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Abstract

In this paper we consider the binary transfer learning problem, focusing on how to select and combine
sources from a large pool to yield a good performance on a target task. Constraining our scenario to real
world, we do not assume the direct access to the source data, but rather we employ the source hypothe-
ses trained from them. We propose an efficient algorithm that selects relevant source hypotheses and
feature dimensions simultaneously, building on the literature on the best subset selection problem. Our
algorithm achieves state-of-the-art results on three computer vision datasets, substantially outperforming
both transfer learning and popular feature selection baselines in a small-sample setting. We also present
a randomized variant that achieves the same results with the computational cost independent from the
number of source hypotheses and feature dimensions. Also, we theoretically prove that, under reasonable
assumptions on the source hypotheses, our algorithm can learn effectively from few examples.

1 Introduction

Over the last few years, the visual recognition research landscape has been heavily dominated by Convo-
Iutional Neural Networks, thanks to their ability to leverage effectively over massime amount of training
data [1]. This trend dramatically confirms the widely accepted truth that any learning algorithm performs
better when trained on a lot of data. This is even more true when facing noisy or “hard” problems such as
large-scale recognition [2]. However, when tackling large scale recognition problems, gathering substantial
training data for all classes considered might be challenging, if not almost impossible. The occurrence of
real-world objects follows a long tail distribution, with few objects occurring very often, and many with
few instances. Hence, for the vast majority of visual categories known to human beings, it is extremely
challenging to collect training data of the order of 10* — 10° instances. The “long tail” distribution problem
was noted and studied by Salakhutdinov et al. [3], who proposed to address it by leveraging on the prior
knowledge available to the learner. Indeed, learning systems are often not trained from scratch: usually they
can be build on previous knowledge acquired over time on related tasks [4]. The scenario of learning from
few examples by transferring from what is already known to the learner is collectively known as Transfer
Learning. The target domain usually indicates the task at hand and the source domain the prior knowledge
of the learner.
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Most of the transfer learning algorithms proposed in the recent years focus on the object detection
task (binary transfer learning), assuming access to the training data coming from both source and target
domains [4]. While featuring good practical performance [5], they often demonstrate poor scalability w.r.t.
the number of sources. An alternative direction, known as a Hypothesis Transfer Learning (HTL) [6, 7],
consists in transferring from the source hypotheses, that is classifiers trained from them. This framework
is practically very attractive [8, 9, 10], as it treats source hypotheses as black boxes without any regard of
their inner workings.

The goal of this paper is to develop an HTL algorithm able to deal effectively and efficiently with a
large number of sources, where our working definition of large is at least 103. Note that this order of
magnitude is also the current frontier in visual classification [2]. To this end, we cast Hypothesis Transfer
Learning as a problem of efficient selection and combination of source hypotheses from a large pool. We
pose it as a subset selection problem building on results from the literature [11, 12]. We present! a greedy
algorithm, GreedyTL, which attains state of the art performance even with a very limited amount of data
from the target domain. Morever, we also present a randomized approximate variant of GreedyTL, called
GreedyTL-59, that has a complexity independent from the number of sources, with no loss in perfor-
mance. Our key contribution is a L2-regularized variant of the Forward Regression algorithm [14]. Since
our algorithm can be viewed as a feature selection algorithm as well as an hypothesis transfer learning
approach, we extensively evaluate it against popular feature selection and transfer learning baselines. We
empirically demonstrate that GreedyTL dominates all the baselines in most small-sample transfer learn-
ing scenarios, thus proving the critical role of regularization in our formulation. Experiments over three
datasets show the power of our approach: we obtain state of the art results in tasks with up to 1000 classes,
totalling 1.2 million examples, with only 11 to 20 training examples from the target domain. We back our
experimental results by proving generalization bounds showing that, under reasonable assumptions on the
source hypotheses, our algorithm is able to learn effectively with very limited data.

The rest of the paper is organised as follows: after a review of the relevant literature in the field (section
2), we cast the transfer learning problem in the subset selection framework (section 3). We then define
our GreedyTL, in section 4, deriving its formulation, analysing its computational complexity and its the-
oretical properties. Section 5 describes our experimental evaluation and discuss the related findings. We
conclude with an overall discussion and presenting possible future research avenues.

2 Related Work

The problem of how to exploit prior knowledge when attempting to solve a new task with limited, if any,
annotated samples is vastly researched. Previous work span from transfer learning [4] to domain adaptation
[15, 16], and dataset bias [17]. Here we focus on the first. In the literature there are several transfer learning
settings [16, 15, 5]. The oldest and most popular is the one assuming access to the data originating from
both the source and the target domains [16, 5, 15, 18, 19, 20, 21]. There, one typically assumes that plenty of
source data are available, but access to the target data is limited: for instance, we can have many unlabeled
examples and only few labeled [22]. Here we focus on the Hypothesis Transfer Learning framework (HTL,
[6, 7]). It requires to have access only to source hypotheses, that is classifiers or regressors trained on
the source domains. No assumptions are made on how these source hypotheses are trained, or about their
inner workings: they are treated as “black boxes”, in spirit similar to classifier-generated visual descriptors
such as Classemes [23] or Object-Bank [24]. Several works proposed HTL for visual learning [8, 9, 25],
some exploiting more explicitly the connection with classemes-like approaches [26, 27], demonstrating an
intriguing potential. Although offering scalability, HTL-based approaches proposed so far have been tested
on problems with less than a few hundred of sources [9], already showing some difficulties in selecting
informative sources.

