of many individual algorithms. We believe that the for-
mulation of a single, unified algorithm for solving semantically
invariant scene transformation is an important contribution in
its own right.

As has already been noted, another difference from some of
the prior work is in ASIST’s focus on point clouds, as opposed
to RGB-D images. The differences here are twofold. First,
point clouds are missing the RGB component, which represents
a potential advantage for several reasons. Low-power and cheap
depth sensors usually do not possess an RGB sensor; moreover,
even if they do, it is expensive to keep the RGB sensor on and
operating all the time. Furthermore, the RGB quality is often
poor, especially in the most relevant indoor low-light scenario.
Finally, the mechanical limitations of such sensors make the ac-
curate calibration of the RGB and depth cameras a challenging
task. Second, point clouds have more geometric information
than depth images. The acquisition of point clouds has become
more common with the growth of systems such as Kinect Fu-
sion [1]] and Project Tango [[7], so focusing on this data structure
is a natural choice.

Paper Organization. The remainder of the paper is organized
as follows. Section |2| presents related work in more detail.
Section [3] presents the formulation of ASIST, focusing on the
unified treatment of semantic labelling and object replacement.
Section [4] evaluates ASIST on datasets of both synthetic and
real point clouds, and comparison with the approaches of Nan
et al. [2]] and Li et al. [3]. SectionE]presents an overall discus-
sion of the algorithm and results, while Section [6]concludes.

2. Related Work

In recent years several studies have explored problems be-
yond classical object detection or recognition. In Nan et al. [2]]
a dataset of deformable models is used to detect object in-
stances in a scanned scene. A given scene is over-segmented
into smooth patches, and a RANSAC-like algorithm is used to
add patches with high classification scores. The greedy col-
lection of patches is then compared to models in the database,
which are used to remove outliers.

In Salas et al. [S] object recognition is integrated into a
SLAM (simultaneous localization and mapping) pipeline. Dur-
ing the process of integrating new frames into the scanning vol-
ume, an existing method [8] of object detection is employed.
The algorithm as presented is able to search for a relatively

small number of models, with limitations primarily due to real-
time requirements and the strength of the GPU.

Song et al. [6] render a large dataset of models from multiple
angles and train a linear SVM classifier for each, according to
the exemplar SVM approach of [9]. Using a sliding window
over a scene, they run each of the classifiers and select a small
number of possible models, as well as a best matching pose for
each model. Their method produces impressive results at the
cost of slow performance. The sheer number of classifiers and
windows to be tested is prohibitive.

Li et al. 3] preprocess a dataset to extract and cluster key-
points from 3D models. Keypoints are arranged into constella-
tions, forming a shape descriptor which is used in real-time 3D
scanning to insert model instances into the scene. We use this
paper as well as that of Nan et al. [2]], and the datasets therein,
as references for comparison to our method.

Gupta et al. [4] use an existing [10] object detection and seg-
mentation framework and focus on finding object matches in a
dataset. They train a convolutional neural network (CNN) to
provide a small number of pose and model hypotheses, manu-
ally picking five exemplars per category. They then use ICP to
perform fine alignment, and a linear classifier to select from the
different hypotheses for each object instance.

Mahabadi er al. [11] tackle a related problem: 3D recon-
struction of scenes using learned semantic models. In partic-
ular, they introduce a framework which formulates the task of
scene reconstruction as a volumetric multi-label segmentation
problem. The key idea in their approach is to assign semantic
class (including free-space) indicator variables for each voxel.
Inspired by the classical crystallographic technique of Wulff
Shapes, they describe how anisotropic surface regularization,
which penalizes transitions between labels, can be derived from
training data. This naturally continues their line of work from
[12] and [13]], in which they propose other alternatives to this
binary label penalty term, such as learning preferred directions
for inter-label transitions [12]] or anisotropic regularization for
larger (non-convex) object parts [13]]. In contrast to our ap-
proach, a unary data term uses information about rays between
the camera and each voxel; thus, their work is more applicable
to the case of depth images, rather than fused 3D scans as re-
quired in our case. Furthermore, in [[11] the semantic labels are
assigned to convex model parts and not to whole objects; hence
additional computation would be needed to apply this method
for the purpose of semantic scene transformation.

Our algorithm uses a dataset of 3D models containing a vari-
ety of object classes. We make use of the LightField Descriptor
of [14] to find subclasses within the dataset and select a number
of exemplars from each category. This descriptor is based on
the idea that two similar 3D models look similar from all view-
ing angles. Multiple orthogonal projections of each model are
encoded using Zernike moments and Fourier descriptors. The
similarity between two models is then defined as the minimal
similarity over the various rotations which can be applied to
align the models.

In recent years several datasets and benchmarks for 3D mod-
els and scene have emerged. ShapeNet [15] is a collection of
CAD models containing 3 million models, of which 220,000



are labeled. ModelNet [[16]] consists of 600 categories, includ-
ing 40 main household objects categories. In the accompany-
ing paper [16], algorithms for object detection and 2.5D ob-
ject completion are trained and tested on this dataset. The
SunRGBD dataset and benchmark [17] provides a standard to
evaluate and measure the success of scene understanding algo-
rithms. The dataset is densely annotated in both 2D and 3D,
using a combination of polygons and bounding boxes.

3. Automatic Semantically Invariant Scene Transformation

3.1. General Approach

Our goal is to take a point cloud representing a real world
scene as input, and to transform it while remaining faithful to
the semantics of the scene. More specifically, given a fixed set
of object classes and a database of objects from these classes,
we wish to:

1. recognize instances of objects within the scene belonging
to these classes;

2. replace these instances with geometrically similar objects
of the same class from the database, respecting original
positions and orientations.

The ideal output of the algorithm would then be a semantically
similar scene, but with new objects placed within the scene. The
potential applications of such a technique have been highlighted
in Section[Tl

In order to arrive at a more unified treatment of the problem,
which also yields superior results, we treat both problems si-
multaneously. That is, our goal is to solve both the semantic
segmentation and replacement problems at the same time and
in a consistent manner. In what follows, we show how to for-
mulate the problem to this end.

3.2. Cell Classification

We are given a point cloud representing the scene. We vox-
elize the scene, and organize these voxels into larger structures
called cells. A cell is defined to be a cubic collection of voxels;
that is, it is a patch of m X m X m voxels. In practice, we take
m = 9. Note that much of the scene is empty, so it may ap-
pear that voxelization is a wasteful process; however, we only
perform computations on occupied cells, i.e. cells containing
points from the scene’s point cloud.

