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Abstract

Wearable cameras allow people to record their daily activities from a user-centered (First Person Vision) perspective. Due to
their favorable location, wearable cameras frequently capture the hands of the user, and may thus represent a promising user-
machine interaction tool for different applications. Existent First Person Vision methods handle hand segmentation as a background-
foreground problem, ignoring two important facts: i) hands are not a single ”skin-like” moving element, but a pair of interacting
cooperative entities, ii) close hand interactions may lead to hand-to-hand occlusions and, as a consequence, create a single hand-like
segment. These facts complicate a proper understanding of hand movements and interactions. Our approach extends traditional
background-foreground strategies, by including a hand-identification step (left-right) based on a Maxwell distribution of angle
and position. Hand-to-hand occlusions are addressed by exploiting temporal superpixels. The experimental results show that,
in addition to a reliable left/right hand-segmentation, our approach considerably improves the traditional background-foreground
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1. Introduction

The recent widespread availability of wearable devices has
quickly attracted the interest of researchers, computer scientists
and high-tech companies [1]. The 90’s idea of a body-worn
device that is always ready to be used is nowadays possible,
and its potential applicability to real problems is evident. In
general, the wearable sensor that most attracted researchers’ at-
tention is the video camera: while enjoying a unique position
to record what the user is seeing, it suffers from important is-
sues and technical challenges [2]. Images and videos recorded
from this perspective are commonly referred to as First-Person
Vision (FPV) or Egocentric videos [2].

One of the more promising aspects of this video perspective
is the tight link between the camera location and the user point
of view, which makes it possible to frequently capture user’s
hands. A proper understanding of hand movements enables
important applications such as activity recognition [3], user-
machine interaction [4], gaze estimation [5, 6], hand-posture
recognition [7, 8], among others. The authors of [9] propose a
hierarchical structure to develop hand-based methods and high-
light several fields that might benefit of robust and efficient hand
understanding techniques.

Hand-based studies are not restricted to wearable cameras
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Figure 1: The difference between hand-segmentation and hand-identification

and computer vision, in fact, biologists and neuroscientists have
been deeply exploring hand usage in daily activities [10], even
before the emergence of modern wearable devices. There is a
consistent number of studies and theories investigating hand-
dominance in humans and its relationship with upper limb mo-
tion skills. It is estimated that 9 out of 10 individuals are right-
handed and as a consequence their upper limb skills are asym-

July 22, 2016



Hand-
Segmentation with
Occlusion problem.

(a) Asymmetry in the
position of the hands.

(b) Manipulating ob- ©)

jects in the borders of
the frame.

Figure 2: Hand-Segmentation examples.

metric for what concerns speed, control and strength. Inter-
estingly, these findings are similar across different geographic
locations and cultures [11].

Current FPV hand-based literature consistently approaches
inference over hands as a background/foreground segmentation
problem, where hand-like pixels represent the foreground while
the remaining pixels define the background [12, 13]. Even if
this approach provides a broad range of algorithmic approaches
and evaluation criteria based on machine learning and com-
puter vision, it oversimplifies the biological perspective, ignor-
ing hand-dominance and limiting the capabilities of wearable
cameras to understand hand interactions and asymmetric up-
per limb motor skills. Figure 1 shows the difference between
the traditional binary hand-segmentation and a left/right(L/R)
hand-segmenter as proposed in this work. The second row
shows an example on which both hands interact closely thus
causing a hand-to-hand occlusion. The standard binary hand-
segmenter fails in explaining these occlusions and creates a sin-
gle hand-like segment while the L/R hand-segmenter can detect
and split two hands correctly.

Concerning hand-identification, some authors have sug-
gested a strong relation between hand identity and the position
of hand-like segments [14]. Intuitively, segments located on the
left, or right side of the frame belong to the left or right hand
respectively. Figure 2 shows some examples of frames where
this approach does not work. In summary, the location-based
strategy performs well if the symmetry between the hands is
almost perfect and there are not hand-to-hand occlusions.

From our experience, the capability of wearable cameras to
distinguish one hand from the other is critical. This is par-
ticularly true when it comes to understand bi-manual tasks
[15, 16], e.g. in medical rehabilitation of upper-limb stroke [17]
and cerebral palsy [18]. Another field that can benefit from
this independent understanding is neuroscience, where hand-
dominance is commonly associated with several neurological
factors [19]. For example, the authors of [20, 21] found signif-
icant differences in the hand-dominance level of children with
Autism Spectrum Disorder (ASD). A wearable camera that is
able to differentiate between left and right hand is not only in
line with biological and neurosciences perspective, but it also
opens the doors to understanding hands as two interacting enti-
ties, centrally coordinated to achieve a particular goal.