Recently, the growing need to deal with large data collections [2, 28] has started to change the focus

We build upon preliminary results presented in [13].



and challenges of research in transfer learning. Scalability with respect to the amount of data and the
ability to identify and separate informative sources from those carrying noise for the task at hand have
become critical issues. Some attempts have been made in this direction. For example, [29, 30] used
taxonomies to leverage learning from few examples on the SUNQ9 dataset. In [29], authors attacked the
transfer learning problem on the SUN09 dataset by using additional data from another dataset. Zero-shot
approaches were investigated by [31] on a subset of the Imagenet dataset. Large-scale visual detection
has been explored by [30]. However, all these approaches assume access to all source training data. A
slightly different approach to transfer learning that aimed to cirumvent this limitation, is reuse of a large
convolutional neural network pre-trained on a large visual recognition dataset. The simplest approach is to
use outputs of intermediate layers of such a network, such as DeCAF [1] or Caffe [32]. A more sophisticated
way of reuse is fine-tuning, a kind of warm-start, that has been successfully exploited in visual detection [33]
and domain adaptation [34, 35].

In many of these works the use of richer sources of information has been supported by an increase in
the information available in the target domain as well. From an intuitive point of view, this corresponds to
having more data points than dimensions. Of course, this makes the learning and selection process easier,
but in many applications it is not a reasonable hypothesis. Also, none of the proposed algorithms has a
theoretical backing.

While not explicitly mentioned before, the problem outlined above can also be viewed as a learning
scenario where the number of features is by far larger than the number of training examples. Indeed,
learning with classeme-like features [23, 24] when only few training examples are available can be seen
as a Hypothesis Transfer Learning problem. Clearly, a pure empirical risk minimization would fail due to
severe overfitting. In machine learning and statistics this is known as a feature selection problem, and is
usually addressed by constraining or penalizing the solution with sparsity-inducing norms. One important
sparsity constraint is a non-convex L0 pseudo-norm constraint |wl|o < k, that simply corresponds to
choosing up to k£ non-zero components of a vector w. One usually resorts to the subset selection methods,
and greedy algorithms for obtaining solutions under this constraint [11, 36, 12, 37]. However, in some
problems introducing LO constraint might be computationally difficult. There, a computationally easier
alternative is a convex relaxation of L0, the L1 regularization. Empirical error minimization with L1
penalty with various loss functions (for square loss is known as Lasso) has many favorable properties and
is well studied theoretically [38]. Yet, L1 penalty is known to suffer from several limitations, one of which
is poor empirical performance when there are many correlated features. Perhaps the most famous way
to resolve this issue is an elastic net regularization which is a weighted mixture of L1 and squared L2
penalties [14]. Since our work partially falls into the category of feature selection, we have extensively
evaluated the aforementioned baselines in our task. As it will be shown below, none of them achieves
competitive performances compared to our approach.

3 Transfer Learning through Subset Selection

Definitions. We will denote with small and capital bold letters respectively column vectors and matrices,
e.g. a=[a,as,...,aq]" € R? and A € R% >4  The subvector of @ with rows indexed by set S is as,
while the square submatrix of A with rows and columns indexed by set S is Ag. For & € R?, the support
of xissupp(x) = {i € {1,...,d}: z; # 0}. Denoting by X" and ) respectively the input and output space
of the learning problem, the training set is {(z;,y;)}, drawn i.i.d. from the probability distribution p
defined over X’ x ). We will focus on the binary classification problem so ) = {—1, 1}, and, without loss
of generality, ¥ = {z : [|z|2 < 1,z € R}.

To measure the accuracy of a learning algorithm, we have a non-negative loss function £(h(x),y),
which measures the cost incurred predicting h () instead of y. In particular, we will focus on the square
loss, £(h(x),y) = (h(x) — y)?, for its appealing computational properties. The risk of a hypothesis h,
with respect to the probability distribution p, is then defined as R(h) := E (4 )~p[¢(h(x), y)]. while the

empirical risk given a training set { (a;, y;)}7" | is R(h) := 2 S €(h(x;), y;). Whenever the hypothesis
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is a linear predictor, that is, he(z) = w ', we will also use risk notation as R(w) = R(h,,) and

R(w) = R(hw).

Source Selection. Assume, that we are given a finite source hypothesis set {h{"}?_; and the training set
{(#s,y:) }"1. As in previous works [39, 9, 26], we consider the target hypothesis to be of the form

W g(@) =w'z+ ) b (x), (1)
=1

where w and 3 are found by the learning procedure. The essential parameter here is 3, that is the one
controlling the influence of each source hypothesis. Previous works in transfer learning have focused on
finding 3 such that it minimizes the error on the training set, subject to some condition on 3. In partic-
ular, [9] proposed to minimize the leave-one-out error w.r.t. 3, subject to ||3|l2 < 7, which is known to
improve generalization for the right choice of 7 [6]. A slightly different approach is to use || 3|1 < 7 regu-
larization for this purpose [9], that induces solutions with most of the coefficients equal to 0, thus assuming
that the optimal 3 is sparse.

In this work we embrace a weaker assumption, namely, there exist up to k sources that collectively
improve the generalization on the target domain. Thus, we pose the problem of the Source Selection as a
minimization of the regularized empirical risk on the target training set, while constraining the number of
selected source hypotheses.
k-Source Selection. Given the training set { ([x] by (2;), ... hi*(x:)] ", y:) } .| we have the optimal

target hypothesis hz,g* B by solving,

(w5 = axgmin. {R(T) + Alwls + I3}

st flwllo +[[Bllo < k- 2

Notably, the problem (2) is a special case of the Subset Selection problem [11]: choose a subset of size
k from the n observation variables, which collectively give the best prediction on the variable of interest.
However, the Subset Selection problem is NP-hard [11]. In practice we can resort to algorithms generating
approximate solutions, for many of which we have approximation guarantees. Hence, due to the extensive
practical and theoretical results, we will treat the k-Source Selection as a Subset Selection problem, building
atop of existing guarantees.

