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Abstract

Although crowd analysis is a classical and extensively studied problem for the
computer vision community, the vast majority of the works in the literature
assume a single type of crowd, while the sociological literature classifies a number
of different typologies, each one with their own distinctive traits. In this paper
we focus on a particular kind of crowd referred in sociology as spectator crowd,
which consists a number of people that are “interested in watching something
specific that they came to see” [1]. This is the typical social formation that
attends entertainment events like sport matches, concerts, movies, etc. In this
work we present a novel dataset, the Spectators Hockey (S-Hock), containing
almost 30 hours of videos recorded at an ice hockey rink during the Winter
Universiade “Trentino 2013”. On these data we provide a massive annotation,
focusing on the spectators at different levels of detail: from high level features
describing which team a person supports and if he/she knows his/her neighbors;
to a lower level, where we consider standard pose information as well as atomic
actions like applauding, jumping, etc. We also provide annotations for the game
field, which allows us to analyze the relationship between the crowd behavior
and the events of the match. Eventually we provide more than 100 millions of
annotations, that can be used for many different tasks spanning from standard
applications, like people counting and head pose estimation, to higher level
tasks, like excitement estimation and automatic summarization. We provide
protocols and baseline results for all of these applications, encouraging further
research in these field.
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Head Pose right

Body Position sitting

Posture elbows on legs

Jumping false

Clapping false

.  . . .  . .

Figure 1: Sample images forming the S-Hock dataset. On top left, the wider scene with
the game field and the stands. In the blue, green and cyan frames are the high resolution
spectator scenes; in the yellow frame is the low resolution spectator scene. On top right, a
schematic representation of the annotation at the individual scale. (Best viewed in colors)

1. Introduction

Crowds are more and more a feature of our urban life. Modeling and predict-
ing their dynamics is therefore pivotal from several points of view, ranging from
organizing and planning to surveillance and public safety management. Cap-
turing and understanding crowd dynamics, indeed, may help preventing and/or5

managing critical situations. Given the complexity of the task, however, we
believe this has to be an interdisciplinary endeavor.

In computer vision, a crowd is defined as an entity that is identified when
“the density of the people is sufficiently large to disable individual and group
identification” [2]. From a sociological perspective, this is a quite general defi-10

nition, encompassing different kinds of crowds, whose members behave in very
different ways accordingly. As we are about to see, a thorough review of the
sociological literature allows to distinguish four kinds of crowd. Further, it is
important to consider that crowds, better defined as large gatherings [3, 4, 5],
are not homogeneous (not all members are the same), nor unanimous (not all15

have the same motive/s), nor mutually inclusive (not all behave the same), nor
continuous (mutually inclusive behavior, when present, is not uninterrupted).
Large gatherings are characterized instead by alternating individual and collec-
tive actions, whereby both vary in quality, and collective action present varied
proportions of co-present people engaged in any particular action. Therefore,20

the “crowd mind” is a myth [5], and crowds can encompass smaller groups with
which members do identify (just think to a family at the stadium).
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The four categories into which crowds can be divided are the following1:

1. prosaic [5] or casual [7, 8] crowds consist of large collections of individuals
sharing no more than a spatio-temporal location, that is, they are co-25

present by chance and they do not share a single focus of attention and
action (unfocused interaction [3, 4, 9]). People in line at airport security
checkpoints, or pedestrians in the streets are a couple of examples;

2. spectator [5, 1] or conventional [7, 8] crowds are ensembles of people gath-
ering for specific social events, such as theatrical performances or sport30

matches precisely. Being basically audiences, people in spectator crowds
have a common focus of attention and action (common-focused interac-
tion [3, 10]);

3. expressive crowd [7, 8] are collections of individuals who gather for a social
event and who intend to act as fully active members, that is to participate35

in collective action. Examples range from flash-mob dancers, to Mass
participants, to sport supporters (not just attendees) that get together
to dance, to ritually pray, to cheer. Action is concerted rather than just
common, and the focus of attention is jointly shared among participants
(jointly-focused interaction [3, 10]);40

4. demonstration/protest [5] or acting [7, 8] crowds are collections of people
gathered for events such as mobs, riots, sit-ins or marches who intend to
participate in collective action. Therefore, action is concerted and inter-
action is jointly-focused.

Under this taxonomy, we can say that most of the extant computer vision45

approaches focus primarily on casual [11, 12, 13], and protest crowds [14], with
hundreds of techniques and various datasets, whereas very few (if any) deal with
spectator crowds and their expressive segments (e.g., sport match attendants
and groups of supporters within). In computer vision, crowd analysis focuses
on modeling large masses, where a single person cannot be finely character-50

ized, due to the low resolution, frequent occlusions and the particular dynam-
ics of the scene. Therefore, many state-of-the-art algorithms for person detec-
tion and re-identification, multi-target tracking, and action recognition cannot
be directly applied in this context. As a consequence, crowd modeling has
developed its own techniques such as multi-resolution histograms [15], spatio-55

temporal cuboids [16], appearance or motion descriptors [17], spatio-temporal
volumes [18], dynamic textures [19], computed on top of the flow information.
The extracted information is then employed to learn different dynamics like La-
grangian particle dynamics [13], and in general fluid-dynamic models. The most
important applications of crowd analysis are abnormal behavior detection [19],60

detecting/tracking individuals in crowds [12], counting people in crowds [11],
identifying different regions of motion and segmentation [20]. Only recently,
Navarathna et al. [21] started working on spectators of movies, trying to infer
movie ratings from their behavior during the show. In this paper the authors

1see Bassetti [6] for more details on this taxonomy.
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present a regression method to estimate the rating of a film by using motion65

history features, both on the individual and group level, and support vector re-
gression. They tested their algorithm on a testbed environment that contains a
maximum of 10 people per session. In our case, the amout of people considered
is much higher (from 150 to 500 people).

