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Abstract

Methods from computational topology are becoming more and more popular in computer vision and have shown to improve the
state-of-the-art in several tasks. In this paper, we investigate the applicability of topological descriptors in the context of 3D surface
analysis for the classification of different surface textures. We present a comprehensive study on topological descriptors, investigate
their robustness and expressiveness and compare them with state-of-the-art methods including Convolutional Neural Networks
(CNNs). Results show that class-specific information is reflected well in topological descriptors. The investigated descriptors can
directly compete with non-topological descriptors and capture complementary information. As a consequence they improve the
state-of-the-art when combined with non-topological descriptors.
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1. Introduction

In recent years, methods for sparse and dense reconstruc-
tion of 3D scenes have progressed strongly due to the availabil-
ity of inexpensive off-the-shelf hardware like Microsoft Kinect
and the development of robust 3D reconstruction algorithms
(e.g. structure from motion techniques, SfM) [1, 2]. Thus,
the amount of available 3D data is rising constantly. Further-
more, the reconstruction accuracy is increasing strongly, which
enables 3D reconstructions with sub-millimeter resolution [3].
The high resolution enables the accurate description of the geo-
metric micro-structure of a surface, which opens up new oppor-
tunities for search and retrieval in 3D scenes, such as the recog-
nition of objects by their specific surface properties as well as
the distinction of different types of materials for improved scene
understanding.

The geometric micro-structure determines the haptic appear-
ance of a surface (e.g. in terms of roughness, waviness, and lay)
and is also referred to as surface texture1 [5, 6, 7]. The geomet-
ric structure of a surface is closely related to its topology and
thus, topological descriptors are promising candidates for its
representation. In this article, we investigate the capabilities of
topological analysis of describing and classifying 3D surfaces
according to their geometric micro-structure and present a first
extensive study on topological descriptors in this context.

Email addresses: m.zeppelzauer@fhstp.ac.at (Matthias
Zeppelzauer), bartosz.zielinski@uj.edu.pl (Bartosz Zieliński)

1Note that surface texture is different from the apparent texture or visual
texture of a surface which refers to the visual (radiometric) appearance of the
surface in terms of color variations, brightness, and reflectivity [4].

For our study we employ high-resolution 3D reconstruc-
tions of natural rock surfaces from the archaeological domain,
see Fig. 1a which exhibit different surface textures. We map the
surfaces to depth maps (Fig. 1b) [8] and analyze the maps in
a patch-wise manner. For each surface patch we extract topo-
logical descriptors and traditional non-topological descriptors.
Next, we train a classifier and try to predict the class of texture
from each patch. The result is a class label for each surface
patch. We employ precise maps with ground-truth labels (see
Fig. 1c) to evaluate the classification accuracy.

This article is an extended version of the work in [9] where
we reported first preliminary results for topological surface tex-
ture analysis. This article significantly extends this work to a
comprehensive and in-depth study on topological descriptors
for 3D surface analysis. We evaluate different extensions and
variants to the proposed topological descriptors and study in
detail their robustness and discriminativity. In particular the
contribution of this paper over the previous one is an investi-
gation of: (i) the sensitivity of the topological descriptors to
their computational parameters; (ii) the influence of different
normalization variants; (iii) the role of outliers in persistence
diagrams [10]; (iv) the extension of topological descriptors with
additional pre-filtering operations (v) the robustness and the ex-
planatory power of the descriptors and (vi) strategies to reduce
the dimension of the descriptors’ feature vectors. Moreover,
we verify the validity of our results on an extended large-scale
dataset [11]. To provide the complete picture of our analysis we
include the results from [9] in this paper.

Our study reveals that topological descriptors are robust 3D
surface descriptors which can compete and partly outperform
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Figure 1: 3D surface data: (a) the 3D point cloud of the surface; (b) the depth
projection of the surface; (c) ground truth labeling that specifies areas with
different surface texture (blue and green).

traditional (non-topological) descriptors. Moreover our investi-
gations clearly show that topological descriptors capture com-
plementary information to non-topological descriptors and that
this information is necessary to obtain peak performance in
classification. Remarkably, our results on the extended dataset
show that our combinations of topological and non-topological
descriptors yield a similar performance level (and partly even
higher performance) as deep learning in [11].