We note that our formulation, (2), differs from the classical subset selection for the fact that it is L2-
regularized. This technical modification makes an essential practical and theoretical difference and it is
the crucial part of our algorithm. First, L2 regularization is known to improve the generalization ability of
empirical risk minimization. Second, we show that regularization also improves the quality of the approxi-
mate solution in situations when the sources, or features, are correlated. At the same time, the experimental
evaluation corroborates our theoretical findings: Our formulation substantially outperforms standard subset
selection, feature selection algorithms, and transfer learning baselines.

4 Greedy Algorithm for k£-Source Selection

In this section we state the algorithm proposed in this work, GreedyTL>2. In the following we will denote
by U = {1,...,n + d} the index set of all available source hypotheses and features, and by S, the index
set of selected ones.

2Source code is available at http://idiap.ch/~ikuzbor/



GreedyTL. Let X € R™*? and y € {+1,—1}"™ be the zero-mean unit-variance training set, {hj"'}a:l,
source hypothesis set, and k and ), regularization parameters. Then, denote C = Z'Z and b = Z "y,

where Z = | X ::!-(-@1)) - :;:;:-?1)) } , and select set S of size k as follows: (I) Initialize S < & and
7 (Bm V', (Bm

U < {1,...,n+ d}. (Il) Keep populating S with i € U, that maximize bl ((C + \I) ") bs, as long as

|S| < k and U is non-empty.

In this basic formulation, the algorithm requires to invert a (d 4+ n)-by-(d + n) matrix at each iteration
of a greedy search. Clearly, this naive approach gets prohibitive with the growth of the number of source
hypotheses, feature dimensions, and desired subset size, since its computational complexity would be in
O(k(d + n)*). However, we note that in transfer learning one typically assumes that training set is much
smaller than number of sources and feature dimension. For this reason we apply rank-one updates w.r.t. the
dual solution of regularized subset selection, so that the size of the inverted matrix does not change. The
computational complexity then improves to O(k(d + n)m?). We present the pseudocode of such a variant
of our algorithm, GreedyTL with Rank-One Updates in Algorithm 1. The computational complexity of
the operations is shown at the end of each line.

Algorithm 1 GreedyTL with Rank-One Updates

Input: Z € R™*(@+7) _py examples formed from features and source predictions,
1. y € {—1,+1}" —labels,
2. ked{l,...,d+n}, A € Ry —hyperparameters.

Output: w — target predictor.

3 U« {l,....,d+n} > All candidates
4 50 > Selected sources and features
5: K+ [0,...,0] € R™*™
6: G < \71I ¢ Rm*m
7. while U # @ and |S| < k do
8:
Gz;z/ G
% T T / / 149
— K+zz ) Gy|lG +~ G- ———
) ar§612ax{y (K + ziz;, )\G'y 1—|—z;erZ}
> O((d + n)(m? +m))

9:
10: Computing G': > O(m? +m)
11 Computing score of ¢: > O(m? +m)

12: S« SuU{i*}
13: U+~ U\{i*}

14: K+ K+zpz). > O(m?)

5. G G- GEEiC > O(m? +m)
’ 142z, Gz;x

16:

17: end while > O(k(d + n)m?)

18: w + 0 € R+
19: w; + 2/ Gy, Vi€ S

Derivation of the Algorithm. We derive GreedyTL by extending the well known Forward Regression (FR)
algorithm [11], which gives an approximation to the subset selection problem, the problem of our interest.
FR is known to find a good approximation as far as features are uncorrelated [11]. In the following, we build
upon FR by introducing a Tikhonov (L2) regularization into the formulation. The purpose of regularization
is twofold: first, it improves the generalization ability of the empirical risk minimization, and second, it
makes the algorithm more robust to the feature correlations, thus opting to find better approximate solution.



First, we briefly formalize the subset selection problem. In a subset selection problem one tries to
achieve a good prediction accuracy on the predictor random variable Y, given a linear combination of a
subset of the observation random variables { X, }7_,. The least squares subset selection then reads as

2
i E[lY - iXi
2t ( 2 v )

i€S

Now denote the covariance matrix of zero-mean unit-variance observation random variables by C' (a cor-
relation matrix), and the correlations between Y and {X,;}7, as b. Note that the zero-mean unit-variance
assumption will be necessary to prove the theoretical guarantees of our algorithm. By virtue of the analytic
solution to least-squares and using the introduced notation, we can also state the equivalent Subset Selection
problem: max|g|—j, bl (C5')Tbs . However, our goal is to obtain the solution to (2), or a L2-regularized
subset selection. Similarly to the unregularized subset selection, it is easy to get that (2) is equivalent to
max|g|— bl ((Cs+ M)~ Tbg. As said above, the Subset Selection problem is NP-hard, however, there
are several ways to approximate it in practice [36]. We choose FR for this task for its simplicity, appealing
computational properties and provably good approximation guarantees. Now, to apply FR to our problem,
all we have to do is to provide it with normalized matrix (C + A\I')~! instead of C -1

Approximated Randomized Greedy Algorithm. As mentioned above, the complexity of GreedyTL is linear
in d 4+ n, the number of features and the size of the source hypothesis set. In particular, the search in U for
the index to add to S is responsible for the dependency on d + n. Here we show how to approximate this
search with a randomized strategy. We will use the following Theorem.