The above mentioned lack of attention to spectator crowds and their specific70

dynamics is threatening. From a recent study, conducted in 2014 by the UK
Home Office2, disorders at stadiums caused 2,273 arrests only considering the
FA (Football Association) competitions in the last year. Moreover, in the last
60 years, 1447 people died and at least 4600 were injured at the stadiums during
major events around the world3. These statistics motivated in several countries75

the implementation of emergency plans to ensure safety and a better manage-
ment of critical situations. This is here where computer vision may consistently
help. Stadiums can often be targets of violence. Hence, protecting event go-
ers, stadium staff, event performers and athletes becomes a priority. This need
grew in importance in these last years; as one of the most evident signals of80

this trend, many international summits are occurring and will occur in the next
months. For example, the European City & Public Security Summit in 2017 in
London will bring together policy makers and leading experts from the private
and public sector, including former and current police and counter terrorism ser-
vices and the heads of Security of some of Europe’s largest sports, leisure, retail85

and public attractions4. As another example, the annual UEFA/EU conference
takes place every year at the start of the season. The conference brings together
national associations’ security officers, stadium safety managers, club safety of-
ficers and police representatives from all European clubs that have qualified for
the next season of the UEFA Champions League and UEFA Europa League.90

Over 350 delegates review the past season, exchange good practices and discuss
arrangements for the upcoming matches. The high attendance reflects the in-
creased scope of stadium and security affairs, and the importance attached to it
by authorities and the football family across Europe. The latest conference took
place in Bucharest in September 20165. The ESSMA Stadium Summit gather95

stadium experts, club and league representatives to discuss various aspects of
stadium management, including, but not limited to, fan entertainment, safety
& security, commercial exploitation and pitch management6.

The present article is an initial attempt to address this topic, and offers the
first dataset on the subject, the Spectators Hockey (S-Hock). It regards an100

international hockey competition (12 countries from all around the world have
been invited) held in Trento (Italy) during the 26th Winter Universiade, and
focuses on the final 4 matches of the tournament. The dataset is unique in the

2Football-related arrests and football banning order statistics, Season 2013–14, available
online at http://goo.gl/j9yYYQ.

3http://goo.gl/xMU2Zf.
4http://www.citysecuritysummit.com/
5http://www.uefa.org/protecting-the-game/security/
6http://www.ecaeurope.com/news/essma-summit-2016/
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crowd literature, and in general in the surveillance realm, since the crowd as a
whole is mostly static and the motion of each spectator is constrained within a105

limited space in his/her surroundings.
S-Hock captures the crowd using 4 cameras, at different resolutions and

different levels of detail. At the highest level, it models the network of social
relations among the public (who knows whom in the proximity), what is the
supported team, and what has been the best action in the match; these data110

have been gathered through structured questionnaires conducted at the stadium
for each match. At a medium level, spectators are localized, and information
regarding the pose of their heads and bodies is given. Finally, at the lowest level,
a fine grained specification of all the actions performed by each single person
is available. This information is summarized by a large number of annotations,115

collected over a year of work: more than 100 millions of double checked anno-
tations. By far, this is a consistent step ahead in the field of the fine grained
activity recognition. Indeed, S-Hock potentially allows to deal with hundreds
of tasks, some of which are documented in the following sections.

Another crucial cue of S-Hock is that it has two main facets, one focused120

on the crowd, while the other is spent on the game field. In this sense, the
dataset is multidimensional, where the two dimensions consist of data tempo-
rally synchronized. Each annotation in the game field has a time stamp which
follows that of the crowd. This obviously enlarges the number of possible ap-
plications that could be carried out, investigating the reactions of the crowd to125

the actions of the game, opening up to applications of summarization, content
analysis, retrieval, etc. In particular, as we shall see in the closing section, many
new applications can be designed for the domain of public entertainment.

In this article we discuss issues related to low and high level detail of the
crowd analysis, namely, people detection and head pose estimation for the low130

level analysis, spectator categorization and automatic highlights generation for
the high level analysis. Spectator categorization is a kind of crowd segmenta-
tion, where the goal is to cluster different groups of supporters and describe
these groups with a set of features like the team they support or the average
excitement of the group. For all of these applications, we define the experimen-135

tal protocols, thereby promoting future comparisons. From the experiments we
conducted, we show how standard methods for crowd analysis, which work well
on state-of-the-art datasets, are not fully suited to the data we are dealing with,
thus requiring us to face the problem from a different perspective. Therefore,
besides baselines, we also propose customized approaches specifically targeted140

at the spectator crowd, thus defining new upper bounds.
In brief, the main contributions of this paper are:

• A novel dataset for spectator crowd, which describes at different levels
of detail the crowd behavior with millions of ground truth annotations,
synchronized with the game being played in the field. Crowd and game145

are captured with different cameras, ensuring multiple points of view;

• A set of applicative tasks for analyzing the spectator crowd, some of them
are brand new;
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Figure 2: Schematic representation of the data acquisition settings. The spectators were
forced by the logistic of the ice-stadium to seat on the south bleachers (bottom in the map),
while the north bleachers were restricted to organization. The red and blue cameras are full
HD cameras with wide lens for the acquisition of the ice-rink and the whole spectator crowd,
while the green ones are pointing specific areas of the spectators. See Figure 1 for a sample
image from each camera. (Best viewed in colors)

• A set of baselines for some of these tasks, with novel approaches which
definitely overcome the standard crowd analysis algorithms.150

The rest of the paper is organized as follows: The details of the data collec-
tion and labeling are reported in Section 2; the tasks of people detection, head
pose estimation, and spectator categorization are introduced in Section 3, fo-
cusing on contextualizing the problem, discussing the related state of the art (if
any), presenting the considered baselines and our approaches, and discussing the155

results obtained. Finally, in Section 4, other applications worth investigating
are briefly discussed, promoting further research on this new topic.

2. Data Collection & Annotation

The 26th Winter Universiade was held in Trento (Italy) from 11 to 21 of
December 2013, attracting about 100,000 people from all over the world, both160

among athletes and spectators. The data collection campaign focused on the
last 4 matches (those with more spectators) of the men’s ice hockey tournament,
held in the same ice-stadium of Canazei: here we set up 5 cameras arranged in
the configuration showed in Figure 2. Two full HD cameras (1920×1080 pix-
els, 30 fps, focal length 4mm) were employed: one was pointed on the ice rink165

to record the match events (the red one in Figure 2), and another one for a
panoramic view of all the bleachers (the blue one in Figure 2). Moreover, we
used 3 HD cameras (1280×1024 pixels, 30 fps, focal length 12mm) focusing on
different parts of the spectator crowd (the green ones in Figure 2). In total,
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about 30 hours of recordings have been collected, with inter-camera synchro-170

nization: this brought the interesting feature of having the crowd synchronized
with the game on the rink.

After the match, we asked to the spectators to fill a simple questionnaire
with three questions (whose significance will be made clear later in the paper):

• Which team did you support in this match?175

• Did you know at the beginning of the match who was sitting next to you?

• Which has been the most exciting action in this game?

On average 30% of the spectators filled the from, with peaks of 80% of them
during the final match on the central part of the standings.