Each voxel is regarded as the center of a cell surrounding it.
We train a random forest [[18]] which classifies cells according
to one of n. fixed classes, or “clutter”, to which class label O
is assigned. The forest performs its classification using split
functions which are a generalization of decision stumps and bi-
nary decisions. More specifically, we compute a base feature
for each voxel within the cell; we use three types of base fea-
tures, namely binary occupancy, the distance function of the
voxel’s center from the point cloud, and the height of the cell
as measured by the height of its center voxel (for further imple-
mentation details, refer to Section @ Thus, the base features
may be written as h; € RY+; in the case of the binary occu-
pancy and distance function, M = m?, whereas in the case of

the height M; = 1. The forest’s split functions are then rep-
resented as triples (k,u,7) where k € {1,...,K},u € RM« and
7 € R; the decision is then based on the value of the binary vari-
able 1[u”h; > 7], where 1[-] denotes the indicator function. A
decision stump corresponds to u with only a single non-zero
value; a pairwise decision has two non-zero values; and so on.
We describe the details of the feature choices we use in practice
in Section

This procedure yields forest scores for each voxel; we then
assign forest scores to each point p in the point cloud P via
nearest neighbors (though any simple interpolation scheme will
do). Thus, at the end of this process we have a collection of
forest scores f.,, where f, indicates the score of class ¢ for
point p. As is customary for random forests, the scores for a
given point form a probability distribution, i.e. f., > 0 and

Zcfc‘p =1

3.3. Joint Semantic Segmentation and Object Replacement

We are given a dataset of objects which come from the n,.
fixed classes. To reduce computational complexity, the objects
from each class within the database are clustered into a set
of groups, each of which is represented by an exemplar. We
achieve this by first doing a rough clustering based on scale
using k-medoids; within each new cluster, we then further sub-
cluster based on the LightField Descriptor [14]], again using k-
medoids. At the end of the process, we have a collection & of
exemplars taken from all classes.

Our goal is now to decide which of these exemplars to insert
into our scene, where to insert them, and in which pose. To
this end, we define the variables w,,, representing the weight of
an exemplar e at point p. For a fixed point, these weights can
be thought of as a probability distribution over which exemplar
should be inserted at that point. Ideally, then, we would have
wep = 1 for exactly one exemplar e, and is w,, = 0 for the rest.
In practice, we will simply require the probability distribution
condition, that is

Diwep=1 and w20
e

for every e and p. By convention, e = O corresponds to “clut-
ter”, or non-object; that is, wg, = 1 is an indication not to insert
any object at point p. Note that this representation is similar to
the one used in [19]].

Properly choosing the weights w,,, effectively solves a soft
version of the semantic segmentation problem: we can assign
a soft/probabilistic label to each point in the scene according
to which exemplar that point corresponds to. But in addition,
we wish to solve the object replacement problem. Replacement
entails deciding which exemplars to insert into the scene, and
in which pose — comprising both position and orientation. Nei-
ther the identity of the exemplars to be included nor their pose
follows directly from the soft weights w,,.

To solve the object replacement problem, therefore, we add
two new sets of variables. (1) The variables v, € [0, 1] are
“votes” for the exemplar e, and indicate whether an exemplar
should be inserted. A positive vote v, > 0 indicates the exem-
plar is to be inserted in the scene, while a vote of v, = 0 implies



it should be left out. (2) The transformations 7, denote the
pose in which a candidate exemplar should be inserted within
the scene. We take T, to belong to the set of rigid transforma-
tions (translations and rotations), though one could broaden this
to including scaling or more exotic non-rigid transformations.

We propose to perform semantic segmentation and object re-
placement jointly, by minimizing an energy which is the sum of
six terms, that is:

E((Weph ATe} (ve}) = > AE; ((wep) AT}, (ve))

M

i=1

The six individual energy terms are as follows:
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The minimization is performed subject to the following con-
straints:

Zwepzl\v’p Wep 20 Vp,e 0<v,<1Ve

Let us take each of these terms in turn.

e E| —Semantic Data Term. The constants A, are defined as
follows: A., = 1 if exemplar e belong to class ¢ and 0 oth-
erwise, reflecting the assignment of exemplars to classes
known a priori. Thus, the semantic data term tries to drive
the weights to be faithful to the forest classifier; the sum
of the weights over all of the exemplars in a particular
class should match the output of the forest classifier for
that class.

e E; — Geometric Data Term. x, is the location of the point
p, and X, is the point cloud which represents exemplar
e. T, X, indicates the point cloud resulting from applying
transformation 7, to each point in X,. Finally, D denotes
an extrinsic distance between two sets of points. Thus, the
geometric data term is a kind of weighted distance term.
The goal is to match the scene points as best as possible to
a given exemplar. Note that this term only pays attention to
exemplars with non-zero weights. For the clutter exemplar
e =0, D(x,,T.X,) is not well-defined; we replace it by a
constant D, for all points p. The actual value of D e,
used is discussed in Section [

o E; — Spatial Smoothness Term. This term is a spatial regu-
larization on the weights. In particular, we strive to smooth
out the weights considered as a function of spatial loca-
tion; that is, for each exemplar e, we wish to smooth out
Wep, considered as a function of p. We achieve this by us-
ing a Laplacian smoothing term; here L is the Laplacian
matrix over a weighted graph defined over the point cloud.
More details are given in Section [3.6]

o E, — Sparsity Term. The parameter ¢ is chosen to be in
the range (0, 1). Thus, this term promotes sparsity on the
weights. Recalling that for each pixel p the weights w,,
are normalized to sum to 1, this term encourages all of the
mass to be placed on a single exemplar. In practice, we
choose ¢ = 0.1.

o Es — Weight-Vote Agreement Term. This term prefers to
choose a large vote v, for exemplar e when the sum of the
weights for that exemplar, over all pixels, is large.

e Eg — Non-Collision Term. Q(X;,X>) denotes the binary
overlap between two shapes X; and X, i.e. Q(X,X3) =
1 if X; and X, overlap and O otherwise. Thus
QT,X,, ,T,,X,,) measures the binary overlap between
the exemplars e; and e, in the poses T,, and T,, re-
spectively. Given that the votes v, are constrained to be
non-negative, this term encourages us to select only non-
overlapping exemplars.

Having thus defined an energy which captures the idea of joint
semantic segmentation and object replacement, we proceed to
describe how to minimize the energy.

3.4. Simplifying the Energy

We begin by rewriting the energy more neatly in matrix-
vector notation. Suppose that the number of points, exemplars,
and classes are np, n,, n., respectively. We form the vector
w € R"™" by stacking the weights, as

— T
W= [Wll’--~vW1np’-~-’Wnel’--~vwnfnp] .