To the best of our knowledge, this is the first work explor-
ing in detail a L/R hand-segmentation, considering realistic
scenarios with hand-to-hand occlusions and asymmetric hand
positions. The contribution of this paper is three-folded: 1)
It proposes a theoretical hand-identification model based on

Maxwell distributions to decide whether a hand-like segment
corresponds to a left or a right hand ii) It faces the hand-to-hand
occlusions problem by exploiting temporal superpixels under a
dynamic procedure. iii) It significantly improves a state-of-the-
art binary hand-segmenter by using a multi-model classification
strategy and assuming that one left and one right hand appear
in front of the user at most. The last assumption is valid, es-
pecially in the aforementioned medical applications, where no
human-to-human interaction is required [17].

The remaining of this paper is organized as follows: Section
2 summarizes the state of the art in hand-based methods in FPV.
In section 3 our approach is presented and subsequently evalu-
ated in 4. The provided evaluation is performed sequentially by
first analyzing each components independently. Finally, 5 con-
cludes and provides future research lines based on the obtained
result.

2. State of the Art

Recent literature [2] highlights the significant role of hands
in FPV. Several promising hand-based applications are fre-
quently mentioned, such as activity recognition [3] and user-
machine interaction [4], among others. Different authors have
also sketched other advanced and more realistic applications.
However, real applicability is still restricted by the limited ca-
pabilities of current methods to work under realistic conditions,
such as illumination changes, or complex hand interactions[9].

In [9] the authors propose a unified structure for hand-based
methods, which highlights the importance of understanding
hands at different hierarchical levels (i.e. hand-detection, hand-
segmentation, hand-identification and hand-tracking). The first
level of the structure is hand-detection, which answers the yes-
no question about hand presence in a frame. The objective of
this level is to optimize computational resources, and to reduce
the false positives rate when hands are not being recorded by
the camera [22, 23]. Hand-detection is commonly faced as a
frame-by-frame classification problem [24], and is frequently
given as granted when studying controlled tasks where the user
is always manipulating objects in front of the camera, for ex-
ample in the Kitchen [5] and the EDSH [25] datasets.

Once hands are detected, the following step, and most stud-
ied level, is hand-segmentation. The goal of hand-segmenters
is to find the set of pixels of a particular frame belonging to the
hands of the user. Recent hand-segmenters can be considered
advanced implementations of the color-based seminal work of
[26]. Remarkable results are obtained in the work of [25] where
a Random Forest classifier is trained to discriminate positive
and negative pixels. That work also explores the use of texture
and the fusion of multiple hand-segmenters to deal with chang-
ing light conditions [12]. This strategy is further improved in
[27] by preserving the shape of the hands using a shape-aware
classifier and also in [4] by using superpixels. The authors in
[28] use the segmented hands to divide the hand-like segments
in fingers, palm, and arm.

According to the framework proposed in [9], hand-
identification is more than an incremental step towards the so-
lution of the problem, since it opens a range of new possibil-



ities and applications. It makes technically possible to make
a paradigm shift towards viewing the hands as two interacting
entities working jointly to achieve a particular goal. Literature
on hand-identification is insufficient: the problem is usually re-
garded as a post-processing step performed after segmentation.
Ren et al. [14], for instance, use the side of the frame where
the skin-like segments are located to label it as the left or right
hand. We can identify three common cases in which this ap-
proach does not work correctly: i) The symmetry of the skin-
like segments is affected by changes in the attention point or
the camera position, Figure 2(a). ii) The user is manipulating
an object close to the frame borders, Figure 2(b). iii) The hands
are close enough to be segmented as a single skin-like segment
(hand-to-hand occlusion), Figure 2(c).

To address these cases, Fathi et al. [13] use a Support Vec-
tor Machine that is able to classify each frame into four cat-
egories, i.e. single left hand, single right hand, two different
hands, two interacting hands. These categories oversimplify
the hand-identification problem since they do not provide a
L/R hand-segmentation. In the same line of research, [6] ex-
tends the approach of [13] by using the relative positions of
the segmented hands and the active objects to build a goal ori-
ented model of attention. Denoted also as a hand-identification
but targeting a different purpose, the authors of [29] propose a
Bayesian method to identify if a hand-like segment belongs to
the user or to somebody in front of him. This problem clearly
provides an alternative definition of hand-identification, which
is particularly important when the user is interacting with other
people. The authors illustrate the importance of this approach
by using a dataset recorded for medical experiments with chil-
dren.