Theorem 1 ([40](Theorem 6.33)). Denote by M := {z1,... ,xm}NC R a set of cardinality m, and by
M C M a random subset of size m. Then the probability that max M is greater or equal than n elements
of M is at least 1 — (=)™,

The surprising consequence is that, in order to approximate the maximum over a set, we can use a
random subset of size O(1). In particular, if we want to obtain results in the % percentile range with
3 = ﬁg—@. Practically, if we desire values that are better than 95% of all
other estimates with 1 — 0.05 probabﬁity, then 59 samples are sufficient. This rule is commonly called
the 59-trick and it has been widely used to speed-up a wide range of algorithms with negligible loss of
accuracy, e.g. [41, 42]. Indeed, as we will show in Section 5.4, we virtually don’t lose any accuracy using
this strategy.

With the 59-trick, the search in U becomes a search for the maximum over a random set of size 59. So,
the overall complexity is reduced to O(km?), that is independent from all the quantities that are expected

to be big.

1 — n confidence, we use

Theoretical Guarantees. We now focus on the analysis of the generalization properties of GreedyTL
for solving k-Source Selection problem (2). Throughout this paragraph we will consider a truncated target
predictor h:,gﬁ(m) =T(w x+ Y, Bihi(x)), with T(a) := min{max{a, —1},1}. We will also use
big-O notation O to indicate the supression of a logarithmic factor, in other words, f(z) € O(g(x)) is a
short notation for 3n : f(z) € O(g(z)log™ g(n)). First we state the bound on the risk of an approximate
solution returned by GreedyTL. 4

3Note that the formula for 7 in [40] contains an error, the correct one is the one we report.
4Proofs for theorems can be found in the appendix.



Theorem 2. Let GreedyTL generate the solution (W, 3), given the training set (X ,y), source hypotheses
{Rsre}n ) with 757 .= max; {||h{||%, }, hyperparameters \ and k. Then with high probability,

Z

where R := L 3™ 4 (yi, T (Zjeﬂpp(@) Bih:}"(mi))) .

This results in a generalization bound which tells us how close the performance of the algorithm on the
test set will be to the one on the training set. The key quantity here is R*, which captures the quality of
the sources selected by the algorithm. To understand its impact, assume that A = O(1). The bound has

two terms, a fast one of the order of O (k/m) and a slow one of the order O (\ | Rk / m) . When m goes

to infinity and R # 0 the slow term will dominate the convergence rate, giving us a rate of the order

of O (\ | Rsek; / m). If R = 0 the slow term completely disappears, giving us a so called fast rate of

convergence of @(k /m). On the other hand, for any finite m of the order of @(k / R“C), we still have a rate
of the order of @(k /m). Hence, the quantity R will govern the finite sample and asymptotic behavior of
the algorithm, predicting a faster convergence in both regimes when it is small. In other words, when the
source and target tasks are similar, TL facilitates a faster convergence of the empirical risk to the risk. A
similar behavior was already observed in [6, 7].

However, one might ask what happens when the selected sources are providing bad predictions. Since
R < 1, due to truncation, the empirical risk converges to the risk at the standard rate O(+/k/m), the
same one we would have without any transfering from the sources classifiers.

We now present another result that upper bounds the difference between the risk of solution of the
algorithm and the empirical risk of the optimal solution to the k-Source Selection problem.

Theorem 3. In addition to conditions of Theorem 2, let (w*,3") be the optimal solution to (2). Given

~ N 2
a sample correlation matrix C, assume that C; j+; < v < %, and ¢ := ST Then it high

JEN
probability,

R (hgﬁé) “R (hi’j*ﬂ*) <A+eORF+0 <1 thres | [y LT AT kT‘”) :

m A m

where " = minys <. { 2 + 1 Lies RS}

To analyze the implications of Theorem 3, let us consider few interesting cases. Similarly as done
before, the quantity Rf“ captures how well the source hypotheses are aligned with the target task and
governs the asymptotic and finite sample regime. In fact, assume for any finite m that there is at least one
source hypothesis with small empirical risk, in particular, in O(y/k/m), and set A = O(y/k/m). Then

we have that R(ht;g, ﬁ) — R(h;f*’ ge) = O (\/ k/ m) , that is we get the generalization bound as if we are
able to solve the original NP-hard problem in (2). In other words, if there are useful source hypotheses,
we expect our algorithm to perform similarly to the one that identifies the optimal subset. This might
seem surprising, but it is important to note that we do not actually care about identifying the correct subset
of source hypotheses. We only care about how well the returned solution is able to generalize. On the
other hand, if not even one source hypothesis has low risk, selecting the best subset of & sources becomes
meaningless. In this scenario, we expect the selection of any subset to perform in the same way. Thus the
approximation guarantee does not matter anymore.

We now state the approximation guarantees of GreedyTL used to prove Theorem 3. In the following
Corollary we show how far the optimal solution to the regularized subset selection is from the approximate
one found by GreedyTL.



Corollary 1. Let A € R" and k < n. Denote OPT := min|jy |,k {]:Z(w) + )\||w||§} Assume that C and

b are normalized, and CA'W'# << %. Then, FR algorithm generates an approximate solution W to the

16(k+1)%y _16(k+1)%yA
—1rx ) OPT — — 57 -

regularized subset selection problem that satisfies R(w) + A||@||2 < (1 + §ESNE

Apart from being instrumental in the proof of Theorem 3, this statement also points to the secondary
role of the regularization parameter A: unlike in FR, we can control the quality of the approximate solution
even if the features are correlated.

S Experiments

In this section we present experiments comparing GreedyTL to several transfer learning and feature se-
lection algorithms. As done previously, we considered the object detection task and, for all datasets, we left
out one class considering it as the target class, while the remaining classes were treated as sources [9]. We
repeated this procedure for every class and for every dataset at hand, and averaged the performance scores.
In the following, we refer to this procedure as leave-one-class-out. We performed the evaluation for every
class, reporting averaged class-balanced recognition scores.