The remaining article is organized as follows. In Section 2
we review related work on 3D surface analysis and relevant
topological approaches in this context. Section 3 introduces the
investigated topological descriptors together with their proper-
ties and outlines our topological approach for surface texture
analysis. Section 4 summarizes the experimental setup and
Section 5 presents the study on topological descriptors together
with the obtained results. We summarize the major conclusions
of our study in Section 6.

2. Related work

Approaches for 3D surface analysis can be partitioned into
two classes: methods that operate in 3D space directly and
methods that operate on derived image-space representations.
The following sections review related work on both approaches.

2.1. Surface analysis in 3D space

The natural domain for the analysis of surfaces is the 3D do-
main. A popular approach is to analyze the mesh or point cloud
of a given surface reconstruction with local 3D surface descrip-
tors that describe the local geometry around a 3D point. Numer-
ous descriptors have been proposed for this purpose in recent

years. Johnson and Hebert propose spin images as local de-
scriptors for the dense description of meshes for object recogni-
tion in 3D scenes [12]. Darom and Keller extract SIFT features
from local depth images of a points’ neighborhood to model the
surface geometry around it [13]. Zaharescu et al. introduce a lo-
cal surface descriptor for meshes (MeshHOG) that can be com-
puted from an arbitrary scalar function (e.g. curvature) defined
over the surface [14]. Steder et al. propose the normal-aligned
radial feature (NARF) which captures local depth variations in
range data [15]. Frome et al. extend the well-known 2D shape
context descriptor [16] to 3D point clouds (3DSC) and show
that it outperforms spin images [17]. Rusu et al. propose two
local 3D point cloud descriptors, namely persistent point fea-
ture histogram (PFH) [18] and an accelerated version fast PFH
(FPFH) [19]. Both build upon the relations between surfels, i.e.
the combination of a point and its surface normal to describe the
surface geometry [20]. Tombari et al. propose a 3D descriptor
(SHOT) based on the point normals that is defined in a robust
local reference frame [21].

Local descriptors are particularly well-suited for the sparse
description of a surface, i.e. descriptors are computed at salient
feature points only. The analysis of 3D surfaces by their sur-
face texture - as investigated in this paper – requires the dense
analysis and representation of a surface. Previous experiments
have shown that local 3D descriptors are impractical for this
purpose, especially due to computational reasons, because de-
scriptors have to be computed at each surface point to obtain a
dense representation, which becomes highly demanding when
a point cloud has several millions of points [8].

2.2. Surface analysis in image-space
To circumvent the problems raised by 3D descriptors in the

context of dense surface analysis, Othmani et al. propose to
map 3D surfaces to image-space and then apply efficient image
analysis techniques there to process the projected surfaces [22].
Usually a 2D depth map is derived from the 3D surface (piece-
wise or globally, depending on the amount of curvature of the
surface) to obtain an image-space representation. If the surface
does not contain self-occlusions, the depth map completely rep-
resents the 3D surface, except for inaccuracies or losses in res-
olution due to rasterization [8].

The analysis of 3D surface texture in image-space can be
considered as texture analysis task on the depth map. Thus,
approaches of image texture analysis become applicable. Pop-
ular methods for image texture analysis include histograms of
vector quantized filter responses [23] and later generalizations
such as the bag-of-visual-words model for textures [24] and the
Fisher vector [25]. Recently, deep learning-based approaches
for texture analysis have been introduced for the problem of
image texture analysis [26], which outperform many existing
methods.

An alternative approach to texture analysis (both for image
texture and surface texture) is to consider the underlying data
(depth map in our case) as a geometric object and to analyze its
topological properties. For this purpose topological data anal-
ysis (TDA) is a promising approach which currently gains in-
creasing importance in data science. TDA provides methods
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to study qualitative properties of objects based on the theory of
size functions introduced by Frosini et al. [27, 28] and persistent
homology by Edelsbrunner et al. [29]. TDA methods have re-
cently been successfully applied to computer vision problems,
such as shape and texture analysis. Li et al. combine the bag-
of-features approach with persistence diagrams (PDs) for shape
retrieval [30]. Reininghaus et al. proposes an SVM kernel for
persistence diagrams to make them compatible with statistical
machine learning methods [31]. The authors apply topologi-
cal descriptors together with the novel kernel to shape retrieval
and texture classification in images. Another approach to lever-
age topological information for machine learning tasks is the
persistent image (PI) proposed by Adams et al. [32]. The PI
is a vector-based representation of PD which is built upon ear-
lier work on size functions [33, 34]. The PI can be employed
directly as a feature vector in conventional machine learning
techniques and can easily be combined with other descriptors.