The primary goal of the present work is to address the hand-
identification problem following the definition proposed in the
independent studies [2] and [14]. Our approach relies on a
multi-model implementation of the binary hand-segmenter pro-
posed by [25, 12], but can be easily extended to future improve-
ments of any hand-segmentation algorithm. Compared to the
state of the art literature, we highlight three important novel-
ties:

e The proposed L/R hand-segmenter significantly improves
segmentation score of the state-of-the-art by fusing mul-
tiple Random Forests to capture light changes and by ex-
ploiting the fact that the user has at most one left and one
right hand. This assumption is particularly useful when
studying bi-manual tasks in controlled environments. The
experimental results show that, in addition to the reliable
left and right information, our final segmentation improves
the state-of-the-art binary hand-segmenter [27] of around
10 F'1 score points in some videos of the kitchen dataset
[13].

e In contrast to [13], our approach relies on simple set al-
gebra to detect occlusions, which is computationally more
efficient and achieves a detection level of 99% (as shown
in section 4). Moreover, our method not only provides a
category label but splits the occluded binary hand-segment
by using superpixels.

e Given a previous occlusion detection and split, we propose
a probabilistic L/R hand-identification model using a max-
likelihood ratio test of two Maxwell distributions based on
position and angle. Our approach is robust to asymmetries
in the hand positions and can be tuned for different camera
locations and lenses. The experimental results show that
our method accurately identifies 99% of the manual masks
of the kitchen dataset [13].

3. Our approach

Our final goal is to extract an accurate L/R hand-
segmentation that is robust to hand-to-hand occlusions, asym-
metric hand configurations and object manipulations in the bor-
ders of the frame. Figure 3 summarizes the proposed work-
flow; at the top of the diagram there is the input frame, while
the resulting L/R hand-segmentation is shown at the bottom.
The intermediate stpdf are the hand-segmentation (section 3.1),
the hand-to-hand occlusion detection and disambiguation (sec-
tion 3.2), and the hand-identification (section 3.3). These stpdf
are in line with the unified structure proposed in [9]. It is im-
portant to note that the three levels (i.e. Hand-Segmentation,
Occlusion-Detection, Hand-Identification) are mutually inde-
pendent; which makes it possible to improve them separately
or using more complex sensors instead. As an example, the oc-
clusion detector can be applied on hand-segments coming from
a RGBD cameras, and the hand-identification method can be
used on top of a faster occlusion detector, or even directly on
the hand-segmenter if the occlusions are not relevant for a par-
ticular application.

From the diagram it can be noticed that, at each time in-
stant the procedure exploits the previous L/R segmentation to
detect and split the hand-to-hand occlusions. This temporal
dependency requires a reliable previous L/R segmentation and
no hand-to-hand occlusion in the initial frame. Intuitively, the
higher the sampling rate, the more reliable the occlusion detec-
tion; however, as will be shown in 4, even using sampling rates
of 15FPS the final segmentation accuracy of the left and right
hand is still around 90%. The main goals of this work are the
algorithmic performance and the segmentation capabilities. To
reach real-time performance, the algorithm must be optimized
by balancing the compression width, the sampling rate, or by
developing parallel versions of the Random Forest and/or the
superpixel algorithm. Our current work points out that, using
GPU implementation and an image resampler (outputting 600
pixels width images and preserving aspect-ratio), it is possible
to achieve a throughput of 30F PS.

3.1. Binary Hand-Segmentation

At this level there is no difference between left and right
hand. The objective is to discriminate pixels of the frame that
looks like the hand-skin based on color. This level is based
on a multi-model version of the pixel-by-pixel binary hand-
segmenter proposed by [12]. Figure 4 summarizes the general
idea of the multi-model approach. The gray blocks correspond
to the training while the white blocks to the testing.
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The first column of the figure contains the manual masks and
their corresponding raw frames. The masks were extracted us-
ing the graph cut manual segmenter provided by [12]. Let us de-
note N as the number of manual masks available in the dataset,
and n as the number of training pairs selected to build a multi-
model binary hand-segmenter. For each training pairi = 1...n
a trained binary random forest (RF;) and its global features
(GF)) are obtained and stored in order to construct a pool of
illumination models (second column of the figure). Each RF;

is trained using as features the LAB values of each pixel in the
frame i and as class their corresponding values in the binary
masks. As global feature (GF;) we use the flatten HSV his-
togram. The choice of the color spaces is based on the results
reported by [12] and [30]. Once the illumination models are
trained, a K-Nearest-Neighbors structure, denoted as Kgp, is
estimated using as input the global features G F;.