We used subsets of Caltech-256 [43], Imagenet [2], SUNO09 [28], SUN-397 [44]. The largest setting
considered involves 1000 classes, totaling in 1.2M examples, where the number of training examples of the
target domain varies from 11 to 20. Our experiments aimed at verifying three claims:

I. L2-regularization is important when using greedy feature selection as a transfer learning scheme.

II. In a small-sample regime GreedyTL is more robust than alternative feature selection approaches,
such as L1-regularization.

III. The approximated randomized greedy algorithm improves the computational complexity of GreedyTL
with no significant loss in performance.

5.1 Datasets and Features

We used the whole Caltech-256, a public subset of Imagenet containing 103 classes, all the classes of
SUNO9 that have more than 1 example, which amounts to 819 classes, and the whole SUN-397 dataset
containing 397 place categories. For Caltech-256 and Imagenet, we used as features the publicly-available
1000-dimensional SIFT-BOW descriptors, while for SUN0O9 we extracted 3400-dimensional PHOG de-
scriptors. In addition, for Imagenet and SUN-397, we also ran experiments using convolutional features
extracted from DeCAF neural network [1].

We composed a negative class by merging 100 held-out classes (surrogate negative class). We did so
for each dataset, and we further split it into the source negative and the target negative class as 90% + 10%
respectively, for training sources and the target. The source classifiers were trained for each class in the
dataset, combining all the positive examples of that class and the source negatives. On average, each
source classifier was trained using 10* examples for the Caltech-256, 10° for Imagenet and 103 for the
SUNO09 dataset. The training sets for the target task were composed by {2, 5, 10} positive examples, and 10
negative ones. Following [9], the testing set contained 50 positive and 50 negative examples for Caltech-
256, Imagenet, and SUN-397. For the skewed SUNQ9 dataset we took one positive and 10 negative training
examples, with the rest left for testing. We drew each target training and testing set randomly 10 times,
averaging the results over them.

5.2 Baselines

We chose a linear SVM to train the source classifiers [45]. This allows us to compare fairly with rele-
vant baselines (like Lasso) and is in line with recent trends in large scale visual recognition and trans-



fer learning [1]. The models were selected by 5-fold cross-validation having regularization parameter
C € {107%,1073,--- ,10*}. In addition to trained source classifiers, for the Caltech-256, we also evalu-
ated transfer from Classemes [23] and Object Bank [24], which are very similar in spirit to source classifiers.
At the same time, for Imagenet, we evaluated transfer from the outputs of the final layers of the DeCAF
convolutional neural network [1].

We divided the baselines into two groups - the linear transfer learning baselines that do not require
access to the source data, and the feature selection baselines. We included the second group of baselines
due to GreedyTL’s resemblance to a feature selection algorithm. We focus on the linear baselines, since
we are essentially interested in the feature selection in high-dimensional spaces from few examples. In that
scope, most feature selection algorithms, such as Lasso, are linear. In particular, amongst TL baselines
we chose: No transfer: Regularized Least Squares (RLS) algorithm trained solely on the target data; Best
source: indicates the performance of the best source classifier selected by its score on the testing set. This
is a pseudo-indicator of what an HTL can achieve; AverageKT: obtained by averaging the predictions of
all the source classifiers; RLS src+feat: RLS trained on the concatenation of feature descriptors and source
classifier predictions; MultiKT || - ||2: HTL algorithm by [9] selecting 3 in (1) by minimizing the leave-one-
out error subject to ||B|l2 < 7; MultiKT || - ||1: similar to previous, but applying the constraint ||3]]; < 7
DAM: An HTL algorithm by [46], that can handle selection from multiple source hypotheses. It was shown
to perform better than the well known and similar ASVM [47] algorithm. For the feature selection baselines
we selected well-established algorithms involving sparsity assumption: LI-Logistic: Logistic regression
with L1 penalty [14]; Elastic-Net: Logistic regression with mixture of L1 and L2 penalties [14]; Forward-
Reg: Forward regression — a classical greedy feature selection algorithm. When comparing our algorithms to
the baselines on large datasets, we also consider a Domain Adaptive Dictionary Learning baseline [48]. This
baseline represents the family of dictionary learning methods for domain adaptation and transfer learning.
In particular, it learns a dictionary on the source domain and adapts it to the target one. However, in our
setup the only access to the source data is through the source hypotheses. Therefore, the only way to
construct source features is by using the source hypotheses on the target data points.

5.3 Results

Figure 1 shows the leave-one-class-out performance. In addition, Figures 1b, 1c, 1f show the performance
when transferring from off-the-shelf classemes, object-bank feature descriptors, and DeCAF neural net-
work activations. Whenever any baseline algorithm has hyperparameters to tune, we chose the ones that
minimize the leave-one-out error on the training set. In particular, we selected the regularization param-
eter A € {107%,1072,...,10*}. MultiKT and DAM have an additional hyperparameter that we call 7
with 7 € {1073,...,103}. Kernelized algorithms were supplied with a linear kernel. Model selection for
GreedyTL involves two hyperparameters, that is £ and A. Instead of fixing k, we let GreedyTL select
features as long as the regularized error between two consecutive steps is larger than J. In particular, we
set § = 1074, as in preliminary experiments we have not observed any gain in performance past that point.
The A is fixed to 1. Even better performance could be obtained tuning it.

We see that GreedyTL dominates TL and feature selection baselines throughout the benchmark, rarely
appearing on-par, especially in the small-sample regime. In addition, on two datasets out of three, it man-
ages to identify the source classifier subset that performs comparably or better than the Best source, that is
the single best classifier selected by its performance on the testing set. The significantly stronger perfor-
mance achieved by GreedyTL w.r.t. FR, on all databases and in all settings, confirms the importance of
the regularization in our formulation.