We similarly stack the outputs of the random forest into a vector
f e R"" as

£=[fiteeeos fingseoos faetsenos fum, 1T

We denote d,,(T.) = D(xp,T.X,.), and form the vector of dis-
tances d(T) € R™" by

d(T) = [dll(Tl)s .o ’dln,,(T1)9 ey dnel(Tne), ey dnen,,(Tne)]T~

We keep the transformation (T) dependence explicit as we will
be optimizing over the transformations. Finally, we define n,
matrices R, € R">""» which pick out the entries of w related
only to point p. In other words,

T
Row = [wip, ..., Wyl

We define a similar set of sampling matrices for the forest en-
tries f, which we denote S,. Finally, we denote by Q(T) the
n, X n, matrix with entries Q(7,,X,, , Te,Xo,).



We may then rewrite the terms of the objective as

Ei=w'| > RIATAR, |w-2f" (Z sgARp] w
P P

E; =d(T)’w

E; =w' (I, ® L)w

E4 = —|Iwll;

Es=—v/(I, ®1; )W

E¢ = v/ Q(T)v

where ® is the Kronecker product; I is the identity matrix of
size k X k; and 1y is the vector whose entries are all 1, of dimen-
sion k. Simplifying, we then have

E=w¥,,w+0,(T)w+&IWS + v (T)v + v ¥,,w
where

¥y = A1 ) RIATAR, + 431, @ L
P

0,,(T) = -2, f + ,d(T)

D RIATS,
p

fw = _/14
¥, (T) = 26Q(T)
¥, = -4l 1,

The constraints may be simplified as follows:

I'w=1 w>0 0<v<li

. . th . T
where I' is a n,, X n.n, matrix, whose p™ row is equal to lnpR,,.

3.5. Minimizing the Energy

Our problem is now

min E = w/ W, W+ 0,(T) w+ &, W[5 + VI ¥, (T)v + v P, w

T,w,v
subject to

I'w=1 w>0 0<v<l1

We use a technique based on alternating minimization. In par-
ticular, we cycle through subproblems with respect to T, w, and
v. We now detail how to solve these individual subproblems.

Minimization w.r.t. T. Fixing w and v, the minimization w.r.t. T
reduces to
min 0,(T)'w+v'¥,,(T)v

There are two conditions under which the second term,
vI'¥,,(T)v is equal to 0. The first condition is that the coef-
ficient on the non-collision term A = 0. The second condition
is that positive overlap between two exemplars implies that at
most one is selected; that is, Q(7T,, X, , Te,Xe,) > 0 = v, =

Oorv,, = 0. As we shall see, in practice one of these two
conditions generally holds. That is, as we describe in both Al-
gorithm[T]and Section [3.6] for the initial iteration A is set to 0,
so that the first condition is satisfied. In later iterations when
Ag > 0, we observe empirically that the second condition gen-
erally holds, at least approximately. We use this as justification
to ignore the second term v’ ¥, (T)v.
In this case, the optimization problem reduces to

rnTin 0,(T)'w

The role of the transformations T is somewhat obscured within
the matrix-vector formulation. Going back to the original for-
mulation, we can rewrite the above as

min = > we,D(xp, TXc)

T1oeesTne
p.e

e

It is easy to see that this minimization problem is separable,
i.e. it decomposes into a separate minimization for each exem-
plar e. So for each e one needs to solve

min > wepDixp. TeXe) )
P

Solving (1) for the optimal transformation T, is the same as
solving a weighted ICP problem. This can be done with stan-
dard techniques, e.g. [20].

Minimization w.r.t. w. The main issue here is the sparsity term
[[w||¢, which is not convex. However, since we are already per-
forming an iterative optimization, it is natural to use the itera-
tive reweighted least squares (IRLS) technique. This allows us

to replace ||w||§ with
2
D ery
e

where
k-1)|¢=2
Nep = [wily " #)
and wg;,_ D are the optimal weights from the previous, i.e. (k —

1) iteration. (For example, see [21].) In this case, the energy
becomes

E=w'¥,,w+0,D'w+v ¥, (T)v+v¥,w

where

\I’ww = ‘wa + dlag(’])

Now, fixing v and T, it is clear that the minimization of E
w.r.t. w is a convex quadratic program, i.e.

T 7 o\T
min w' ¥, w + (6D +¥v) w st. Tw=1, w20
3)
Thus, one can solve this step for the global minimum w.r.t. w
(not the global minimum of the entire function, just of this step)
using standard solvers.



Input: point cloud P, set of exemplars &

Output: set of exemplars &, C & to insert into the scene,
pose T, for each exemplar e € &,

Initialization:

. ) Nour
o set the sequence of coefficients {/1(6’)}_ 1
i=

e evaluate Random Forest to get initial confidence per
class for each point f.,

e run Mean Shift to set initial exemplar positions

e set initial w according to forest scores:
Wep < fep / (# exemplars in class ¢)

e at every position run N;cp weighted ICP’s with dif-
ferent initial rotation around z-axis; keep result with
smallest distance

e setinitial v« 1

Iterative Minimization:

fori < 1 to N,, do
E" « energy function with coefficients Ag = /lg)
for j « 1to N;, do
registration step — compute T: solve (1)
for k — 1 to NIRLS do
set p according to
segmentation step — compute w: solve
end
end
voting step — compute v: solve ()

end

Erep —{e€&: v, >0, ¥,w, = threshold}

Algorithm 1: ASIST algorithm.

Minimization w.r.t. v. One can easily observe that in fixing w
and T, the minimization w.r.t. v is a quadratic program, that is

minv ¥, (T)v + (¥,,w)!v st. 0<v<l1 4)
A\

However, given that Q(T), the collision matrix, is not positive
semidefinite, the QP will not, in general, be convex. Thus,
while one may use standard solvers, this step will not in general
yield the global minimum w.r.t. v; rather, a local minimum is all
that can be guaranteed.

The Algorithm. The overall algorithm is summarized in Algo-
rithm [Il The main structure of the iterations consists of three
nested loops: the outer loop over i, in which the energy func-
tion’s coefficients are adjusted; the middle loop over j, which
contains the minimizations over T (registration step), and v
(voting step); and an inner loop over k, which allows for the
IRLS iterations necessary for minimization over w (segmenta-
tion step).

There are several details in the initialization which have not
yet been covered. We now proceed to discuss these and other
implementation details.

3.6. Implementation Details

In this section we explain in details the algorithm pipeline.
Please refer to Algorithm [I]for each of the relevant steps.

Sequence of Energy Coefficients. The energy function is, in
general, non-convex in v; this is due to the indefinite nature
of the collision matrix Q(T), and hence of the matrix ¥,,,(T) =
AsQ(T).

To alleviate this non-convexity, we define a monotonically
increasing sequence of coefficients {/1(6’) }ﬁ"f’ on the non-collision
term Eg, and corresponding sequence of energy functions
{E®}Yu . Choosing A’ = 0 we get an initial energy function
which is convex in v. Using a small non-collision coefficient ¢
will generally result in weights w,, which are “non-decisive”,
in that we will not have w,,, = 1 for a single e; rather, for a given
point several exemplars will have positive weights. By gradu-
ally increasing the non-collision coefficient Ag, the decisiveness
of the weights improves at the cost of increasing non-convexity.