Our work mainly builds upon the approach of Adams et al.
In our study we investigate different topological descriptors, in-
cluding PI, for the domain of surface texture analysis. The dif-
ference to the investigations in [31] and [32] is that we try
to enrich the PI representation by pre-filtering, normalization,
and feature selection and that we analyze in-depth the infor-
mation captured by the PI descriptor, its redundancy and dis-
criminativity. Furthermore, we investigate the sensitivity of the
representation to its computational parameters. Beyond this we
combine them with non-topological state-of-the-art descriptors
to investigate synergy effects.

3. Topological approach

3.1. Overview

Fig. 2 provides an overview of the approach that we propose
for the analysis of 3D surfaces by persistence homology fea-
tures. The input 3D surfaces are first projected to image-space
to obtain depth maps as proposed in [8]. Next, depth maps are
z-standardized (see Section 3.5) and split into square patches.
Patches are normalized (optional step, see Section 3.5) and pre-
filtered by Schmid or MR filters or CLBP (optional step, see
Section 3.4). Next, topological descriptors are extracted as de-
scribed in Sections 3.2 and 3.3. Finally feature selection is per-
formed (optionally) before patch-wise classification to decrease
the dimensionality of the feature vector and to reduce redundan-
cies. The result is a class label for each surface patch, which
were mapped back to the surface in Fig. 2 for illustration.

In the following, we describe the individual components of
the approach and start with its core component, namely the per-
sistent homology.

3.2. Persistent homology

By mathematical standards, topology with its 120 years of
history, is a relatively young discipline. It grew out of Poincares
seminal work on the stability of the solar system as a qualita-
tive tool to study the dynamics of differential equations without
explicit formulas for solutions [35, 36, 37]. Due to the lack of

useful analytic methods, topology soon became a purely theo-
retical discipline. However, in the last few years we observe
a rapid development of topological data analysis tools, which
open new applications for topology.

Topological spaces appearing in data analysis are typically
constructed from small pieces called cells. A natural tool in the
study of multidimensional images with topological methods are
hypercubes (points, edges, squares, cubes etc.), e.g. a pixel in
a 2-dimensional image is equivalent to a square, a voxel in a
3 dimensional volume is equivalent to a cube. Hypercubes are
building blocks for structures called cubical complexes. Such
representations give topology a combinatorial flavour and make
it a natural tool in the study of multi-dimensional data sets.

Intuitively, the rank of the nth homology group, the so called
nth Betti number denoted by βn, counts the number of n-dimensional
holes in the topological space. In particular, β0 counts the num-
ber of connected components. As an example consider the im-
age of the digit 8. In this image there is one connected com-
ponent and two holes, hence β0 = 1 and β1 = 2. For a hollow
sphere we have β0 = 1, β1 = 0, β2 = 1. For a tube in a tire
(torus) we have β0 = 1, β1 = 2, β2 = 1.

Betti numbers do not differentiate between small and large
holes. In consequence, the holes resulting from the noise in
the data cannot be distinguished from the holes indicative for
the nature of the data. For instance, in a noisy image of the
digit 8 one can get easily β0 > 1. A remedy for this drawback
is persistent homology, a tool invented at the beginning of the
21st century [29]. Persistent homology tracks the holes from
birth to death when the topological space is gradually built by
adding cubes in some prescribed order.