In the testing phase, the Kgr is used as a recommender sys-
tem which maps the global features frame to the indexes of the
nearest K illumination models (RF"). These are used to obtain
K possible segmentations (S’), which are eventually fused to
obtain the final hand-segmentation (HS’). This procedure is
illustrated in the third column of Figure 4. Formally, let’s de-
note the testing frame as ¢ and its HSV-histogram as GF’, the
indexes of the closest K illumination models ordered with in-
creasing euclidean distances as equation (1), their correspond-
ing K random forest as equation (2), and their pixel-by-pixel
segmentation applied to ¢ as equation (3).

¥ = Ker(GF'IK) M
= W0k

RF' = (RFy.....RF,} 2)

S' = {RFy(0).....RF, (1)} 3)
= (S, 8%)

The binary hand-segmentation of the frame is the normal-
ized weighted average of the individual segmentations in S’,
which is formally given by equation (4); A is a decaying
weight factor that is equal to 0.9, based on the results of
[12]. The weights S’ are then set as {0.9,0.9%2,0.93 --- 0.9} =
{0.9,0.81,0.729---0.9%X}.  With this in mind, the hand-
segmentation has 2 parameters to be defined, namely the num-
ber of illumination models (n) and the number of closest ran-
dom forests to average (K). These parameters are defined in
section 4 following an exhaustive evaluation in the Kitchen
dataset.

K A-Sst
HS' = 25 )
S

At this point, there is a set of hand-like segments, some of
them matching the hands of the user (true-positives) and some
of them as the result of pixels in the image with similar color to
the user skin (false-positives). If a fixed camera location (e.g.
head, chest, shoulder) is known, then it is possible to define a set
of post-processing rules to remove some of the false-positives.
The post-processing has 4 stpdf: i) Find the contours (polygons)
containing the hand-like pixels; ii) Remove those contours far
of the left, bottom or right margin; iii) Remove the contours
smaller than 0.1 - w2, where w is the width of the frame; iv)
keep the largest 3 contours. We perform an extra filtering stage
after the hand-identification step to keep only the best left and
best right contour.



3.2. Hand-to-hand Occlusions

The proposed L/R hand-identification model assumes that
the hand-like segments are not occluded or have been split be-
fore. If hand-to-hand occlusions were ignored the L/R hand-
identification model would process a larger hand-like segment
and would assign it completely as left or right. Moreover, ignor-
ing the occlusions would make the tracking of the hands more
complex due to frequent flickering in the hand-identification.
To avoid these cases we perform an occlusion detection step
(section 3.2.1) followed by a segmentation split (section 3.2.2).
Figure 5 shows some examples of occlusion (first column) and
the split (second column). The third column shows the result of
the L/R hand-segmentation if occlusions are properly handled.

Occlusion L/R
Split

Hand-to-hand

Occlusions hand-Segmentation

Figure 5: Examples of Hand-to-hand occlusion split.

3.2.1. Hand-to-hand Occlusion Detection

The main goal of this step is to decide whether the hand-
like segments of a particular frame come from a hand-to-hand
occlusion. Given a reasonable sampling rate, it is possible to
assume that a hand-to-hand occlusion requires the presence of
both hands in the previous. Let’s define then, the previously de-
tected L/R hand-segments, as L'~! and R"~! respectively, and the
larger binary hand-segment of the current frame as HS!. Two
important assumptions must be verified here: i) There is not
hand-to-hand occlusions in the first frame of the video segments
containing both hands, ii) The detection and split reliability is
high. The first assumption is particularly true for videos record-
ing realistic hand interactions like the kitchen dataset. The sec-
ond assumption is evaluated in section 4.1 and 4.2.2.

In case of occlusion, and given a small sampling rate, HS'!
must intersect simultaneously with L/~! and R'~!. If this hap-
pens, it can be assumed that the hands are close enough, or

connected by noisy pixels, to be considered a hand-to-hand oc-
clusion. Algorithm 1 formally defines the hand-to-hand occlu-
sion detection. For the sake of the compactness of notation, we
use a bar over segments to refer to their area (e.g. S'~! refers to
the area of segment S’-!). As it can be seen in the pseudocode,
HS! is defined as hand-to-hand occlusion if the area of its in-
tersection with L'~! and R"~! is between 80% and 120% of the
total area of the L/R hand-segments.

Algorithm 1 Hand-to-hand occlusion detection.
1: procedure IsOccLusion(HS !, L'~!, R'"™1)

2: if L'~' #+ @ AND R"! + & then
3 ST L UR!
4: I« HS!ns"!
5: if08-81<T<12-5 then
6: Occlusion « True
7T: else
8: Occlusion < False
9: end if
10: else
11: Occlusion «— False
12: end if

13: return Occlusion
14: end procedure

3.2.2. Occlusion splitting

In the case of hand-to-hand occlusion, the next step is to split
the affected segment in two parts by exploiting its inner edges
and the previous L/R hand-segments. Following the notation of
section 3.2.1, let us define @' = {¢, ¢}, ..., ¢} as a superpixel
representation of the frame #. Pseudocode 2 summarizes the
stpdf to hand-to-hand occlusions split. Our approach initially
relies on the intersection with the previous L/R segments and
subsequently, if necessary, in the superpixels of the previous
frame.