Notably, GreedyTL outperforms RLS src+feat, which is equivalent to GreedyTL selecting all the
sources and features. This observation points to the fact that GreedyTL successfully manages to discard
irrelevant feature dimensions and sources. To investigate this important point further, we artificially add 10,
100 and 1000 dimensions of pure noise sampled from a standard distribution. Figure 2 compares feature
selection methods to GreedyTL in robustness to noise. Clearly, in the small-sample setting, GreedyTL



Figure 1: Performance on the Caltech-256, subsets of Imagenet (1000 classes) and SUN09 (819 classes).
Averaged class-balanced accuracies in the leave-one-class-out setting.
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is tolerant to large amount of noise, while L1 and L1/L2 regularization suffer a considerable loss in per-
formance. We also draw attention to the failure of L1-based feature selection methods and MultiKT with
L1 regularization to match the performance of GreedyTL.
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Figure 2: Baselines and number of additional noise dimensions sampled from a standard distribution. Av-
eraged class-balanced recognition accuracies in the leave-one-class-out setting.

(a) Caltech-256 (b) Imagenet
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Table 1: Training time in seconds for transferring to a single target class. Results are averaged over 10
splits.

GreedyTL
Training examples pos.+neg. 2410 5410 10 + 10
Imagenet (SIFT-BOW) | 1899 source+dim | 1.541 &£ 0.242 3.083 +0.486 | 5.291 + 0.870
Imagenet (DECAF7) 4995 source+dim | 3.481 %+ 0.356 7.492 +0.655 | 13.408 £ 1.165
SUN-397 (Caffe-7) 4492 source+dim | 3.245 £ 0.495 6.764 +1.051 | 11.282 4+ 1.630
GreedyTL-59
Training examples pos.+neg. 2410 5410 10 4+ 10
Imagenet (SIFT-BOW) | 1899 source+dim | 0.043 £+ 0.005 | 0.088 £+ 0.011 | 0.149 + 0.021
Imagenet (DECAF7) 4995 source+dim | 0.055 £ 0.006 | 0.114 £ 0.013 | 0.198 + 0.020
SUN-397 (Caffe-7) 4492 source+dim | 0.060 £ 0.021 | 0.120 £ 0.038 | 0.198 £ 0.055

5.4 Approximated GreedyTL

As was discussed in Section 3, the computational complexity of GreedyTL is linear in the number of
source hypotheses and feature dimensions. In this section we assess empirical performance of the approxi-
mated GreedyTL, which is independent from the number of source hypotheses, implemented through the
approximated greedy algorithm described at the end of Section 3. In the following we refer to this version of
an algorithm as GreedyTL-59. Instead of considering all the transfer learning and feature selection base-
lines, we restrict the performance comparison to the strongest competitors. To show the power of highly
scalable approximated GreedyTL, we focus on the largest datasets in the number of source hypotheses
and feature dimensions: Imagenet and SUN-397. In case of Imagenet, we consider standard SIFT-BOW
features as in previous section and also DeCAF-7 convolutional features extracted from the seventh layer of
the DeCAF neural network [1]. For the SUN-397, we use convolutional features of Caffe network trained
on the Places-205 dataset [49], which was shown to perform particularly well in the scene recognition tasks.
Figure 3 summarizes new results. Surprisingly, approximated GreedyTL performs on par with the version
with exhaustive search over the candidate, maintaining dominant performance in the small-sample regime
on the Imagenet dataset. Yet, training timings are dramatically improved as can be seen from Table 1. In
the case of SUN-397 dataset, however, GreedyTL performs on par with the top competitors.

5.5 Selected Source Analysis

In this section we take a look at the source hypotheses selected by GreedyTL. In particular, we make a
qualitative assessment with the goal to see if semantically related sources and targets are correlated, vi-
sualizing selected sources and the magnitude of their weights. We do so by grouping sources and targets
semantically according to the WordNet [50] distance, and plotting them as matrices with columns corre-
sponding to targets, rows to sources, and entries to the weights of the sources. Figure 4 shows such matrices

11



Figure 3: Comparison of the approximated GreedyTL: GreedyTL-59 to GreedyTL with exhaustive search
and most competitive baselines on three largest datasets considered in our experiments.

(a) Imagenet (SIFT-BOW, 1000 classes) (b) Imagenet (DECAF-7 features, 1000 classes)
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for GreedyTL when evaluated on Imagenet with DECAF7 features and averaged over all splits, for 2 pos-
itive and 10 positive examples accordingly. First we note, that for certain supercategories there are clearly
distinctive patterns, indicating cross-transfer within the same supercategory. We compare those matrices
to the ones originating from the strongest RLS (src+feat) baseline, Figure 5. We notice a clear dif-
ference, as semantic patterns of GreedyTL are more distinctive in a small-sample setting (2+10), while
the ones of RLS (src+feat) appear hazier. We argue that this is a consequence of greedy selection
procedure implemented by GreedyTL, where sources are selected incrementally, thus many coefficients
correspond to zeros. Due to the formulation of RLS (src+feat), however, even if a source is less
relevant, its coefficient most likely will not be exactly equal to zero.

It is also instructive to compare exact GreedyTL to the approximated one. Figure 7 pictures seman-
tic matrices for the approximated version. We note that approximated version appears to be slightly more
conservative in a small-sample case (2+10), but in overall, semantic patterns seem to match, thus empha-
sizing the quality of the solution provided by the approximated version and empirically corroborating the
theoretical motivation behind the randomized selection.