In S-Hock we focus on game segments from different hockey matches in180

order to stress the generalization capability of the considered algorithms, since
in different matches we have different people and illumination conditions. In
particular, from each match we selected a pool of sequences in order to represent
a wide, uniform and representative spectrum of situations, e.g. tens of instances
of goals, shots on goal, saves, faults, timeouts (each sequence has more than one185

event). Each video is 31 seconds long (930 frames), for a total of 75 sequences,
namely 15 for each camera. The annotations reported in Table 1 have been
performed on one of the three close-field cameras, whereas the videos recorded
with the other two cameras were annotated only with the survey information.
The fourth view is a wide-field view of the previous three views and the fifth is190

oriented toward the ice rink in order to record the game events.
Each sequence has been annotated frame by frame, spectator by spectator,

by a first annotator, using the ViPER-GT format [22]7. The annotator had
to perform three different macro tasks: detection (localizing the body and the
head), posture and action annotation, respectively. This amounted to deal with195

a set of 50 labels, listed in Table 1.
From the whole set of possible features that can characterize the human ac-

tion and interaction, we selected the annotated elementary forms of action [5]
as they are strictly connected with those more relevant for the analysis of social
interaction, and those most related to our specific setting, i.e. sport spectator200

crowd (e.g. bodily posture or proxemics, and actions such as waving arms or
shaking “fan objects”). More specifically, we considered the available microsoci-
ological literature on behavior in public and social interaction [3, 4, 23, 5], with
particular attention to non-verbal conduct (proxemics, bodily posture, gesture,
etc.). We took into particular consideration also the literature on social inter-205

action in large gatherings [5],that is, literature on what is commonly referred
to as “crowd behavior”. In doing so, we focused in particular sport spectator
gatherings [6].

7The toolkit is available at http://viper-toolkit.sourceforge.net/
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Annotation Typical Values
People detection full body bounding box [x, y,width,height]
Head detection head bounding box [x, y,width, height]
Head pose far left, left, frontal, right, far right, away, down
Body position sitting, standing, (locomotion)
Posture crossed arms, arms alongside body, elbows on legs,

hands on hips, hands in pocket, hands on legs, joined hands,
hands not visible, crossed legs, parallel legs, legs not visible

Locomotion walking, jumping (each jump), rising body slightly up
Action / Interaction waving arms, pointing toward game, pointing outside game,

rising arms, waving flag, hands a cone, whistling, positive ges-
ture, negative gesture, applauding, clapping (each clap), us-
ing device, using binoculars, using megaphone, patting some-
body, call for attention, hugging somebody, kissing some-
body, passing object, hit for fun, hit for real, opening arms,
hands to forehead, hitting hands (once), none

Supported team the team supported in this game (according to the survey)
Best action the most exciting action of the game (according to the survey)
Social relation If he/she did know the person seated at his/her right (ac-

cording to the survey)

Table 1: The annotations provided for each person and each frame of the videos. These are
only typical values that each annotation can have, a detailed description of the annotations is
provided with the dataset. The meaning of the head pose attributes will be explained later in
the paper. For the experiments in Section 3.2, away class has been further divided in far-left
and far-right to discriminate the head pose even when a spectator is not looking toward the
ice rink.

Persons Goals Saves Shots Fouls Timeouts Play
Match 1 500 2 21 43 2 - -
Match 2 250 3 16 23 5 1 -
Match 3 315 - 13 22 5 - -
Match 4 150 1 15 28 8 - -

# Seq. - 3 7 12 1 1 4

Table 2: The game situations annotated for the 4 matches (considering only the second half of
each game). Here the number of persons is an approximation of the number of people during
the entire video. The last row indicates the number of sequences in which there is a specific
game situation.
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On the other hand, the collected video recordings constituted the database
onto which microsociological analysis have been conducted, prior to video an-210

notation, in order to select what we call the atomic components of action-in-
interaction of the considered setting – that is, the elementary actions to be anno-
tated on the dataset. The empirical analysis have been conducted accordingly
to the principles and procedure of Ethnomethodology [23] and Conversation
Analysis [24, 25], the so-called EM/CA approach. Ethnomethodological video-215

analysis (see Heath et al. [26]) plays particular attention: to the sequentiality
of interaction, which is regarded as an unfolding process; to the perspective of
the participants (what is available to their knowledge and perception) at any
point of such a sequence, rather than the perspective of the human analyst who
knows what happens next; to the context of the interaction as simultaneously220

constitutive of, and constituted by the actions people perform in it. These
characteristics make the approach particularly well-suited to be integrated into
computer vision techniques.

The EM/CA analysis of the video-set has identified in a first phase two main
activities enacted by sport spectators:225

• reading the field, that is, game-actions’ projection;

• performing the stands, which entails both

– doing [attending the game], that is, displaying attention to the game
(e.g., pointing to or looking at the game field), and

– doing [supporting the team], that is, actively cheering, displaying230

support (e.g., standing, jumping, clapping)

Consequently, the subsequent analytical phase was devoted to identifying mark-
ers of:

• (dis)attention and (dis)engagement with the game-field activities;

• game-actions projection, with consequent increase in attention/engagement235

(i.e. excitement);

• enjoyment/annoyance and (dis)satisfaction with respect to, respectively,
game-actions and their outcomes;

• mutual coordination in doing [attending the game], and in doing [support-
ing the team] (that is, in displaying enjoyment/annoyance and (dis)satisfaction240

with particular game-actions or their outcomes.

Each annotator had two weeks to annotate 930 frames, and was asked to do
it in a specific lab, in order to monitor him/her and ensure a good annotation
quality. After that all the sequences have been processed, producing a total
amount of more than 100 millions of annotations, a second round of annotations245

started, with the “second annotators” that were in charge of correcting the
errors from the first-round annotation phase. The whole process involved 15
annotators, all paid for their work, and lasted almost 1 year.
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Together with this fully labelled reduced version of the dataset, we also
release the complete dataset (about 30 hours of video stream) with high level250

annotations in terms of events happening on the ice rink (e.g. goals, shots,
saves, etc.). Statistics about the dataset content are reported in Table 2. All
the data are available online at http://vips.sci.univr.it/dataset/shock,
and are free to use for research purposes.