We observe experimentally that using a moderate growth rate
for the non-collision coefficients A¢ increases the probability of
converging to the correct results. This is further ameliorated by
initializing the quadratic program with the solution for v from
the previous iteration.

Random Forest. Recall that in Section [3.2] we described the
computation of K base features per cell, where each such base
feature is a vector h;y € RM, There are two separate types of
base features that are used:

1. Scalar field features. These include the occupancy and dis-
tance function features. In this case, the size of the feature
M, = m?, where the cell is m X m X m.

2. Scalar features. We used only such feature, the height of
the cell, as measured by the height of the center voxel of
the cell. In this case, the size of the feature is M) = 1.

In describing the split functions used, we will treat scalar field
features as functions in three dimensions, i.e. hi(x, y, z) over all
voxels (x,y,z) in the cell, with the understanding that we can
convert from functional notation h,(-) to the vector notation hy
used in Section[3.2] simply by stacking. Thus, whereas the split
functions were previously described as w(k,u,7) = 1[u’h; >
7], for the sake of a simpler explanation, we will now describe
those corresponding to scalar field features by

whku D =11 > ulny,2) h(xy,9) > 7|.

(x.y,z)eCell

In all experiments we obtained a prior on the label probability
of each point in the point cloud using a random forest classifier
trained to maximize the Shannon Entropy at each split. The
split functions w used in our experiments were designed so that
some enable rotation invariant splits, while others offer more
rotation selective ones. In what follows, the z-direction is the
vertical direction, measuring height off the ground.

e Height: Let h3 be the height of the center voxel of the cell.
Then w = 1[h; > 7].



e Rotation Invariant: Uses a dot product between a radi-
ally symmetric weight vector and the cells feature vector.
w = 1[Xxy ecen u(x, ¥, i (x, y,2) > 7] where u is a ran-
domly generated function with values that are rotationally
symmetric for rotations around the z-axis.

e Box: Sums the occupancy or the distance function in a ran-
domly generated box. Thus, w = 1[X(ryep hi(x, y,2) >
7] where B is a box with a random location and size within
the relevant cell, and h(x, v, z) is either the occupancy or
distance function value of the voxel at location (x, y, z).

e Horizontal Slab: Sums the occupancy or distance function
over all 9 x 9 voxels at a single z-value. The slab can be
written as R(zp) = {(x,y,2) € Cell : z = zo}. Then the
split function is w = L1[X (., »erey) he(x, ¥, 2) > 7], where
20 € {—4, -3, ..., 4} is selected randomly.

o Pixelwise Values: Linear combination of the occupancy
or the distance function values of up to three voxels w =
]l[Z?= 1 aihg(x(v;), y(vj), 2(v;)) > 7] where the voxels v; are
selected randomly within the cell limit and a; € {—1,0, 1}
is also selected at random.

For all split functions the value of 7 is selected randomly
within the feasible bounds of the training data reaching the
node.

Mean Shift for Initial Exemplar Positions. Initial exemplar lo-
cations are obtained by running a fast version of a weighted
Mean Shift [22] algorithm on the point cloud after is has been
projected onto the xy-plane. The algorithm is run once for each
object class; during the run for object class ¢, the weight as-
signed to point p is taken to be f,, the random forest output for
that class. The modes found by Mean Shift therefore tend to be
at locations where the forest assigned high probabilities to the
class in question.

The bandwidth of the Mean Shift algorithm is set differently
for each class, based on a rough estimate of the object size in
that class. As a post-processing step, we merge modes that are
closer than 1.5 times the bandwidth. The modes returned for a
given class are then assigned as the starting positions for each
exemplar representing that class.

The next step in the initialization process is to determine the
starting orientation of each exemplar. This is done by initial-
izing each exemplar in 8 equally spaced rotations around the
z-axis, running an ICP algorithm to finely tune the position and
orientation of the exemplar, and then choosing the best fitted
exemplar out of the 8. In cases in which the best exemplar is
farther than a predetermined threshold all 8 candidates are re-
moved from consideration.

Laplacian Operator L for Spatial Smoothness Term E;. Given
the point cloud £ we construct an undirected weighted graph
G(P,7,Q), where the edge set F is constructed using k-nearest
neighbors. The edge weights are given by Q,, = e ol /20
for (p,q) € ¥ and are zero otherwise. We use the random walk
version of the normalized graph Laplacian of G [23]] where L =

I-A'Q,and A = diag(X, Qpg)- In all of our experiments we
used k = 10 nearest neighbors and o = 5.

Output Exemplar Filtering. Recall from Section [3.3] that our
proposed criterion for inserting exemplars was based entirely
on their vote: if v, > 0 exemplar e would be inserted, and oth-
erwise it would not. In practice, this works quite well most
of the time, as the algorithm generally produces a set of non-
overlapping exemplars.

However, it may sometimes be the case that an exemplar is
assigned in error to a small number of isolated points. This
rarely happens since such points are usually classified as clut-
ter by the forest, and thus Mean Shift finds no corresponding
mode. But in the unusual case that a mode is found, then even
if the vote v, corresponding to that mode is small, it is still pos-
itive. Thus, the original criterion requires that we retain this
exemplar, which is problematic.

To handle such cases we apply a straightforward filter as a
final step, where we keep only exemplars e for which the vote
v, is positive, and at the same time the aggregation over the
weights of the exemplar 3}, w,, exceeds a small predetermined
threshold. We set the threshold to be 0.1 in all our experiments.

3.7. Speeding Up the Algorithm

There are three steps to our algorithm, corresponding to the
three sets of variables we minimize with respect to. Each of the
these steps must be repeated several times, as shown in Algo-
rithm[Il

Minimizing with respect to the transformations 7, does not
pose a speed problem, as weighted ICP may be solved quickly
(see for example [24]). The issue is the two quadratic programs
we must solve, one with respect to w and the other with respect
to v. However, these two QPs are quite different in scale. The
QP with respect to w is of size n.n,, while the QP with respect
to v is of size n,. Rough orders of magnitude for these two
variables are 10° — 10° for n, and 10? for n,. Thus, the QP for v
can be solved with a standard solver quite quickly; while the QP
for w, which will be of size n.n, = 107 — 108, is considerably
slower to solve in a standard fashion. We thus propose two
independent techniques to speed up this QP.

Subspace Parameterization. Let us denote by w, € R™ the
vector [we1,..., we,,,p]T. This is the vector of weights corre-
sponding to just the exemplar e, over all points. We may there-
fore think of w, as a scalar field or function on the volume.