Algorithm 2 Splitting occluded hand segments.

1: procedure SpLitOccLusion(BigHandBlob, L'~ , R, ®'~1, @")
2: segment| «— &
3: segment, «— &
4: for ¢! € {®'| ¢! € BigHandBlob} do
5: if centroid(¢}) € L' then
6: segment| « segment; U ¢!
7. else if centroid(c!) € R”™' then
8: segment, « segment; U ¢!
9: else
10: tmp « (¢ € @' | centroid(¢;) € (L'~ UR™'})
11: closesty « argmin ||¢ — qﬁfll2
petmp
12: if centroid(closesty) € L'~ then
13: segment| «— segment; U ¢!
14: else
15: segmenty «— segment, U ¢!
16: end if
17: end if
18: end for

19: return segment1, segment2
20: end procedure

Intuitively, the intersection of current hand-segments with
the previous L/R segments provides reliable decisions for small
sampling rates. However, due to the fast camera and hand
moves, not all the pixels inside the occluded hand-segment can
be solved in this way. For these pixels, we rely on the clos-
est previous superpixel. The higher the sampling rate the more
relevant the superpixel criteria.



In practice, we use the original SLIC algorithm as the super-
pixel method with the metric defined by (5). The same metric is
used to find the closest previous superpixel in algorithm 2 line
11, where ||¢; — ¢ jllf is the color metric given by equation (6),
lig: — ¢;II? is the space metric given by equation (7), and m? is
the spatial weight. Our experimental results use LAB as color
space for two reasons: i) It has been pointed out as the best per-
forming feature for hand-segmentation in egocentric videos ii)
It is the feature used in the original SLIC algorithm.

i =il = ligi = dllc + m’ligs — 3 ®)
i = dlle = Ji= 1P + (@ = a)? + (b~ by ©)
i =il = yJOu = xR +i- ™)

3.3. Hand Identification

Assuming that the current frame is not occluded, or has been
previously split, the next step is to decide if detections are left
or right hands. As explained before, using only the horizon-
tal position of the hands in the frame is not always reliable. It
can be hypothesized that, by extending the horizontal position
with the hand orientation, it is possible to the solve the diffi-
cult situations. To confirm this, it was performed an exhaus-
tive analysis of the kitchen hand-masks extended with labels
about the hand identity. These masks are subsequently used to
define a probabilistic L/R hand-identification model based on
the best-fitting ellipses (section 3.3.1). The ellipses are fitted
with the algorithm proposed by [32]. Finally, the already men-
tioned Maxwell model is used in a likelihood ratio test to exploit
the fact that one left/right hand can be present at most (section
3.3.2). It is noteworthy that the proposed identifier does not
need initialization: it is independent of the sampling rate, and
can be applied to frames with left, right, or both hands. Addi-
tionally, its parametric nature opens the door for further inte-
gration for higher inference levels as proposed in [9].

3.3.1. Building the L/R hand-identification model

A quick analysis of egocentric videos of daily activities eas-
ily points to the angle of the hands with respect to the lower
frame border (6), and the normalized horizontal distance to the
left border (x) as two discriminative variables to build our L/R
hand-identification model. Figure 6 illustrates these variables.
For the remaining part of this section x is the normalized value
of d, with respect to the frame width w.

The upper half of Figure 7 shows the observed empirical dis-
tribution of the x and @ for the left and the right hands of the
kitchen dataset extended masks. In the horizontal axis is the
relative distance to the left border (x), for the left hand-like
segments, and the relative distance to the right border (1 — x),
for the right hand-like segments. The angular dimension is the
anti-clockwise angle with respect to the horizontal border of the
frame (). Interestingly, there is a small asymmetry between the

ISee [31] for a detailed comparison of different color spaces and their dis-
criminative power.

(a) Geometric problem of the left hand- (b) Geometric problem of the right
segment hand-segment

Figure 6: Input variables for the L/R hand-identification model.

left and right distributions, meaning that one of the two hands is
used for a wider variety of movements than the other. We point
this as an interesting finding that could lead to further device
personalization depending on the dominant hand of the user, or
to analyze the hand usage in daily activities.