If X is a cubical complex, one can add cubes step by step.
Typically, the construction goes through different scales, start-
ing from the smallest pieces. However, in general an arbitrary
function f : X → R, called the Morse function or the measure-
ment function, may be used to control the order in which the
complex is built, starting from low values of f and increasing
subsequently. This way we obtain a sequence of topological
spaces, called a filtration,

∅ = Xr0 ⊂ Xr1 ⊂ Xr2 ⊂ · · · ⊂ Xrn = X,

where Xr := f −1((−∞, r]) and ri is a growing sequence of values
of f at which the complex changes. As the space is gradually
constructed, holes are born, persist for some time and eventu-
ally may die. The length of the associated birth-death inter-
vals (persistence intervals) indicates if the holes are relevant or
merely noise. The lifetime of holes is usually visualized by
the persistence diagram (PD). Persistence diagrams constitute
the main tool of topological data analysis. They visualize ge-
ometric properties of a multidimensional object X in a simple
two-dimensional diagram.

Fig. 3a shows the depth map of a 3D surface where colors
correspond to different depths (blue refers to low depth, yel-
low to high depth). In this case pixels are represented as 2-
dimensional cells of a cubical complex. For the complex we
can obtain a filtration Xr using a measuring function which has
a value for a 2-dimensional cube equal to depth (pixel color).
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Figure 2: Overview of the proposed approach.
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Figure 3: Example surface patch with derived topological descriptors: (a) the
depth map of the original 3D surface; (b) the corresponding persistent diagram;
(c) and the persistence image (resolution 16 × 16 pixels, σx = σy = 0.001 and
exponential weighting function g).

For a lower dimensional cell (a vertex or an edge) we can set
the function value as a minimum from the higher-dimensional
neighborhoods of the cell. Fig. 3b shows the persistence dia-
gram for Xr.

The PD is an expressive representation of the surface to-
pography. Unfortunately, the data structure of the PD is com-
plex and cannot easily be combined with traditional machine
learning methods which require fixed-length input vectors. This
hinders the application of computational topology to computer
vision and machine learning tasks. There is still no specific an-
swer on how and when the tools of computational topology and
machine learning should be used together.

A first attempt to obtain a fixed-length descriptor of a topo-
logical space filtration is to compute elementary statistics of
persistence intervals (or equivalently persistence diagrams). Let

I := {[b1, e1], [b2, e2], . . . , [bn, en]}

be a set of persistence intervals. Let D := {di := (ei−bi)}ni=1 be a
set of the interval lengths. We build an aggregated descriptor of
D, denoted by PD AGG, using following measures: number of

elements, minimum, maximum, mean, standard deviation, vari-
ance, 1-quartile, median, 3-quartile, and norms

∑ √
di,

∑
di,

and
∑

(di)2. The result is a 12-dimensional feature vector.

3.3. Persistence image

Aside from the PD AGG descriptor described above, which
can be used with standard classification methods, there are also
attempts to use PD directly with appropriately modified classi-
fiers. Reininghaus et al. [31] proposed a multi-scale kernel for
PDs, which can be used with a support vector machine (SVM).
While this kernel is well-defined in theory, in practice it be-
comes highly inefficient when the number of training vectors
becomes large, as the entire kernel matrix must be computed
explicitly (note that this applies to all kernel-based methods).
There are alternative methods that aim at representing the PD
as a vectorial representation. An example is a persistence land-
scape (PL) [38] which is a functional representation of a PD.
The representation lies in a Banach space and is stable. An-
other approach to obtain a vectorial representation from PD is
persistent image introduced by Adams et al. [32], which accord-
ing to Makarenko et al. [39] is especially well-suited for texture
data.. Persistence image (PI) is based on concepts known from
the theory of size functions [33, 34]. The method scales well
to large training data. In contrast to PL, PI lives in Euclidean
space, which makes is directly compatible to a broad set of ma-
chine learning techniques.

The PI is derived by mapping a PD to an integrable function
Gp : R2 → R, which is a sum of Gaussian functions centered at
each point of the PD. Taking a discretization of a subdomain of
Gp defines a grid. An image can be created by computing the
integral of Gp on each grid box, thus defining a matrix of pixel
values. Formally, the value of each pixel p = (x, y) within a PI
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Figure 4: PIs for patch from Fig. 3a computed with different parameter values:
(a) original PI from Fig. 3b; (b) resolution 64× 64 pixels instead of 16× 16; (c)
σx = σy = 0.01 instead of 0.001; (d) no weighting function.

is defined by the following equation:

PI(p) =

∫∫
p

∑
[bi,ei]∈I

g(bi, ei)
1

2πσxσy
e
− 1

2

(
(x−bi )

σ2
x

+
(y−ei )

σ2
y

)
dy dx, (1)

where g(bi, ei) is a weighting function, which depends on the
distance from the diagonal. Points close to the diagonal are
usually considered as noise and therefore get lower weights by
the function g. Variables σx and σy are the standard devia-
tions of the Gaussians in x and y direction. The resulting image
(see Fig. 3c) is vectorized to achieve a standardized vectorial
representation which is compatible to a broad range of machine
learning techniques. The pixels under the diagonal are not taken
into account in case of PI (they all are zeros).

The advantage of PIs compared to aggregated PD descrip-
tors is that the spatial information from the PD are preserved,
which may lead to higher classification accuracies [32]. How-
ever, the computation of PI requires numerous parameters like
the weighting function g, σx and σy of the employed Gaussians
and the final image resolution. Changes in values of the param-
eters may result in strongly different PIs, which is illustrated in
Fig. 4. It is a priori not clear which parameters yield the best
representation for a specific task and how robust PI is to these
parameters in practice.

3.4. Pre-filtering

Different types of pre-processing can be applied to the in-
put data before computing topological descriptors, in order to
extract more complex topological information. We take into
consideration the Schmid filter bank [40] and the Maximum
Response (MR) filter bank [41], as they are very popular and
rotation invariant. Moreover, robust texture descriptors such
as Local Binary Patterns (LBP) or Complete LBP (CLBP)[42]
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Figure 5: The patch from Fig. 3a preprocessed with: (a) Schmid filter of size =

49, σ = 6 and τ = 1; (b) MR filter of size = 49, σx = 2 and σy = 6; (c) CLBP
of type riu2, n = 8 and r = 3; together with their PIs (d-f).

may be applied before topological analysis as frequently ob-
served in related work [31].

The patch from Fig. 3a processed with Schmid filters, MR
filters, and with CLBP is presented in Fig. 5, together with the
respective PIs. It can be observed that different pre-processing
leads to strongly different representations. Again, it is not clear
which representation is most robust and beneficial with respect
to classification accuracy.

3.5. Normalization

Especially when working with depth maps normalization
plays an important role for persistent homology analysis. The
input depth maps have different depth value ranges depending
on the characteristics of the 3D surfaces (e.g. deep valleys and
high hills versus flat surfaces). Normalization can be performed
at a global or local level.

Global normalization:. To compute comparable topological de-
scriptors the depth maps need to be mapped to a similar value
range first, i.e. the distribution of the depth values needs to be
standardized. We apply z-standardization to the depth values of
each depth map separately. As a result all depth maps have zero
mean and unit variance and thus cover a similar value range
(except for outliers).

Local normalization:. Aside from standardizing the value dis-
tribution of the depth maps additional normalization can be ap-
plied locally across the individual patches of the surface. Dif-
ferent types of normalization add different invariants to the re-
sulting feature representations which may result in more robust
classification. By performing a patch-based normalization we
remove the global reference between the patches, i.e. each
patch’s value distribution is normalized individually, indepen-
dently from the neighboring patches. Thus, after normalization
the absolute depth reference is removed. What remains is pure
topological surface information. This means that two patches
with similar topological structure at different depth levels of
the surface become similar and are represented by similar PDs.
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Figure 6: The effect of local normalization: two patches (a) and (b) which
are located at different depth levels of the surface together with their PIs (c)
and (d). The two patches become more similar after applying local min-max
normalization (e) and (f). A similar effect is observed for the corresponding PIs
(g) and (h).

Without patch-based normalization the absolute depth informa-
tion is retained and the two patches yield different (shifted) PDs,
see Fig. 6 for an example.

Given a patch P, different types of local normalization can
be applied, such as:

• z-standardization: P = (P − mean(P))/std(P),
• min-max normalization: P = (P − min(P))/(max(P) −

min(P)) and
• positional standardization: P = (P−median(P))/mad(P),

where std refers to the standard deviation and mad to the me-
dian absolute deviation.