3. Applications255

In this section we propose a number of applications for which S-Hock can
represent a valuable resource in terms of algorithms’ testing and benchmarking.
We will focus on two classical tasks (people detection and head pose estimation),
and two more specific ones, related to social aspects (spectators categorization)
and multimedia content generation (automatic summarization) respectively. For260

each task, we briefly present the state-of-the-art, taking into account only those
methods that can be applied to our scenario, and some preliminary experiments
conducted on our dataset. We also propose some improvements of the stan-
dard methods that exploit the specific features of a spectator crowd and the
relationship between the crowd behavior and what is happening in the game.265

3.1. People Detection

People detection is a long running problem in the computer vision commu-
nity where a number of different methods and algorithms have been presented
over the last 30 years [27, 28]. While many different approaches are available
in the literature, such as wavelet-based AdaBoost cascade, NN/LRF and com-270

bined shape-texture detection, the most popular approaches in the recent years
are classification schemes based on HOG features [29] and the Deformable Part
Model (DPM) [30].

Unfortunately, most of the state-of-the-art methods are not suitable for our
scenario in their original version. This is mostly due to two reasons: first, images275

are extremely low resoluted – the bounding box of a person is on average 70×110
pixels –, and second, there are many occlusions – usually only the upper body
is visible, rarely the entire body but sometimes only the face.

Mainly to overcome these problems, some recent works studied how to em-
bed an explicit model of the visual scene into the detection algorithms. Barina280

et al. [31] proposed to use Hough transform as an alternative to the non-maxima
suppression stage, allowing them to handle multiple instances of the same object
class in a very dense scenario. San Biagio et al. [32] proposed a new image de-
scriptor, called HASC, that encodes linear and nonlinear relationships between
heterogeneous dense feature maps through information-theoretic measures; this285

makes it able to treat complex structural information in a compact and robust
way. On the other hand, in order to overcome the occlusions issue, Wu and
Nevatia [33] proposed to use part detectors learned by boosting a number of
weak classifiers based on edgelet features, and then to combine the responses of
part detectors to form a joint likelihood model including the analysis of possible290
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occlusions. Eichner et al. [34] fused DPM [30] and Viola-Jones [35] detectors to
identify upper bodies, i.e. people standing (or seated) upright and seen from
the front or the back (yet not from the side). Finally, Rodriguez et al. [36] pro-
posed to resolve all detections jointly by optimizing a joint energy function that
combines crowd density estimation and the localization of individual people.295

In this article we provide 5 different baselines for people detection, 2 classic
approaches and 3 state-of-the-art methods. Both classic approaches are based
on linear SVM classifiers and differ from each other only in terms of the descrip-
tor used; the first is based on Histograms of Oriented Gradients (HOG) [29] (cell
size of 8×8 pixels) and is dubbed in the following HOG+SVM, while the second300

is the Heterogeneous Auto-Similarities of Characteristics (HASC) descriptor [32]
and is dubbed in the following HASC+SVM. As for the state-of-the-art methods,
we tested: the Aggregate Channel Features (ACF ) detector [37], which works
on the color channels by computing integral images and Haar wavelets inside a
Viola-Jones [35] framework, fusing them together; the Deformable Part Model305

(DPM ) [30], that feeds a latent SVM classifier with a combination of templates
representing parts of the whole object to be arranged in a deformable config-
uration; and the Calvin Upper Body Detector (CUBD) [34], a combination of
the DPM framework trained on near-frontal upper-bodies and the Viola-Jones
face detector.310

To further investigate the specificity of the S-Hock dataset, we propose to
use, on top of all these methods, a strong prior information, i.e. the people are
“forced” by the environment to arrange in a grid – the seats on the bleachers.
Thus, assuming people are actually seated or anyway distributed according to
seats (e.g. some people is standing most of the time in front of a seat where they315

put their belongings), we can generate a prior probability map by assigning a
higher probability to the locations next to the seats. Since we do not know in
advance the camera calibration (i.e. the relative orientation between the camera
and the stands), we prefer to adopt a post-processing strategy where we add
to the detection confidence map the average of the map over the rows and the320

columns; in this way we only assume that the camera is roughly perpendicular
to the spectators, which is reasonable since the camera is quite far from the
stands, but the method is very robust to small movements of the camera that
can result in a translation of pixels. Consider D the detection confidence map,
being D(x, y) the probability that the patch centered in (x, y) contains a person,325

the modified output D̃ for a target location (x̂, ŷ) is given by:

D̃(x̂, ŷ) = D(x̂, ŷ) +
∑
i

D(xi, ŷ) +
∑
j

D(x̂, yj) (1)

We adopted a standard experimental protocol based on training, validation
and testing. We used all the 11 sequences of the final match as testing set,
while 2 sequences of the same semi-final match have been used as training
set, and the last 2 sequences (of 2 different matches) as validation set to tune330

some parameters (specifically threshold for the minimum detection score and the
parameters for the non-maxima suppression stage). For the training phase, we
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Image HOG+SVM HASC+SVM ACF DPM CUBD

Without
prior

With
prior

Figure 3: Qualitative results of the people detection algorithms. The detection confidence map
for each method is reported both with and without the application of the grid-arrangement
prior. (Best viewed in color)

randomly selected 1,000 individuals to be used as positives, while a background
image (i.e. an image of empty bleachers) has been used to randomly generate
negatives For the testing phase, we downsampled the videos by processing 1335

frame every 10, resulting in 93 frames and about 13,600 individuals per video
(about 1,000 frames and 150,000 individuals in total). For HOG+SVM and
HASC+SVM we adopted a simple sliding window strategy for the generation
of the candidates. We used patches of fixed size of 72×112px and a movement
step of 8px, generating a detection confidence map with dimension 160×118.340

As for ACF, DPM and CUBD, the generation of the candidates is part of the
algorithms.

Following the evaluation protocol of [38], we consider an individual as cor-
rectly identified if the intersection over union of the predicted and annotated
bounding boxes is higher than 50%. As performance measures we use precision,345

recall and F1 scores.
Qualitative results of the baselines and the grid arrangement prior contribu-

tion is shown in Figure 3, while quantitative results are in Table 3. Surprisingly,
the best performing method is also the simplest one (HOG+SVM), while the
frameworks based on deformable part models (DPM and CUBD) perform very350

poorly in the standard version. The main reason we find is that the extremely
low resolution of the images make the detection of the parts even more difficult
than the detection of the person as a whole. Numeric results also prove that
the grid arrangement prior consistently improves the performances of all the
methods in terms of F1 score.355

no prior with prior
Method Prec. Rec. F1 Prec. Rec. F1

HOG + SVM 0.743 0.561 0.639 0.662 0.709 0.684
HASC+SVM [32] 0.365 0.642 0.465 0.357 0.685 0.469
ACF [37] 0.491 0.622 0.548 0.524 0.649 0.580
DPM [30] 0.502 0.429 0.463 0.423 0.618 0.502
CUBD [34] 0.840 0.303 0.444 0.613 0.553 0.581

Table 3: People detection results in terms of precision, recall and F1 score, with and without
the contribution of the grid arrangement prior.