Empirical Distribution

Left Hand Right Hand
90° 90°
45° 135° Max
0° a’ 180°
1 0.5 0 0.5 1 1 0.5 0 0.5 1

Relative distance to left Border Relative distance to right Border

Proposed Model

Left Hand

Right Hand
90° 90°

180° ° Min
1 0.5 0 0.5 1 1 0.5 0 0.5 1
Relative distance to left Border Relative distance to right Border

Figure 7: Empirical (Top) and theoretical (Bottom) hand distribution func-
tion given the distance to relative distance to the sides of the image. For the
left(right) the relative distance to the left(right) side is used.

Based on the empirical distributions, a mathematical formu-
lation to fit the observed distribution is proposed; which, inter-
estingly can be easily approximated two independent Maxwell
distributions. The reasons behind the choice of the Maxwell
distribution are the following: i) It is positive defined ii) It al-
lows to include an asymmetry factor in our formulation. The
mathematical formulation for the left hand (p;) and the right
hand (p,) is given by equation (8) and (9) respectively, where
Py 1s the Maxwell distribution with parameters ® = [d, a]. The
values of x and 0 are defined in the interval [0, 1] and [0, 7r].
In general d controls the displacement of the distribution (with
respect to the origin) and a controls its amplitude.

pi(x, 0107, 0]) =
(%, 6107, 0)

r

p(x107)p(610f) (8)
p(1 = X|®)p(r - 610) ©)
(x - d)>

—d? -
\E e (10)

p(x|@) = p(xld, a)



In total, our formulation contains 8 parameters summarized
in equation (11). As notation, the subscript of ® refers to the
left (/) or right (r) parameters, and the superscript refers to the
horizontal distance (x) or the anti-clockwise angle (6). The pa-
rameters of the model are selected by fitting the empirical dis-
tribution and the final values are given by equation (12). The
second row of Figure 7 shows the theoretical distribution.

o O _ |4 « d 4q

[@f | T |l& a & & an
_[-005 024 063 094 )
= =008 021 -091 110

3.3.2. Using the L/R hand-identification models

To compare the fitting performances of the L/R hand-
identification models given by equation (8) and (9), a likeli-
hood ratio test on the post-processed hand-like segments is per-
formed. The likelihood ratio test is given by equation (13).

Li(®7, ®f|x, 0)  pi(x, 007, ®f)
L8}, 0flx,6)  pi(x.60},07)

Relying only on the likelihood ratio, could lead to cases
where two hand-like segments are assigned the same label (left
or right). To avoid this cases, and given that a frame cannot
have two left nor two right hands, we follow a competitive rule
in the following way. Let’s assume two hands-like segments in
the frame described by z; = (x1,6;) and z5 = (x,6,) as ex-
plained in Figure 6, and their respective likelihood ratios given
by A(xy, 6;) and A(x,,6,). The competitive ids are assigned by
equation (14).

A(x,0) = (13)

A(x1,61) > A(x2,6,) —  id,

id, =r
id,,id,, = (14)
A(x1,61) < A(x2,60p) = id; = r
id,, =
4. Results

This section evaluates our approach in two stpdf. Section 4.1
uses the Kitchen manual masks as a perfect hand-segmenter to
assess the /R hand-identification models and the occlusion de-
tector. In section 4.2 the multi-model hand-segmenter is tuned,
evaluated, and used for a realistic performance analysis of the
overall system.

4.1. Assuming a perfect hand-segmenter

In this section, the extended L/R manual masks of the kitchen
dataset is used as a perfect hand-segmenter. Each hand-segment
is endowed with its best fitting ellipse and used as input for the
L/R hand-identification model presented in section 3.3. Table
1 shows the results of the L/R identification without and with
likelihood ratio competition.

The comparison without likelihood ratio, left side of the ta-
ble, refers to the hand-identification based only on the best

Table 1: Left and right hand identification at contour level

No-Competition ‘ With Competition

Left ~ Right | Left Right
Left 0994  0.006 | 0.997 0.003
Right  0.012  0.988 | 0.000 1.000

model. However, it is intuitive to assume that in presence of
two relevant hand-like segments, they cannot be both left or
right. This restriction is included by using the likelihood ratio
test introduced in section 3.3.2, and presented in the right half
of the table. This scheme allow us to identify almost perfectly
all the masks in the dataset (i.e. 99.7% of the left hands and
100% of the right hands). The values reported in the table refer
to the identification problem (left/right) and does not constitute
a hand-segmentation.

4.2. Without perfect segmentation

The assumption of a perfect hand-segmenter is not a realis-
tic. Furthermore, hand segmentation is considered one of the
most challenging objectives of FPV video analysis. To perform
a more realistic evaluation of our approach we initially tune and
evaluate the proposed LAB based multi-model hand-segmenter
(section 4.2.1). Subsequently, in section 4.2.2 the occlusion de-
tector is assessed to conclude with an overall evaluation of the
system including each of its components.