3.6. Stability

A crucial property of persistent homology is the stability of
persistence diagrams. Briefly speaking, we expect that when

a measurement function (in our case represented by a patch)
changes sligthly, then its persistence diagram do not change too
much as well. There are two major metrics in PDs space: bot-
tleneck distance (dB) and Wasserstein distance (dW ). Cohen-
Steiner et al. prove in [43, 44] results about stability of PD
under dB and dW metrics for classes of the measurement func-
tions. Especially, by [44, Wasserstein Stability Theorem] we
know that the computation of persistence diagrams for Lips-
chitz functions is stable under dW .

In the case of depth map it is easy to observe that the mea-
surement function is Lipschitz (the size and pixel values are
bounded). In [32] it is proven that PIs are stable under dW , as
well. Hence, we consider the process of obtaining PIs from
surface patches being stable in theory. In our experiments we
analyze this the stability of the resulting descriptors in practice.

4. Datasets and evaluation protocol

For our experiments, we employ a recently released dataset
of high-resolution 3D reconstructions from the archaeological
domain with a resolution of approximately 0.1 mm [11]. The
dimensions of the scanned surfaces ranges from approx. 20×30
cm to 30 × 50 cm. The reconstructions represent natural rock
surfaces that exhibit human-made engravings (so-called rock
art). The engravings represent animals, symbols and figures
that have been engraved by humans in ancient times. See Fig. 1
for an example surface. The engraved regions in the surface
exhibit a different surface texture than the surrounding natural
rock surface. In our experiments we aim at automatically sepa-
rating the engraved areas from the natural rock surface.

For each surface a precise ground truth has been generated
by domain experts that labels all engravings on the surface.
The dataset contains two classes of surface topographies: class
1 represents engraved areas and class 2 represents the natural
rock surface. Class priors are imbalanced. Class 1 represents
approximately 19% of the data and is thus underrepresented. A
corresponding ground truth labeling is depicted in Fig. 1c.

In total 26 high-resolution surface reconstructions have been
acquired as described above. To accelerate experiments, we
form two datasets of different sizes:

Small-scale dataset: . The small scale dataset contains depth
maps from 4 surface reconstructions with a total number of 12.3
millions of points. This dataset has also been employed for the
experiments in [8] and thus represents a baseline dataset. We
employ this dataset for our initial experiments to reduce com-
putation time and to enable a broader set of experiments in our
evaluation. Furthermore, by using this dataset our results be-
come comparable to previous work. In our evaluation the depth
maps of the first two surface reconstructions are employed for
training and the remaining two surfaces represent the indepen-
dent evaluation set.

Large-scale dataset: . This dataset contains depth maps of all
the 26 surface reconstructions that have been acquired. This
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Figure 7: Synthetic dataset: “natural” and “engraved” surfaces without noise
(a-c); the same surfaces with noise (d-f); and their PIs (g-i). PI generated for
the “natural” surface is unimodal, while PIs generated for “engraved” surfaces
are bimodal and less coherent.

dataset is employed in our evaluation to demonstrate the gener-
alization ability of the proposed approach and to verify if con-
clusions drawn from the small-scale dataset can also be trans-
ferred for the larger and more complex one. For classification
experiments we randomly select 13 surfaces as a training set
and employ the remaining ones for evaluation.

We further perform experiments on synthetic data to pro-
vide an experimental proof-of-concept for our topological ap-
proach.

Synthetic dataset: . The synthetic dataset serves as a proof-
of-concept to simulate the process of engraving a natural rock
surface and the effect of the resulting surface topographies on
the topological descriptors. We start with an ideally flat surface
that represents a “natural” rock surface without any irregular-
ities, see Fig. 7a. All values of this surface are constant and
equal to zero. In Figs. 7b and c we simulate differently dense
and coarse engravings by adding negative Gaussian distribu-
tions to the flat surface. The spacing between Gaussians equals
20 ± 5 and 30 ± 5 pixels. In a next step, we add noise to all
surfaces to simulate natural irregularities and effects of long-
time exposition of the surfaces to weather. Noise is generated
using the surface generator of [45]2. Fig. 7d shows the result-
ing noise, i.e. the simulated flat natural surface. We further add
the same noise to the simulated engraved surfaces from Fig. 7b
and c, see Figs. 7e and f. The depth values of all surfaces are
z-standardized.