The idea is to represent this scalar function in a more parsi-
monious fashion. Thus, we use an expansion in terms of ba-
sis functions. A natural set of basis functions is provided by
the Laplacian operator L, which we already use in the smooth-
ing term. We take the basis functions to the eigenfunctions of
L, corresponding to the smallest n;, eigenvalues. (Recall that
the smaller the eigenvalue of the Laplacian, the smoother the
function.) We denote these functions by {¢i}?i1’ where each
¢; € R™, and the collection is given by the matrix whose
columns are the individual functions, i.e. ® € R"»*". In prac-
tice, we find n;, = 30 Laplacian basis functions suffice.



In this case, we can represent the function w, as ®e,, for
a, € R™. Stacking the coefficients of each exemplar to get a
vector @ € R™", we have that

w=(, ®D)a = da

And thus, we may represent the entire vector w with only nn,
values. Given that n, = 30 in practice, this is a huge complexity
reduction of 3-4 orders of magnitude.

The energy we need to minimize thus becomes

E = WT‘NPWWW +(0,(T) - ‘I’W(T)V)TW
= o’ (@' ¥, D) + [(0,(T) - ¥,,(T)v) Dl
=o' ¥+ 60,(D) @

The two set of constraints are now represented in terms of the
coefficients a as
da >0

I'da =1

It is not clear if the equality constraints are even still feasible,
given that we are dealing with a much smaller number of vari-
ables. It turns out they are still feasible, which we now show. To
do so, it will be easier to go back to the original non-vectorized
formulation. These constraints were }, w., = 1 for all p. But
this means that

Dwe=1,,= ) da =1, = (Z ae] =1,

e

Thus, the question becomes: does ®z = 1 have a solution?
The answer is yes, due to the special properties of the Lapla-
cian matrix, and its eigenfunctions. Let the eigenvalues of the
Laplacian be denoted {y;}. Then a result from spectral graph
theory [23]] shows that if B is given by

g - (19l ifu=0
‘o if ;> 0

then @ = 1, and it is the unique solution. This means that the
equality constraints can be converted to

da=g = (L,8L)e=p

which quite clearly have a multiplicity of solutions.
Thus, the QP becomes

mina’ ¥y + 0,(T) @
a

subject to

(1, ®L,)a=p da >0

At first, this looks very reasonable: the number of variables if
npn., which is quite manageable; and the equality constraints
have been taken care of. The problem is the inequality con-
straints, specifically, the number of such constraints. Recall
that these constraints derive from the non-negativity constraint
on each weight, i.e. w,, > 0 ; thus, there are still n.n, such
constraints. Since the complexity of quadratic programming
depends on both the number of variables and the number of
constraints, we will still have a slow algorithm.

Squared Weights. As a result, we must reduce the number of
inequality constraints. We ask the following question: what
would happen if we dropped these non-negativity constraints?
Examining the various terms of the energy, we see that neither
the semantic data term E;, nor the spatial smoothness term Es3,
nor the sparsity term E4 would have any particular incentive to
choose negative weights. Furthermore, the weight-vote agree-
ment term Es would suffer significantly from choosing negative
weights; and the non-collision term Eg has no dependence on
the weights. Thus, the only problematic term is the geomet-
ric data term E, = d(T)"w. Quite clearly, this term would be
minimized by choosing w as negative as possible.

To deal with this problem, we adopt the following simple
workaround. We change the geometric data term E,, to be the
following:

E) = Z w2, D(xp, TeX,) = w' diag(d(T))w

p.e

That is, we replace the weights in the weighted ICP with the
squared weights. Now, choosing large negative weights will
pose a disadvantage. In fact, even small negative terms would
tend to raise E}, when coupled with the constraint 3}, w., = 1;
this is because if one term is negative, that means that the others
must sum to more than 1.

Making this change yields the following changes in the prob-
lem parameters:

¥, (T) =¥, + Ldiagd(T)  6,(T) = 6,(T) - L,d(T)

and the inequality constraints are removed. That is, taking

¥ (T)=® ¥, (T)® and 6,(T) = €,(T) - W,,(T)v we solve
mina’ ¥, (T +6,(T) @ st

(L. eL,)a=8
In this case, the QP can actually be solved as a linear system, as
it is the result of minimizing a positive semi-definite quadratic
form subject to a linear system. This yields a very fast algorithm
in practice.

The Accelerated Algorithm. The faster algorithm is identical
to Algorithm [I] with one change: the segmentation step now
involves solving (3)) for & instead of (3) for w.

4. Results

To evaluate the performance of ASIST, we conducted several
experiments using a variety of datasets including both our own
synthetic and scanned scenes as well as scenes acquired by Nan
et al. [2] and Li et al. [3]]. Overall our datasets contain scans
acquired by four different types of sensors: Kinect v1, Kinect
v2, Mantis Vision, and Google Tango.

This section is organized as follows. In Section |4.1| we de-
tail the parameters of ASIST, such as the number of iterations,
weights for the different energy terms, etc. In Section we
evaluate ASIST on a dataset of scenes containing synthetic
models obtained from ModelNet [[17]. We evaluate our perfor-
mance both quantitatively and qualitatively, and discuss success



and failure cases. In[4.3] we introduce a small scanned dataset
containing scenes we acquired using Kinect v2 and Tango, and
discuss the performance of ASIST on these scenes. Sections
and [4.5] include comparison with two different algorithms
from the recent literature [3, [2l]. Since there was no available
implementation for either method, we ran ASIST on scanned
datasets supplied by the authors on which they reported their
performance. In both cases we found ASIST to give compara-
ble results.

4.1. Experimental Settings

General Parameters. In all experiments we ran our algorithms
for N,,, = 5, N, = 2, and Njgrs = 5 iterations. The || - ||,
sparsity inducing norm was chosen as ¢ = 0.1. The energy term
coefficients were taken to be A3 = 100, A4 = 10, and A5 = 1.
As was described in Section[3.6} 14 was increased at each outer
iteration, taking on values of 1,5, 10, 10%,10%,10°. The rest of
the parameters varied by experiment, and were set as shown in
Table [T

Forest Training. In all experiments we trained a forest with 9
trees of depth 10. At each node a pool of a 1,000 random split
functions were generated and the one maximizing the Shan-
non information gain was selected. Training was stopped if
the information gain was below 0.05 or if less than 30 sam-
ples reached the node. Each tree was trained of a random set of
6 x 10 cells selected out of models from ModelNet [17].

The average execution time per scene using unoptimized
MATLAB code on an Intel Xeon E5620 2.4GHz is about 10
minutes.