Finally, we take a closer look at some patterns of Figure 4a, that is in the case of learning from only 2

positive examples. This new analysis is shown in Figure 6. We notice that even at the smaller scale, there
are emergent semantic patterns.
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Figure 4: Semantic transferrability matrix for GreedyTL evaluated on Imagenet (DECAF7 features).
Columns correspond to targets and rows to sources. Stronger color intensity means larger source weight.
4a corresponds to learning from 2 positive and 10 negative examples, while 4b, with 10 positive.b

(a)

[arthropod)
0003 [bird) 0003

arthropod
0.002 0.002
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structure —0.003
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Figure 5: Semantic transferrability matrix for RLS (src+feat) evaluated on Imagenet (DECAF7 features).
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6 Conclusions

In this work we studied the transfer learning problem involving hundreds of sources. The kind of transfer
learning scenario we consider assumes no access to the source data directly, but through the use of the source
hypotheses induced by them. In particular, we focused on the efficient source hypothesis selection and
combination, improving the performance on the target task. We proposed a greedy algorithm, GreedyTL,
capable of selecting relevant sources and feature dimensions at the same time. We verified these claims
by obtaining the best results among the competing feature selection and TL algorithms, on the Imagenet,
SUNOQ9 and Caltech-256 datasets. At the same time, comparison against the non-regularized version of
the algorithm clearly show the power of our intuition. We support our empirical findings by showing
theoretically that under reasonable assumptions on the sources, the algorithm can learn effectively from few
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Figure 6: GreedyTL evaluated on Imagenet (DECAF7 features): a closer look at some strongly related
sources and targets.
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A Proofs

In this section we present proofs of theorems. For brevity, we define h*(x) := [h§(x), ..., K (z)] T,
and we will consider a truncated target predictor

W aa) =1 (wTe + BTH) |

with T(a) := min{max{a, —1},1}. That said, we will assume that
> 1 S T g, src
R(hiy 5) < o S (w'mi + BT () — yi)?
i=1
in other words, empirical risk of truncated predictor cannot be greater, since all the labels belong to {—1,1}.
To prove Theorem 2 we need the following supplementary lemmas.

Lemma 1. Let GreedyTL generate solution (1, ,é'), given the training set (X,y), source hypotheses
{3}, and hyperparameters X\ and k. Then we have that,

A

I %) > 7, . 1 D[ 1,5rC
M@|* + AIB]* + R(hY 5) < min EZR(@ ) + Si(
JES

IS|<k

~ 112 512 S trg rS trg
Nab|” + B + R(A ) < R(KEE)
and also, ) A
N[>+ AIBI? + RO ;) < 1.
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Proof. Define J(w,B3) := R(hz)gﬁ) + Aw]|? + A\||B]|?. For any o € {0, %} such that ||a]jo = p we
have,

J(w,B) < J(0,a) = Zz(y“ S hm) %

j€Esupp(ax)

<l R(@“‘H%. 3)

We have the last inequality due to Jensen’s inequality. The fact that (5) holds for any p € {1, ..., k} proves
the first statement.
We have the second statement from,

RN 5) + M@l + MBI < R(hgs) + NG|
= R(h m) < R ) + N> < R(WE).
The last statement comes from,
All|* + MIB]* < J(0,0) < 1. @)
O

Lemma 2. Let (w*, 3%) be the optimal solution to (3), given the training set (X ,vy), source hypotheses
{3}, and hyperparameters X\ and k. Then, the following holds,

Aw*[|* + X|B*||” + R(kyS. 5.)
1 . A

< min { — R(AY) + —

|S|<k ISIJ.;9 5 S|

Proof. Define J(w, B) := R(hys 5) + Al|wl|* + A||8||*. For any o € {0, %} such that ||a||o = p we
have,

J(w*,8") < J(0,) ZK (yz, > h;-“‘(a:i)) +%

j€E€supp(cx)

src i
zp: R(h p ) 5)

"CB\H

We have the last inequality due to Jensen’s inequality. The fact that (5) holds for any p € {1,. .., k} proves
the statement.
O

Proof of Theorem 2. To prove the statement we will use the optimistic rate Rademacher complexity bounds
of [51]. In particular, we will have to do two things: upper-bound the worst-case Rademacher complexity
of the hypothesis class of GreedyTL, and upper-bound the empirical risk of members of that hypothesis
class. Before proceeding, we spend a moment to define the loss class of GreedyTL, assuring that it is
consistent with the definition by [51],

£={(@w) o 3 (@)~ he o), Ry < v} ©
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Here, (T o H) is the class of truncated hypotheses, H is the hypothesis class of GreedyTL and 7 is the
mentioned bound on the empirical risk. We define the hypothesis class as,

SIc 1
H = {w'—>wT£B+ﬁTh (@) : |wl3+ 85 < /\}

In this definition we have used the fact shown in Lemma 1, that is the constraint on ||w||2 + ||3]|3, which
translates into a constraint on the hypothesis class. Now we are ready to analyze its complexity.
Recall that the worst case Rademacher complexity is defined as,

sfigol])

where o; isr.v., such that P(o; = 1) = P(o; = —1) = =

Let us focus on the analysis of empirical Rademacher complexity E)A’{(T o H), that is the part inside the
outer supremum. The truncation T() is 1-Lipschitz, therefore by Talagrand’s contraction lemma [52] we
have that 93(T o H) < 93(H). Hence, now we proceed with an upper-bound on 9R(#). Define ¢ € {0,1}"

such that ¢; := { 1, i€ supp(B)

R(F) = sup { o

X1,..., L, EX

. Then we have that,

0, otherwise
R(ToH) < R(H) (7)
1 T
=E sup — w'z; + 6 h(z ))]
7 Lllwl3+I1813< %mg
_ E m ; 8
T Ve Z;Ul I,OhSrC ®)
1 ¢ Src

< | D 2+ [l o B2 ©)