12



3.2. Head Pose Estimation

The scenario described by S-Hock can be generalized in most of the visual
surveillance environments where cameras are deployed in a big public area in
order to maximize the coverage. In these contexts, one interesting task is the
analysis of the posture of each individual with the goal of tracking their focus of360

attention along time. In this section we focus on the automatic pose estimation
of the head. In this context, despite the good resolution of the cameras, the
distance between the camera and the filmed subjects is rather high, which is
necessary in order to cover the whole side of the gallery in the ice stadium. In
our particular case, the appearance of each spectator’s head can be contained365

in a bounding box of rather small dimensions (50x40 pixels on average). In this
scenario, most of the traditional and best performing methods [39, 40, 41] are
inapplicable due to the impossibility in finding landmark points on each subject’s
face. Considering the low-resolution scenario, viable methods are few. Among
them, we selected two algorithms which are suitable for such an application.370

The first has been proposed by Orozco et al. [42], it relies on the computation
of a descriptor based on the distance between the test image and the mean
image for each orientation. An SVM classifier has been used to perform the
final decision. The second viable approach has been proposed by Tosato et
al. [43], in this work the authors exploit an array of covariance matrices in a375

boosting framework. The image of the head has been divided in patches which
have been weighted according to their description capability. The application
of those methods on S-Hock lead to performance similar to their application
to other dataset. However, a considerable amount of time is needed for testing
and much more for training the model (see Table 4). In order to overcome these380

issues we propose two approaches based on neural networks, which have recently
produced state of art results in many computer vision branches [44, 45, 46].
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Figure 4: (a) Architecture of CNN. (b) AE architecture: in cyan are pictured the intercon-
nections between the auto-encoder that must be trained separately, in red instead there are
the interconnections of the final NN.

In this work we compare the performance of two architectures: namely,
Convolutional Neural Networks (CNN) and Auto-encoders (AE). The input
image has been resized 50x50 pixels and then normalized in order to be given as385

input to the two networks. The CNN model is a deep architecture similar to the
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(a) (b) (c) (d) (e)

Figure 5: Examples of the five head poses considered for the experiments in Section 3.2; in
order (a) to (e): far left, left, frontal, right, far right.

one proposed by LeCun for handwritten digit recognition [47]: an input layer
followed by 2 sets of convolution-pooling layers (see Figure 4 (a)). Both kernels
in the convolutional layers are 5×5 pixels, the scaling factor of the pooling layer
is 2, and the training has been performed over 50 epochs. The AE net is showed390

in Figure 4 (b) and is performed in two phases. In the first unsupervised phase
the weights are learned automatically, in the second phase those weights will be
used as initialization of a supervised traditional neural network that will output
the final inference on the five classes. In this architecture the only hidden layer
has size h = 200. Both training procedures (supervised and unsupervised) are395

refined in 100 epochs.
This task consists in classifying different head poses considering the follow-

ing partition: frontal, left, right, far left and far right. These classes allow us
to segment three zones of the ice rink and two situations in which the specta-
tor’s attention is addressed outside of it. The classes down and away have been400

ignored since t hey are not populated as much as the others. In a more quanti-
tative fashion, frontal faces are considered roughly in the range between −10◦

and 10◦, left and right spans from −10◦ to −80◦ and 10◦ to 80◦ respectively.
The heads exceeding those angles in both directions are considered as far left
and far right (see Figure 5). This has been detailed to the annotators during405

the data labeling. The resulting dataset is then is composed by 107299 and
34949 images for training and test respectively8. The head location is feeded to
the neural network using the ground truth position in order to derive a sort of
upper bound in terms of performance.

The results proposed in Table 4 show that neural networks are giving results410

similar to the baselines, but the training and especially the testing phases are
performed much faster in the proposed methods. Also consider that these tests
have been performed on the same machine without the use of any GPU that
would consistently improve the training speed. This speed up in classification
time for both training and testing phases makes our method more suitable for415

real life applications where quick response and imminent decision are required.
As a further remark, we trained WArCo by randomly sampling 5000 samples

8The sets are provided along with the dataset in order to ease future comparisons.
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Avg. Accuracy Training time Testing time
Method [sec] [sec]

Orozco et al. [42] 0.368 105303 6263
WArCo [43] 0.376 186888 87557

CNN 0.346 16106 68
AE 0.348 9384 3

CNN + EACH 0.354 16106 68
AE + EACH 0.363 9384 3

Table 4: Classification accuracy for state-of-the-art methods averaged on the five classes and
the computation time. The time used to refine the prediction through EACH is negligible
comparing to the one used to train and test the neural network. The testing and training
reported in the table, is considering the whole amount of seconds used to process the entire
set of images on our non-GPU powered desktop machine.

among all those available for training; this has been necessary in order to per-
form it in a reasonable amount of time.

A further experiment has been performed on this data scenario; The main420

intuition at its basis stems from the fact that people attention during a sport
match is mainly given by the location of the action on the game field. For this
reason we introduced an additional step named EACH (Event Attention CatcH).
In this experiment the position of the puck on the ice has been modeled as a one
dimensional Gaussian distribution centered on the puck itself. This model allow425

us to have a rough estimation of the area that is likely to attract spectators’
attention. This information is used as a prior probability in order to refine the

final head pose estimation. This probability P
(c)
A is formalized in Eq. (2)

P
(c)
A =

U(c)∑
i=L(c)

1

σ
√

2π
e−

(xi−m
(c))

2σ (2)

where L(c) and U (c) are the lower and the upper boundaries of the rink for
the specific class c respectively, m(c) is the position of the puck.430

c = arg max
c

(αP
(c)
A + (1− α)P

(c)
N ) (3)

The final decision is taken according to Eq. (3), where α is a weighting

parameter, P
(c)
N is the probability of the head pose to be assigned to class c

computed by the Neural Network.
We observe that this model is much more beneficial when athletes are playing

than when the game is paused by the referee’s intervention. This particular435

aspect suggests us to tune the α parameter according to the game phase. The
results reported in Table 4 are computed using σ = 15 and α = 0.3. The ice
rink information increases the accuracy by approximately 2% on both CNN and
AE frameworks.
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3.3. Spectator Categorization440