At | A | Deusrer | Voxellcm]
Synethetic scenes 1 1 10 7.5
Dataof Nanetal [2] | 10 | 1 20 2.5
Data of Li et al. [3] 10 | 10 10 2.5

Table 1: Parameter settings. Reported are only the parameters that
vary across experiments. See discussion in the text.

4.2. Synthetic Dataset

Description of the Dataset. As an initial experiment, we eval-
uated the performance of ASIST on a synthetic benchmark.
The benchmark comprised 30 scenes each containing a random
collection of objects taken from the test portion of the Mod-
elNet [[17] dataset (recall that ASIST was trained on the non-
overlapping training set of ModelNet). The objects were po-
sitioned at random non-overlapping locations within the scene.
Objects from the following five classes were used in our bench-
mark: chair, table, toilet, sofa, and bed. Each scene contained
either one or two objects from each class. The scene thus con-
sists of a mesh, and is annotated additionally with a set of
ground truth bounding boxes and their class labels. Note that
the bounding boxes are not axis-aligned; rather, they are aligned
tightly to the objects they surround.

Evaluation criteria. In all experiments we computed precision
and recall using the bounding boxes; an overlap is considered
to have occurred if the Intersection over Union (IoU) score, de-
fined as the ratio between the intersection and union volumes
of the bounding boxes [235]], is greater than 0.25. We define two
measures of relevance and, consequently, two types of precision
and recall: semantic, for which the replaced and the replacing
objects are deemed relevant if they have matching class labels,
and geometric, which simply looks for overlap disregarding the
class labels of the objects. Semantic precision and recall is re-
ported on a per-class basis, whereas geometric precision and
recall is given as an aggregate for the entire dataset.

We intend to release our synthetic benchmark to the research
community.

Results. A quantitative evaluation of the performance of
ASIST on the synthetic benchmark is given in Table[2] For each
of the five classes, the semantic precision, recall, and F; scores
are reported. Note that the semantic precisions vary between
0.91 and 1, with a mean precision of 0.97 across all classes;
while the semantic recalls vary between 0.94 and 0.98, with
a mean recall of 0.96 across all classes. The corresponding
Fi=2- [% scores range between 0.94 and 0.99, with
a mean value of 0.96. In addition, the geometric precision and
recall (which do not account for class labels) are 1 and 0.99,
with the geometric F'; score of 0.99.

In our experiments, ASIST is executed for N,,, = 5 outer
loop iterations. We compare our results with those for which
ASIST is run for N,,, = 1. In this setting we assign a very high
value for Ag. Given that the number of inner iterations is rather
small (N;,, = 2), N,,, = 1 entails relatively little interaction be-
tween the segmentation, registration, and voting steps. Thus,
comparing these two different settings of ASIST gives an in-
dication of the importance of the unified approach to semantic
segmentation and object replacement on which the ASIST al-
gorithm is based. Several example scenes are shown in Figure
@ As can be observed from these examples, ASIST succeeds
in properly identifying both the class and pose of the scene ob-
jects, and in finding a geometrically close substitute.

It is also evident from Figure [f.2]that the number of iteration
affecs the performance of ASIST. It can be seen in first example
presented in Figure@]that while ASIST with N,,; = 5 returns
a perfect result, ASIST with N,,; = 1 replaces a table with a
toilet (bottom right part of the scene), completely misses a chair
(center of the scene), and places the bed at a wrong orientation
(top right corner of the scene). In the second example ASIST
with N,,, = 1 replaces a toilet with a chair (center of the scene),
completely misses a chair (top left corner of the scene), and
once again positions the bed at a wrong orientation (top right
corner of the scene). In the third example it replaces a sofa with
a bed (bottom part of the scene).

Failure cases of the algorithm are shown in Figure The
example in the top row shows two different kinds of errors.
First, a sofa in the scene is replaced by two chairs (top left
of the scene). Second, both beds (in yellow, top right of the
scene) are roughly recovered, but their pose is incorrect. In the
example in the bottom row, a bed is replaced with a table (in



Measure \Class | bed | chair | sofa | table | toilet | geo
Prec. (Nouie =5) | 0.98 | 0.96 1 0.91 1 1

Prec. (Noue =1) | 097 | 093 | 098 | 091 | 097 | 0.99
Rec (Nyy = 5) 095 | 094 | 0.96 | 098 | 0.98 | 0.99
Rec (Ny; = 1) 0.83 | 0.88 | 091 | 0.78 | 0.88 | 0.89
Fiy (Now =5) 096 | 0.95 | 098 | 0.94 | 0.99 | 0.99
Fi (Now = 1) 09 | 091 | 095 | 0.84 | 092 | 0.94

Table 2: Synthetic Benchmark Results. Semantic and geometric precision,
recall and F| scores for each of the 5 classes over the 30 benchmark scenes.

red, bottom right); the sofa at the bottom left is replaced with
a considerably smaller sofa; and a rectangular table (top mid-
dle) is replaced with circular table. These sorts of errors are
characteristic of ASIST’s failure modes.

The precision, recall, and F'; scores for N,,; = 1 are reported
in Table |2 The mean semantic precision across classes for a
single iteration is 0.95; when compared to 0.97 for five itera-
tions, this demonstrates a modest improvement for the full al-
gorithm. The improvement is much clearer in examining the
recall scores, where the mean semantic recall across for a sin-
gle iteration is 0.85, compared to 0.96 for five iterations.

Thus, we may conclude that the unified approach of ASIST
to semantic segmentation and object replacement is indeed im-
portant; as it provides crucial improvements to the algorithm’s
performance.

4.3. Fused Scans

Description of the Dataset. As explained in previous sections,
the ASIST algorithm is designed to operate on point clouds ob-
tained by a fusion of scans from multiple directions. To eval-
uate its performance in these scenarios, we collected several
such fused scans using two types of sensors: Kinect v2 based on
time-of-flight technology, and Tango based on triangulation [7].
We built a small collection of six indoor scenes, four of which
were obtained using Kinect Fusion [[1] and two using Tango.
The scenes are presented in the leftmost columns of Figures
[M.3}f4.3] where it can be seen that even though the acquisition
was done from multiple viewpoints, it consists of many holes,
mainly due to occlusions. Data acquired using Tango is also
much noisier, with approximately half the average point den-
sity of the scenes acquired with Kinect v2. The dataset consists
a total of 29 chairs, 9 tables and 2 sofas.