4.2.1. Hand-Segmentation

As presented in figure 4 the proposed hand-segmenter is in-
tended to alleviate the illumination problems and consequently
improve the quality of the segmentation. However, some im-
portant aspects of this approach must be defined first:

i) How many illumination models (n) must be considered?.

i) How many models (K) must be provided by the KNN rec-
ommender component?

iii) Which is the effect of these parameters to the quality of the
segmentation?

In order to answer these questions a computational experi-
ment is designed to tune n and K and evaluate proposed multi-
model approach with the state-of-the-art hand-segmentation
methods. For the experiment, the subject 1 of the kitchen
dataset is used. We train a multi-model hand segmenter us-
ing each video for training and the remaining ones for testing.
As explained in section 3.1 each illumination model is a ran-
dom forest, which introduces a random component to the hand-
segmenter. To alleviate the randomness in the evaluation, the
training-testing is executed 5 times with different random seeds.
With this in mind, given (n) and (K), a total of 25 training and
testing errors are obtained (e.g. 5 per training video times 5 per
random seed).

Figure 8 shows the average training (top plot) and testing
(bottom plot) F'1 scores while changing the number of illumi-
nation models (n). The colors of the lines (legend of the figure)
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refer to the use of the K closest random forests in the fusion
part. The image shows a quick improvement in the performance
when the number of illumination models increases. As refer-
ence, the testing error changes from 75% to 92.8% when using
20 illumination models instead of a single one. For the remain-
ing part of this paper, the number of illumination models is set
to 20. Regarding the number of illumination models to fuse K,
the performance quickly converges on K = 5; concluding that,
for the kitchen dataset, the fusion of more than 5 illumination
models does not provide additional improvements to the seg-
mentation quality. In total the fusion of 5 illumination models
contributes two units in the F'1 score compared with the use of
only 1. In the remainder of this paper a value of K = 5 is used.
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Figure 8: Hand-segmentation F'1 score when changing the number of illumi-
nation models (n) and the number of closest models (K) to fuse. The first and
second plots are the training and testing F'1 scores, respectively. The number
of illumination models 7 is plotted in the horizontal axis, while the F'1 score is
in the vertical axis; the colors represent the number of models to fuse K.

For what concerns the training video selection, Table 2 shows
a detailed comparison of the binary segmentation performances
when trained with different videos. The table shows the mean
F1 and its standard deviation. The diagonal of the table is
training F'1 while, and the remaining values are the testing F'1
scores. The overall testing F'1 is in the final column. Results al-
low us to conclude that the choice of the testing video does not
create a substantial effect on the overall performance. The latter
is true if the light conditions of the videos are similar. In the re-
mainder of the paper, we use the “Coffee” video sequence (4700
frames - 79 masks - 7 occluded masks) as training sequences,
and the remaining “CofHoney”, “Hotdog”, “Tea”, “Pealate” for
testing. The testing sequences contain in total 21240 frames,
367 Left/Right masks and 44 occluded masks. Please refer to
[5] for extra details about the Kitchen dataset.

Table 3: Hand-Segmenter state of the art comparison. The performances re-
ported for the state-of-the-art are taken from [27]

Coffee Tea Peanut
1999 - Single pixel color [26] 0.83 0.80 0.73
2011 - stabilization + gPb + superpixel + CRF [13]  0.71 0.82 0.72
2013 - Li 1 x 1 window [25] 0.85 0.82 0.74
2013 - Li 9 x 9 window [25] 0.88 0.88 0.76
2014 - Shape Aware Forest (post-process) [27] 0.90 0.84 0.84
2016 - Ours (k=20, m=50) 0.88 0.87 0.77
2016 - Ours (k=20, m=50) + Hand-Id Post Process 0.94 0.94 0.88

Finally, Table 3 compares the multi-model hand-segmenter
with previous works. If compared with the single pixel-by-
pixel classifier of [25], our approach achieves improvements
between 3 and 5 F1 score points. After the post-processing,
our method achieves a total improvement of 9, 12 and 14 F1
points on the “Coffee”, “Tea” and “Peanut” video sequences,
respectively. In comparison to the shape aware hand-segmenter
proposed by [27], our implementation performs better in all the
video sequences. In particular, the “Tea” video sequence is im-
proved by 10 F1 points.

4.2.2. Occlusions and overall performance

The extended masks can be used to identify evaluation cases
for the occlusion detector and the splitting method. To evaluate
the occlusion detector we initially select the masks with hand-
to-hand occlusions and check if the occlusion detector finds
them. In total, the “Kitchen” dataset (subject 1) contains 51
hand-to-hand occluded frames, and the algorithm 1 identifies
98%.