The spectator categorization task consists in spatially segmenting the spec-
tator crowd on the basis of motion attributes and temporal regularization, and
in associating to each segment a set of high level features. In this paper we
propose two different high level features: the supported team, based on the fact
that the majority of people in that segment support that particular team, and445

the average excitement level over the whole sequence. Notice that these are just
two possible features, other ones can be proposed and implemented in order to
characterize the segment. Moreover, whereas some features are strongly related
to the specific scenario at hand, others are of general applicability. For instance,
the supported team is meaningless if we analyze the spectator crowd at a music450

concert, while the excitement level is still relevant.
Spectator categorization is a subtask of the more general topic of crowd

modeling and crowd behavior analysis, and in turn very connected to human
activity analysis [48, 49, 50]. In [2], Jaques Júnior et al. stated that computer
vision approaches for the behavioral analysis of crowds can be distinguished455

into to main typologies: the object-based approaches treat the crowd as a col-
lection of persons and thus the analysis relies on the detection of individuals;
while the holistic approaches treat the crowd as a single complex entity. De-
spite the sociologically-founded preference for conceptualizing crowds, from a
theoretical point of view, as collections of individuals and groups rather than a460

single entity (or ”mind”), from a technical point of view the choice between the
two approaches depends on the specific scenario under analysis; in dense scenes,
where it is very difficult to detect and track individuals, the holistic approach
is more appropriate (see [2], p. 72). This is also the case of spectator crowds,
where other than dense, the scene also presents a huge number of occlusions.465

Holistic approaches usually collect global information about the crowd (e.g.
crowd flows), ignoring local information (e.g. people detection and tracking).
This is typically achieved by means of optical flow techniques.

In Ali and Shah [51], the authors propose to use Lagrangian particle dynam-
ics to segment the flows of a crowd; in this work the notion of a flow segment470

is equivalent to a group of people that perform a coherent motion. The mo-
tion of the crowd is captured by optical flow and a velocity field is generated;
subsequently, particles are inserted into the velocity field by means of a numer-
ical integration method, and their movements are used to construct a flow that
reveals coherent structures. We will refer to this method with LPD.475

Mehran et al. [52] proposed to apply streakline representation of flow to a
number of computer vision problems, and in particular they focus on crowd
analysis. They use streaklines to transport information about a scene by re-
peatedly initializing a fixed grid of particles at each frame, then moving both
current and past particles according to the optical flow results; this leads to a480

very accurate representation of the flow that allows to detect both spatial and
temporal changes. Finally, streaklines are passed to a watershed segmentation
scheme to cluster regions characterized by coherent motion. We will refer to
this method with Streaklines.
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GT LPD [51] Streaklines [52] PSH [53]

Accuracy – 0.592 0.559 0.621

Figure 6: Spectator crowd segmentation: qualitative and quantitative results. The violet and
yellow areas represent the two segments, corresponding with supporters of the different teams.
A third segment is ignored in this pictures since it is all the rest of the image and it represents
the background.

As a third method, we consider the one proposed by Conigliaro et al. [53],485

that combines instantaneous segmentation based on motion features and tempo-
ral regularization. The image is divided into a set of overlapping patches, each
one described by a 5-dim feature vector containing the position of the patch’s
centroid, the average intensity of the optical flow and the entropy of flow in-
tensity and directions. Gaussian clustering with automatic model selection [54]490

is used to compute the instantaneous segmentation of the scene. Hierarchical
clustering is then exploited to group together patches that, over all the frames,
consistently belong to the same instantaneous segments. This is achieved by
the Patch Similarity History matrix. We will refer to this method with PSH.

To ensure a fair comparison, we defined a shared test protocol. We sub-495

divided the scene into a set of patches (size 64×128px) forming a regular grid
with 50% of overlap. To generate ground truth, each patch is associated to the
individual’s bounding box with the highest overlapping area (if any); than each
patch is labeled based on the team the associated individual supports. The
rationale behind this is we want to segment different supporters groups, and500

we observed that, especially in concomitance with some context-specific events
(e.g. a goal, a good save, a foul), supporters of the same team behave very
similarly, and instead very differently than the supporters of the opposite team.
Each method was tested using the standard settings provided by the authors of
the original papers. To speed up the process and make the optical flow com-505

putation more robust, for our experiments we downsampled the original videos
taking into account 1 frame every 10.

Figure 6 shows both qualitative and quantitative results. The best perform-
ing algorithm is PSH, with a clustering accuracy of about 62%. This let us think
that the personal behavior is well described by the motion flow features, and in510

particular by the flow entropy computed over both intensity and directionality.
This consideration gives us a good starting point for the extraction of other high
level features, such as the excitement level of each segment end of the crowd as
a whole.

Once the crowd is segmented, it is possible to proceed with higher level515

analysis. As already showed in [53, 55], it is possible to estimate the excitement
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level either of a single segment or of the entire crowd by using motion flow
features. This kind of analysis can be very beneficial for many applicative
fields like marketing (e.g. to automatically detect the best moments to run
advertisements), security (e.g. a very excited crowd is more likely to start a520

brawl), entertainment (e.g. crowd excitement can be related with the quality of
the proposed show), etc.

In [21], Navarathna et al. proposed to use a motion history image to rep-
resent the long-time behavior of a single individual; then, the global behavior
of the crowd is represented as the entropy of a matrix, that accounts for the525

pair-wise similarity among all the single behaviors. This approach seems to
work very well in the testing environment, but it apprears to be sensitive to the
crowd size, since the dimension of the similarity matrix is quadratic with the
number of people.

For this reason, we present in this paper a holistic method which is indepen-530

dent from the crowd dimension. The excitement calculation process relies on
three motion flow features: the average flow intensity, and the entropy of flow
in terms of intensity and directions. Given a generic patch k, the flow intensity
I(k) is the average of the flow intensity of each pixel in the patch; intuitively,
this cue encodes how much movement characterizes the patch k. The last two535

features are based on the definition of entropy of a quantized physical quantity
inside the patch k, given by:

E(k) = −
d∑

i=1

p(ki) · log p(ki) (4)

where d is the total number of possible values assumed by the physical quantity,
and p(ki) is the realization probability of the specific value i. In this analysis
we are interested in the entropy of flow directions ED and flow intensity EI .540

Broadly speaking, ED describes the kind of movement in the patch: high en-
tropy values mean random directions, while low values address homogeneous
movements in the patch (a similar use of this entropic descriptor has been ex-
ploited in [56]).