=1

1 src || 2
V Am

To obtain (8) we have applied Cauchy-Schwartz inequality on the inner product of [w ™ 3"]T and [z, h*°(x;)T]T,
then upper-bounding norms with constraints given by definition of a class /. To get (9) we have applied
Jensen’s inequality w.r.t. [E[-], along with the fact that E [0;0,2;] = 0 and E [0;0,] = 1. Next, we have

bounded the L2 norms of features and sources, recalling that by assumption, ||z;||*> < 1. Finally, taking
supremum over (10) w.r.t. data, we obtain,

BT
< .
R(TeH) < Am

Next, we upper bound the empirical risk of the members of H by Lemma 1. By plugging the bound on
the R(H), and the bound on the empirical risk of (6) into Theorem 1 in [51] we have the statement. ]

Next we prove the approximation guarantee of a Regularized Subset Selection (RSS), Corollary 1, that
is needed for proof of Theorem 3. First we note that the solution returned by FR enjoys the following
guarantees in solving the Subset Selection.

Theorem 4 ([11]). Assume that C and b are normalized, and C; j+; < v < & for subset size k < n
Then, the FR algorithm generates an approximate solution 1 to the Subset Selection such that, R(w) <

(1 + 16(k + 1)) min g ,—; R(w) .
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This theorem is instrumental in stating our corollary.

Proof of Corollary 1. In addition to the sample coviance matrix C, define also correlations b := £ X Ty.

~m

A/ A . . .
Denote C' = Cii))‘\l . Now, suppose that wg is the solution found by the forward regression algorithm,

Al ~ ~T N
given the input (C/, b, k). So, the empirical risk that the algorithm attains is 1 — bg (C/S)’lbs, as follows
from the analytic solution to empirical risk minimization for given S. In fact, we can upper-bound it
right away using Theorem 4. But, recall that our goal is to upper-bound the quantity R() + A||w|* =

~T - ~
1 —bg(Cs + M)~ 'bg, that is the regularized empirical risk of the approximation g to the RSS. This
quantity is obtained via the unnormalized covariance matrix, therefore we cannot analyze it directly by

. AT / A 1.
Theorem 4. For this reason we rewrite it as k(@) + @[> = 1 — 115 bg (C/S) bs. From Theorem 4

1

assumptions we then have (C's);',j;si <v < 5> denote € = 16(k +1)24', and let S* be the optimal subset

AT A N
of size k. Now we plug 1 — bg (Cig)_lbs into Theorem 4, and proceed with algebraic transformations,

AT At ~ ~T ~/ ~
1-bg(Cq) tbs < (14 €)1 —bg.(Cg.) tbs+)

1 AT Ay - 1+e€ T Al N
——(1-b “lhg) < 1—bg.(Cg:) 'bs-
;>1+/\( s(Cs) S)_1+/\( 5+ (Cg:) bsx)
1 T ar “
=1- 1+Abs(cs)—lbs (a1
1 1 .7 / A
< (1 bs. (Cg.) "bg+ P—
_(+€)<1+)\ a0 (Cs) S>+1+)\
1 2T oA _qs
:»kmbs(cs) 'bg (12)
1 .7, . ~ €A
<(1 1— ——bs. (Cg) bs | — :
<49 (1 b5 (C5) hs ) - 12
The last step is to relate 7/ to . The fact (C'S)L#i < v/ < g is equivalent to (Cﬁil)f#‘ <Y < &
Therefore we can set v = +/(1 + A) and obtain (Cs); ji < v < 1gr—k_)‘. This concludes the proof. O

Proof of Theorem 3. The proof follows the composition of Theorem 2, Corollary 1 and Lemma 2. In partic-
ular, we upper-bound the empirical risk of Theorem 2 with an approximation given by Corollary 1, ignoring
the negative term. Next, we upper-bound e(\|jw*||? + \||B*||*> + R(hLE, ) + Aw*||? + A||B*||? by
Lemma 2. ’ O

The following proposition is used to derive the GreedyTL in Section 4.

Proposition 1. Define the regularized accuracy as,

A 1
Pw) =1 (LIX w - gl + Alwl)

We are given X € R"*™ gy € R™, S C {1,...,n}, and X\ € RT. Furthermore, assume that Hzanﬁ =1,
and let X be the submatrix of X, selecting rows indexed by S. Then we have that,
A)\ 1 T AT A AT —1 v
max {A (w)} = —y X (XX +mAD) Ry (13)
w,supp(w)=S m
1 AT AT A
— —yT(X X +mA)' X Ry (14)
m
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Proof. Expanding the | - |2 in A*(w) and using the fact that % =1, gives us

2 - 1 R
Aw)=—w' Xy— —w (XX +mMw.
m m

9AN(w) _ e d -1% e a -1
Now we have that == =0 = w = (XX +mAI)”™" Xy. Denote G = (XX + mAI)~" and set
optimal solution w* = GXy. By putting w™* into the objective we have,

2 - . 1 . .
AN w*) —yTXTGTXy - gyTXTGTG_lGXy

m

1 N .
—y'X TGTX Y.
m
This proves the first statement.
Now we turn to the second statement, that is solution in the dual variables. By using dual variable
55T N 5 5T 5 5T 5
identity (X X +mAI)7!1X = X(X X +mAI)~![52], we write solution w.r.t. wasw = X (X X+

AT A~ ~
mAI)~ly. Denoting G = (X X + mAI)~!, setting optimal solution w* = X Gy, and putting w* into
the objective we have,

A 2 AT A
AN w*) = —yTGTXTXy
m
T TeT 0T T voT o
— G X (XX +mM)XGy=—y GX Xy
A~ ~A AT A~

The last fact comes from the observation that XG = (XX + mAI)~!X by dual variable identity. This
concludes the proof of the second statement. O
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