When automatically segmented, the silhouette of the hands
will be affected by the false-positives and false-negatives, and
as the consequence, some extra frames could be mis-detected
as hand-to-hand occlusions (i.e., two noise hand-like segments
close enough to be considered occluded). This is not a problem,
since the algorithm will split these cases as a real occlusions and
only some extra computational time is needed.

Table 4: Evaluation of the hand segmentation only when split is required

| No-Hand Left  Right

No-Hand 0.984 0.007 0.009
Left 0.058 0.934 0.009
Right 0.080 0.006 0914

To evaluate the hand-to-hand occlusion split the extended
L/R masks was used as ground truth to perform 3 class pixel-by-
pixel classification analysis (i.e., background, left hand, right



Table 5: Effect of the occlusion detection and dissambiguation in the overall
performance.

| Without split | With split
| No-Hand Left  Right | No-Hand Left  Right
No-Hand 0.992 0.004 0.004 0.992 0.004 0.004
Left 0.073 0.821 0.106 0.073 0.923 0.004
Right 0.096  0.066  0.838 0.096  0.001 0.903

hand). First, in seek of a better evaluation of the split procedure,
only the frames detected as occluded are used. Table 4 shows
the confusion matrix of the 3 class pixel-by-pixel segmentation
for all the frames detected as occlusion. The table concludes
that, in the case of occlusion, the split leads to a proper clas-
sification of 93.4% and 91.4% of the left-hand and right-hand
pixels, respectively. It is important to note, as shown previously,
that the main cause of the misclassified left/right pixels is not
the split procedure, but the noisy segmentation.

To conclude, Table 5 shows the benefit of the occlusion de-
tection and the split to the overall hand-identification. The first
vertical group ignores the occlusion problem, while the second
is obtained using proposed approach. Both confusion matrix
are identical in the background performance since the hand-
segmenter is the same for the two experiments. The L/R hand-
segmentation gains almost ten percentage points when occlu-
sions are considered. Eventually, table 6 provides the detailed
results for each testing video. For comparative purposes, the
table provides the performances obtained by using 60, 30 and
15 frames per second. It can be noticed that the overall perfor-
mance is not considerably affected by a sampling rate of 30fps.
When using 15 frames per second, the segmentation quality suf-
fers a small reduction, but the throughput of the system is con-
siderably improved. All the results reported in this paper use a
latency of 60f ps (bold digits).

5. Conclusions and future research

This work presented a hierarchical strategy to segment and
identify the left and right hands of the user in egocentric videos.
The proposed method provides valuable information about the
hand-usage and opens the door to use wearable cameras in ap-
plications involving bi-manual tasks, for example for driving
applications or medical therapy for upper limb mobility prob-
lems.

The first level of proposed method is a multi-model structure
that delineates the hand-like pixels on each egocentric frame.
Experimental results show that proposed multi-model imple-
mentation, jointly with the hand-identification post-processing,
achieves F'1 scores of around 0.92, which constitutes a sig-
nificant improvement to the shape-aware classifier proposed in
[27].

The second level, executed if required, is the hand-to-hand
occlusion identification and disambiguation. The experimen-
tal section shows the importance of this step to understand the
hands of the user as two cooperative entities working jointly
to accomplish a particular task. Our results indicate that, by

handling hand-to-hand occlusions, it is possible to obtain im-
provements around 10% in L/R hand-segmentation.

The final level, the hand-identification, relies on a Maxwell
function of angle and horizontal position, to decide whether a
hand-like segment is left or right. Experimental results show
that our L/R identification model identifies with 99% certainty
if a hand is left or right. We highlight this as a considerable
improvement regarding efficiency and accuracy to the state of
the art, where a SVM is used to understand the state of the hands
as: i) only left, ii) only right, iii) both hands.

As a future research line, we highlight the use of the iden-
tified hands as cooperative entities to understand how the user
is performing a particular task. The results obtained with our
method can be used as the measurement model in the frame-
work of tracking interacting objects to get reliable hands tra-
jectories and augmented states. These trajectories could lead to
a proper understanding of the user’s hands movements, which
constitutes a starting point to use wearable cameras in medi-
cal therapy. Based on our current research the hand-tracking
level requires considerable development in the definition of the
dynamic models ruling the non-linear movement of the hands.
Additional issues must be solved when noisy measurements are
detected or in the presence of complex hand interactions.

Finally, some of the methods presented in this paper, such
as the multi-model classification algorithm, could be applied in
more general scenarios. The objective of this paper is to exploit
the advantageous location of the camera to extract additional
information about the hands of the user. The use of the segmen-
tation model in other video perspective or application is left as
an interesting future work.
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