Pipeline Illustration. In order to get a better understanding of
the different steps of ASIST, we present intermediate results on
the “dining table” scene shown in the top row of Figure 4.3

Figures and show intermediate outputs of the algorithm
pipeline. The semantic segmentation is presented in Figure[d.3]
Each point in the scene’s point cloud is assigned a semantic
class confidence, which is just the sum of the weights of all
exemplars belonging to the same class. The points are colored
according to a heat-map, where red means high confidence and
blue signifies low confidence. The leftmost column depicts the
labeling achieved by the random forest at initialization for the
chair class (top row) and for the table class (bottom row). In
this example we used the six-class forest (clutter, chair, toilet,
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bed, sofa and table) but since the scene contains only chairs
and a table, for the sake of clarity we present only the relevant
weights. It can be seen that the classifier succeeds in locating
unique characteristics of the class such as the height of the plane
in the table case and legs and backrest of the chairs. However,
this results is far from being accurate enough for performing the
scene transformation.

Figure [4.3] column (b) shows the result of using the spec-
tral basis representation. Other than having the obvious benefit
of reducing the number of optimization variables significantly,
this low-pass filtering type of action has the effect of smoothing
out the per-point labeling, thereby assisting the Mean Shift al-
gorithm to avoid getting stuck in local modes. Finally, column
(c) shows the final labeling achieved by ASIST. It can be seen
than the objects points assume a much higher value of their cor-
responding class confidence. This demonstrates the power of
the alternations done by the algorithm, i.e. segmentation con-
tributes to better registration and vice versa. While this inter-
mediate result is clearly not prefect, it is sufficiently accurate in
order to perform a perfect replacement.

The evolution of exemplars though the course of N,,, = 5 it-
erations is shown in Figure[d.3] The scene is shown in transpar-
ent gray from a top viewpoint and each exemplar is represented
as a full circle located at its bounding box’s center. Each circle
is assigned a color according to its class membership, using the
same color code as described in[4.2] Column (a) depicts all the
exemplar locations at initialization, i.e. after each exemplar has
been placed at its corresponding class’ Mean Shift mode, and
was then registered to the scene using several weighted ICP’s,
each with a different initial rotation around z-axis. The location
shown is of the exemplar position as output from the ICP that
resulted in the smallest one-sided Hausdorff distance between
the exemplar and the scene. Columns (b)-(d) show the locations
of the exemplars e for which the vote v, is positive and the ag-
gregation of weights exceed a small threshold (this is the same
criterion denoted by €, in Algorithm .

Figure [4.3| demonstrates nicely how the large number of ini-
tial candidates is reduced at each step until we are left with only
a final subset of exemplars which are both non-overlapping and
have high confidence values. Increasing the value of A¢ in a
moderate fashion results in gradually removing the exemplars
with low confidence while keeping the more ambiguous ones
even if they are overlapping, thus leaving the hard selection for
later steps where the best fitting exemplar presents a more sig-
nificant advantage as compared to the others. Observe how after
a single iteration the candidate exemplars belonging to the bed
class have already been excluded, and after the third iteration
only exemplars from the correct classes remain for ASIST to
choose from. This gives good intuition for why ASIST tends to
converge in practice to the correct solution even though it is not
a convex problem,; it is because the voting step (see Algorithm
is initialized close to the global solution and its non-convex
term, AgE¢ (the non-collision term), increases gradually.

Finally, the transformed scene is shown in the top row of

Figure 4.3]
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Figure 2: Results on synthetic scenes. Column (a) shows the original scene; (b) shows the output of ASIST for N,,, = 5; (c) shows the output of ASIST for
Nour = 1. Each row shows the synthetic scene in gray; and the output of the ASIST algorithm, in which the objects to be inserted are rendered in color-coded scheme
according to object class (blue for chairs, red for tables, cyan for toilets, green for sofas, and yellow for beds). The two colored columns (b) and (c) represent the
two ASIST configurations with N,,; = 5 and N,,; = 1 respectively.

(a) (b) ()

Figure 3: Failure cases. Column (a) shows the original scene; (b) shows the output of our algorithm after five iterations; (c) shows the scene and the algorithm’s
output superimposed.
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Figure 4: Pipeline illustration, Part 1. Per point semantic class segmentation at different steps of ASIST, for the chair class (top row) and table class (bottom row).
(a) Initial (forest) labeling; (b) after spectral representation; (c) final segmentation.

@ Chair O Toilet Bed @ s @® Table

Initialization Iteration 1 Iteration 3 Iteration 5

Figure 5: Pipeline illustration, Part 2. Exemplar locations: (a) at initialization; (b) after a single iteration; (c) after 3 iterations; and (d) after 5 iterations.
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Results. In this experiment we present the result of ASIST on
six scanned scenes, with floors removed. As can be seen in
Figures [4.3}f4.3| we get a perfect result in terms of precision and
recall on five out of the six scenes. We now elaborate on these
results as well as the interesting failure case shown in Figure
4.3

As can be seen in Figure [£.3] the scans obtained using the
Kinect sensor are of a reasonable resolution. Nevertheless they
contain a non negligible amount of clutter (see the top of the
dining table for example) and noise (see the short coffee table
in the second row). These are handled though our clutter-class
and the exemplars’ geometry. Recall that due to the alternating
fashion of the algorithm the registration, while relying on the
segmentation, also aids in improving it.

Taking a closer look at the first example shown in Figure 4.3]
the clutter on the table can clearly be seen, while additionally
some of the chairs are missing their legs. ASIST handles these
issues and returns the correct result as a result of its unified ap-
proach. The second example shows how ASIST successfully
deals with large occlusions: a large part of the sofa and table
are missing from the scan. The third example also contains se-
rious occlusions. It is evident in this case that ASIST returns a
rectangular table rather than a round one and chairs that are less
reclined than the ones in the scene. This is due to the lack of a
better exemplar in the database; nevertheless the result is faith-
ful to the semantics of the scene. The fourth example empha-
sizes how ASIST handles large and crowded scenes with many
different objects and classes, where again, some of the scanned
objects have missing parts such as legs and seats. Nevertheless,
all objects are recovered correctly with minor geometric errors
such as the length of the couch and the leftmost table.

Figure shows an example of a scene scanned with the
Google Tango sensor. The scan resolution is much lower com-
pared to the Kinect scenes with about half of the spatial resolu-
tion. Large parts of the scan are missing and those present are
extremely noisy. Yet, these acquisition imperfections are still
robustly handled by our algorithm.

In Figure we present a failure case of ASIST on a scene
scanned using Google Tango. The errors can be divided into
two types: geometric, such as the returned table being rectan-
gular instead of round and a few missing chairs at the top right
corner of the scene; and semantic, such as the chairs on the left
side of the scene that were replaced by sofas. Although this is a
semantic error the two class types are relatively close semanti-
cally and this sort of error could probably be acceptable in some
VR applications.