After that, considering each segment r computed as explained above, a local545

level of excitement is estimated by computing the value:

Exc(r) =
I(r)× ED(r)

EI(r)2
(5)

over a short time interval (in the order of few seconds). In this equation I(r),
EI(r) and ED(r) are the average over all the patches belonging to the segment.
The idea behind this equation is that we consider as a high level of excitement
for a group of people an intense movement (high I(r)), with diverse directions550

(high ED(r)), computed in a coordinated fashion for all people belonging to
that region (low EI). Finally, we can compute the average of Exc(r) over time
to globally characterize the segment.

18



0.05

0.1

0.15

0.2

0.25

0.3

1

2

3

4

5

6

A B

Figure 7: Spectator segmentation and excitement level on two videos from two different
matches. Image A shows the spectator crowd during a goal event, while during the game-play
captured by image B, there are no salient events happening. The respective color-bars on the
right of the images indicate the excitement level.

3.4. Automatic summarization

Following the direction drawn in the spectator categorization task, we present555

an application that has the main goal to detect events taking place in the game-
field, that globally trigger the excitement of the spectator crowd. This is the
starting point for automatic video summarization, since we assume that events
that generates reactions in the spectator crowd are the ones that people at home
would be interested to see. Thus, the spectator feedback, automatically recog-560

nized, helps in highlighting exciting or crucial events that should be included in
a video summarization of the show.

The highlights detection method is based on the same flow features used
for the excitement estimation (i.e. I, ED and EI), and the excitement level
computed as in equation (5). All these features are computed separately for565

each frame and for each crowd segment. Replicating this process for all frames
gives a 4D signal which can be quantized in an unsupervised fashion by Mean
Shift. In this case we preferred to use mean shift instead of Gaussian clustering,
because pooling together the signal values of an entire sequence leads to highly
irregular distributions, that are better handled by non-parametric algorithms.570

After the quantization, looking at the mean values of each obtained cluster
may serve to get insight on the kind of event being modeled and happening on
the game-field. For example, clusters with high excitement may be originated
by an interesting event happened in the game that should be highlighted.

We conducted the experiments for highlights detection on the entire duration575

of a game period to identify the salient moments for the audience. All the videos
are analyzed by considering a time window of 10 seconds with 5 seconds of
overlap. The bandwidth parameter of mean shift was obtained experimentally,
and is the same for each test. Depending on the choice of bandwidth, different
actions of the game can be detected, such as goals or shots and saves.580

In Figure 8 we present the qualitative result of a full game period during the
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Figure 8: Spectator categorization and highlights detection of a full game period (about 32
minutes). The picture in the upper box shows the spectator categorization results of the full
video, where R1 and R2 represent the two segments related to supporters of different teams.
The color associated to each segment indicates its average excitement (i.e. the average over
all the individuals and the time span). Below, the temporal evolution of the excitement level
for both the segments are reported. The lower box reports highlights detection results by
means of mean shift approach: the yellow boxes represent salient events.

final match of the competition, which is Canada against Kazakhstan. During
this game period, the Canadian players scored two goals. The upper box in
the image shows the spectator categorization results both in terms of global
(i.e. averaged over time) and instantaneous excitement level. Here the colored585

regions on the image represent two different groups of supporters, one for each
team. The most excited region is the red one (Canadian supporters), with
an average excitement level of 0.47, instead the light-blue region (Kazakhstani
supporters) shows an average excitement level of 0.23. The two plots R1 and R2
show the temporal evolution of the excitement level respectively of Kazakhstani590

(R1) and Canadian (R2) supporters. From this spectator categorization, we
identify three events that globally triggered the excitement of the spectator
crowd (lower part of Figure 8). Two of them correspond to the goals scored
by the Canadian team, respectively at time 8:17 and 22:43. But the interesting
thing is the detection of an event at time 2:16, which correspond to a shot on595

goal by a Canadian player that was alone in front of the goaltender: this was
a great opportunity to score for the Canadian team. Furthermore, the plot R2
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shows that this shot on goal, was the most exciting moment for the Canadian
supporters. To be noticed also that R1 plot shows peaks in correspondence with
salient events detected for the Canadian supporters (R2), but the evolution of600

the excitement level is completely different for the two groups.

3.5. Group detection

In the recent years, many different works about automatic detection of
groups of interacting people has been presented [57, 58, 59, 60, 61, 62, 63, 64].
Unfortunately, most of the state of the art methods rely on the sociological con-605

cept of F-formation[65], which defines a group as the spatial co-presence of two
or more individuals, sharing common spaces with specific functions. In the case
of spectator crowds, this spatial arrangement is strictly forced by the configu-
ration of the standings and the ice-rink, thus enforcing specific people position
and orientation, unrelated to their social behaviour. For this reason, the state610

of the art methods for group detection are not applicable to our scenario.
To overcome the limitations given by the structural constraints, we present

here a baseline method that relies on a set of heuristic rules based on the ob-
servation of human behaviour in our dataset.

The general idea behind the baseline is that two persons, when they are615

interacting, tend to stay close and look at each other, independently from what
is happening around them. Following this intuition, we compute an interaction
score that is the average over all the frames of a weighting function that ac-
counts for the view frustum intersection of two individuals. Broadly speaking,
the interaction between two persons is more likely to occur when they look at620

each other, while it is unlikely to occur when they look in opposite directions.
Mathematically, the interaction score for individuals pl and pr is defined from:

I(pl, pr) =
1

T

T∑
t=1

w(θl(t), θr(t)) (6)

where pl and pr are two individuals seated next to each other respectively on
the left and right side (on the image plane), T is the total number of frames, t is
the current frame under analysis, θx(t) is the head orientation of px, x ∈ [l, r],625

at time t with the conventions presented in Section 3.2 where we only consider
4 classes (A=away, L=left, F=front, and R=right), and w(·, ·) is a weighting
function defined by the following look-up table:

θr
A L F R

θ l

A 0 0 0 0
L 0 0 0 1
F 0 0.5 0 0
R 0 0 0.5 0

Figure 9 shows some examples of relative head orientations and the corre-630

sponding output of the weighting function.
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Figure 9: Examples of relative head poses and associated scores of the weighting function (6).

Figure 10: Qualitative results of the group detection baseline. True positives (green) are
pair of individuals that are predicted as a group and claimed in the survey they actually are;
true negatives (yellow) are pairs of individuals that claimed they do not know each other and
predicted as no-group; false positives (red) are unrelated persons predicted as groups; and
false negatives (blue) vice-versa. (Best viewed in colors)

precision recall F1 accuracy

baseline 0.62 0.89 0.73 0.67

Table 5: Quantitative results for group detection baseline.