4.4. Comparison to Li et al. [3]

In this section we compare the performance of ASIST to the
algorithm introduced in [3]]. Unfortunately, the authors provide
no basis for quantitative comparison, due to the lack of anno-
tated scenes and code. However, some of the scans were re-
leased along with their reconstructions, and we were therefore
able to provide a qualitative comparison. Figure shows a
comparison between the performance of ASIST (column (b))
and the published reconstruction of Li ef al. (column (d)) on
two different scenes. For both scenes it can be seen that ASIST
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achieves a perfect result in terms of both semantic and geo-
metric recall and precision and thus outperforms the results of
Li et al. In particular, it can be seen in the top scene that the
solution of Li et al. misses one of the six chairs, while in the
bottom scene it misses two of the four chairs. These errors oc-
cur at quite challenging parts of the scans: the scanned chairs
are missing significant chunks due to occlusions. Nevertheless,
ASIST still performs well, inserting chairs appropriately.

Furthermore, it is apparent that the reconstruction stays loyal
to the geometry and the pose of the objects in the scene
(coloumn (c)). A close look at the results of both algorithms
shows that in some of the chairs, for instance, the reconstructed
object is a four-legged chair whereas the object in the scene is a
swivel chair. In ASIST, this is mainly due to the lack of diver-
sity of exemplars. The set of exemplars we picked contains a
single exemplar representing a “swivel chair” with a high back-
rest, hence for objects such as the second chair from the right
and the leftmost one, a lower energy value can be obtained by
choosing a chair with higher geometric error in the legs area
than in the backrest area.

4.5. Comparison to Nan et al. [12]]

A quantitative comparison of ASIST to the algorithm pro-
posed by Nan ez al. [2] is reported in Table[3] and a qualitative
comparison is shown in Figure[.5] Since code was neither pub-
lished nor was made available upon request, we evaluated the
performance on the 18 scene dataset that was released by the
authors, and compared it against the score derived from their
published reconstructions. In order to evaluate precision and
recall we manually annotated bounding boxes of chairs, tables
and sofas in the scenes. We intend to release this data to the
research community.

Observe that while semantically, Nan et al. slightly outper-
forms ASIST in the majority of cases, the results are compara-
ble both quantitatively and qualitatively (see Table [3)). Figure
shows two of Nan’s published scenes (column (a)), the re-
sult of ASIST (column (b)) and Nan’s result (column (d)). In
the top row one can observe a semantic failure case by Nan
where the algorithm replaces the adjacent chairs with sofas.
ASIST, on the other hand, finds the individual chairs correctly.
The bottom row shows a case where Nan’s method performs
well except for replacing two adjacent chairs with a high table.
In that case, ASIST finds all the chairs in the scene correctly,
but erroneously replaces the coffee table with a couple of chairs
as well.

It is worthwhile noting that while Nan et al. allows deforma-
tions of the objects used for the reconstruction, ASIST uses its
available exemplars as is. This results in a match which, while
performing quite well in terms of precision and recall, deviates
geometrically from the ground truth more than Nan’s method.
This provides the inspiration for one of the main directions for
future research, as discussed in detail in Section

5. Discussion

We have seen that the proposed ASIST algorithm is quite
effective in achieving semantically invariant scene transforma-



() (b) (©)

Figure 6: ASIST using a Kinect sensor. Column (a) scanned scene; (b) ASISTSs’ result; (c) overlay of the previous two.

() (b) ()

Figure 7: ASIST using a Google Tango sensor. Column (a) scanned scene; (b) ASISTs’ result; (c) overlay of the previous two.
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Figure 8: ASISTs’ failure on a scene scanned with Google Tango. (a) scanned scene; (b) ASIST result; (c) overlay of the previous two.

(a) (b) (© (d)

Figure 9: Scenes from Li et al. [3]. (a) Scanned scene; (b) ASIST result; (c) result overlay; (d) Li et al. result, shown in pink. The images of the top example are
presented diagonally while the images of the bottom example are presented in a horizontal row.
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chair | table | geo

Precision

ASIST 0.91 0.8 | 0.93

Nanetal. | 097 | 0.81 | 093
Recall

ASIST 093 | 0.89 | 0.97

Nanetal. | 091 1 0.93
F score

ASIST 092 | 0.84 | 0.95

Nanetal. | 094 | 0.89 | 0.93

Table 3: Performance comparison with Nan ef al. [2]. Semantic and geomet-
ric precision, recall and F scores for all scenes published in [2].

tions on a variety of different sources of data. However, in ex-
amining the failure cases, it becomes apparent that there are two
elements of the algorithm which can lead ASIST astray.

The first element is the cell classification. We have observed
that the random forest classifier has reasonable performance,
but does not produce extraordinarily accurate results. It turns
out that this reasonable level of performance is sufficient for
ASIST in many cases, as the other energy terms pull the algo-
rithm towards the correct solution. However, we observed that
in many failure cases, it was the forest that provided a signal
which was too weak, or even incorrect. The semantic data term
was consequently uninformative or incorrect, and the other en-
ergy terms could not adequately compensate.

A potential solution to this problem is readily apparent.
Much work has been done on object recognition and detection;
while the random forest algorithm we rely on is simple to im-
plement, it is naive and has considerably lower performance
than current state-of-the-art recognition algorithms, many of
which are based on convolutional neural networks and other
deep learning techniques. For example, we might expect that
using the detection algorithm introduced in Gupta er al. [10],
the overall accuracy of the ASIST algorithm would improve.
One advantage of the way the ASIST pipeline is built is that
plugging in such a state-of-the-art classifier is straightforward.

The second element which negatively affects ASIST’s per-
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(d)

Figure 10: Scenes from Nan ef al. [2]. (a) Scanned scene; (b) ASIST result; (c) result overlay; (d) Nan et al. result, shown in pink.

formance relates to the registration step, i.e., the choice of the
per exemplar transformations 7. In particular, in the current
implementation we restrict ourselves to rigid transformations.
However, recall that our set of exemplars & is finite, and rela-
tively small in practice. Thus, it is often the case that an object
in the scene will not perfectly match an exemplar, even if the
best possible rigid transformation is chosen. Consequently, it is
sometimes the case that the resulting match is quite inaccurate.

The issue is that the set of rigid transformations is too re-
strictive. A remedy is to broaden the set of transformations to
include scaling, possibly anisotropic. Further afield, one might
consider various classes of non-rigid transformations, for ex-
ample of the type described in [26]. By expanding the set of
transformations, one would expect more accurate matches with
the scene. And while the computation due to a broader set of
transformations might be more expensive, this could be offset
by the need to use fewer exemplars in order to achieve accurate
matching.

6. Conclusions

We have presented the ASIST algorithm for computing se-
mantically invariant scene transformations. Due to a unified
formulation of semantic segmentation and object replacement
based on the optimization of a single objective, ASIST solves
both problems simultaneously via an iterative algorithm. The
method has been shown to achieve a high level of accuracy
on datasets of both synthetic scenes and fused scans, as well
as comparable performance to recently published competitor
methods [2 [3]] on their own data.
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