Experimentally, we estimated the head orientation by means of the CNN
algorithm presented in Section 3.2. The network has been re-trained with 4
classes defined as follows: classes left and right contain all the orientations
towards the specified direction (i.e. considering both left and far left as well as635

right and far right), class front accounts for all the people looking in the middle
of the ice-rink, while class away contains all the other cases (e.g. people looking
down, at the phone, behind, etc.)

Figure 10 reports qualitative results of the group detection baseline described
above, while quantitative results are in Table 3.5.640
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4. Conclusions

Based on the proposed, sociologically-founded taxonomy of crowds (Sec-
tion 1), which represents a first contribution of the article, we tackled the issue
of spectator crowd modeling, which is brand-new in computer vision, and which
presents specific challenges. To this aim, we created a novel dataset, S-Hock,645

which the paper has illustrated with the purpose of showing its usefulness for
testing many, diverse, and in some cases brand-new applications.

In particular, in the article we have focused on some low-level, traditional
tasks –people detection and head pose estimation– and three novel, high-level
challenges –spectator categorization, automatic summarization and group de-650

tection. In fact, on the one hand, we intended to underline the impact that
considering the spectator crowd scenario has on the domain of extant crowd
analysis algorithms, whereas, on the other hand, we wanted to offer a foretaste,
so to speak, of the numerous novel challenges that such a scenario poses.

Alongside those considered in the article, indeed, there are many other chal-655

lenges that remain open, and we deem S-Hock as a very good starting point
to address them. When considering spectator crowds, for instance, capturing
groups of people whose members hold pre-existing relationships (e.g. a family,
a group of friends) is certainly a hard task for the classical approaches of group
estimation, since they are usually based on proxemics principles, which are not660

usable when people occupy fixed positions. Similarly, capturing actions such as
pointing or clapping hands is difficult due to the large dimension of the crowd
and the dense distribution of the spectators – yet these are crucial actions to
understand crowd dynamics in the considered scenarios.

S-Hock is a richer crowd dataset than all other state-of-the-art ones, given665

that the latter usually annotate (or estimate, as in [66]) people’s position only,
do not encompass ground truth obtained from the crowd members, and hence
are viable only for tasks such as counting, tracking and event detection, as
in [67]. On the contrary, we are confident that S-Hock may trigger the design of
novel and effective approaches for the analysis of human action and interaction670

in public, crowded settings. Interesting, brand-new applications that can be
developed starting from S-Hock, for example, are the following: attention level
calculation, that is, detecting peaks of attention in the crowd or in some of
its segments; collective action detection and forecasting, which is particularly
intriguing in the considered context since people’s actions are intertwined both675

reciprocally –being different if a person knows his/her neighbors or if they are
strangers– and with the game actions on the field –how do people react when
the team they support scores a goal or looses the game?. Other challenges are
still to be thought. While we wish S-Hock would be a stimulus to such a future
endeavor, we would like to close by underlining that our own endeavor would680

have not been possible if not through interdisciplinarity.
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[57] H. Hung, B. Kröse, Detecting f-formations as dominant sets, in: Interna-
tional Conference on Multimodal Interfaces (ICMI), 2011, pp. 231–238.855

[58] M. Cristani, L. Bazzani, G. Paggetti, A. Fossati, D. Tosato, A. Del Bue,
G. Menegaz, V. Murino, Social interaction discovery by statistical analysis
of f-formations, in: British Machine Vision Conference (BMVC), 2011, pp.
23.1–23.12.

[59] F. Setti, O. Lanz, R. Ferrario, V. Murino, M. Cristani, Multi-scale f-860

formation discovery for group detection, in: IEEE International Conference
on Image Processing (ICIP), 2013.

[60] F. Setti, H. Hung, M. Cristani, Group detection in still images by f-
formation modeling: A comparative study, in: International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS), 2013, pp.865

1–4.

28

http://dx.doi.org/10.1145/1922649.1922653
http://dx.doi.org/10.1109/CVPR.2007.382977
http://dx.doi.org/10.1109/CVPR.2007.382977
http://dx.doi.org/10.1109/CVPR.2007.382977
http://dx.doi.org/10.1007/978-3-642-15558-1_32
http://dx.doi.org/10.1007/978-3-319-02714-2_9
http://dx.doi.org/10.1007/978-3-319-02714-2_9
http://dx.doi.org/10.1007/978-3-319-02714-2_9
http://dx.doi.org/10.1109/34.990138
http://dx.doi.org/10.1007/978-3-642-41190-8_56
http://dx.doi.org/10.1007/978-3-642-41190-8_56
http://dx.doi.org/10.1007/978-3-642-41190-8_56
http://dx.doi.org/10.1007/978-3-642-31479-7_14


[61] K. N. Tran, A. Bedagkar-Gala, I. A. Kakadiaris, S. K. Shah, Social cues
in group formation and local interactions for collective activity analysis,
in: International Conference on Computer Vision Theory and Applications
(VISAPP), Vol. 1, 2013, pp. 539–548.870

[62] W. Choi, Y.-W. Chao, C. Pantofaru, S. Savarese, Discovering groups of
people in images, in: European Conference on Computer Vision, 2014.

[63] F. Setti, C. Russell, C. Bassetti, M. Cristani, F-formation detection: Indi-
viduating free-standing conversational groups in images, PloS one 10 (5).

[64] S. Vascon, E. Z. Mequanint, M. Cristani, H. Hung, M. Pelillo, V. Murino,875

Detecting conversational groups in images and sequences: A robust game-
theoretic approach, Computer Vision and Image Understanding 143 (2016)
11–24.

[65] A. Kendon, Goffman’s approach to face-to-face interaction, Erving Goff-
man: Exploring the interaction order (1988) 14–40.880

[66] B. Zhou, X. Wang, X. Tang, Understanding collective crowd behaviors:
Learning a mixture model of dynamic pedestrian-agents, in: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2012.
doi:10.1109/CVPR.2012.6248013.

[67] B. Zhou, X. Tang, H. Zhang, X. Wang, Measuring crowd collectiveness,885

IEEE Transactions on Pattern Analysis and Machine Intelligence 36 (8)
(2014) 1586–1599. doi:10.1109/TPAMI.2014.2300484.

29

http://dx.doi.org/10.1109/CVPR.2012.6248013
http://dx.doi.org/10.1109/TPAMI.2014.2300484

	Introduction
	Data Collection & Annotation
	Applications
	People Detection
	Head Pose Estimation
	Spectator Categorization
	Automatic summarization
	Group detection

	Conclusions