2implementation available from: http://www.mysimlabs.com/

surface_generation.html, last visited June 2017

Evaluation Protocol. Our evaluation protocol is defined as fol-
lows: from the input depth maps, we extract overlapping square
image patches which are input to feature extraction (either for
topological features or non-topological features). The resulting
feature vectors for each patch are then input to classification.
The classification performance is measured by the Dice Simi-
larity Coefficient (DSC). DSC measures the matching between
the ground truth and the predicted class labels, i.e. the mutual
overlap between an automatic labeling X of a depth map and a
manual (ground truth) labeling Y:

DSC(X,Y) =
2|X ∩ Y |
|X| + |Y |

.

DSC is between 0 and 1, where 1 means a perfect classification.
For each classification experiment we first select a subset S i

of patches from the training set T . Next, we estimate suitable
classifier parameters by 5-fold cross-validation on the subset S i.
With the optimized parameters we train a classifier on the entire
subset S i. This classifier is finally tested on the evaluation set.
There is no parameter tuning on the evaluation set.

Each classification experiment is repeated 10 times for dif-
ferent randomly selected subsets S i from the training set T . In
each repetition other patches from the training set T are selected
and thus the actual training data varies over the 10 repetitions.
The result are 10 classification results (DSC values) for each ex-
periment. We report the mean and the standard deviation over
all 10 repetitions. By conducting each classification experiment
with different subsets of the training set we reduce the depen-
dency of our results on the training data.

As mentioned above, the class priors in our dataset are im-
balanced. Skewed datasets pose problems to most classifica-
tion techniques and often yield suboptimal models as one class
dominates the other classes. A classifier especially designed
for imbalanced datasets is Random Undersampling Boosting
(RUSBoost) [46]. RusBoost builds upon AdaBoost [47] which
is an ensemble method that combines the weighted decisions
of weak classifiers to obtain a final decision for a given input
patch. RUSBoost extends this concept by a data sampling strat-
egy that enforces similar class priors. During each training it-
eration the majority class in the training set is undersampled
in a random fashion to balance the resulting class priors. In
this manner, the weak classifiers can be learned from balanced
datasets without being biased from the skewed class distribu-
tion. In previous experiments RUSBoost has already achieved
robust results and high classification performance and has out-
performed among others cost-sensitive SVMs [48] with linear
and RBF kernels which are also suitable for imbalanced data.

The code used in our study was implemented in Matlab.
Most of the descriptors were extracted with VLFeat library [49],
except for PD AGG and PI which were computed with the CAPD::
RedHom library [50, 51] with the PHAT [52, 53] algorithm for
persistence homology.

5. Experiments and results

We first investigate the expressive power of topological de-
scriptors for our synthetic data set and then perform a compre-

http://www.mysimlabs.com/surface_generation.html
http://www.mysimlabs.com/surface_generation.html
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hensive study on the robustness and expressiveness of the topo-
logical descriptors for the analysis of real-world 3D surfaces.
We investigate different variants of their computation and com-
pare them with traditional non-topological descriptors. Finally,
we investigate the effect of combining topological with non-
topological descriptors. For each set of experiments we first
describe the experimental setup and the investigated aspects in
the context of the experiment and then report on the obtained
results. Unless otherwise stated the experiments on the 3D re-
constructions were performed on the small-scale dataset.

5.1. Experiments on synthetic data

We generated PI descriptors for the synthetic surfaces us-
ing the baseline configuration (see Tab. 1). The PI generated
for the natural surface in Fig. 7g shows a bright cluster in the
center of PI. This is plausible, because most of the holes are
born and die at the same time. The PIs of the two engraved
surfaces in Figs. 7h and i exhibit a completely different spatial
distribution. The reason is that there are two types of holes on
the surfaces. One group of holes corresponds to the natural ir-
regularities (noise) and the other one to the engravings. Holes
from both groups are born and die at different times. Thus the
PIs become bimodal. This is strongly different from the natural
surface for which PI is unimodal and more coherent.

These experiments demonstrate that the topological descrip-
tors capture different surface topographies well. In the follow-
ing sections we analyze real-world 3D surfaces and perform
a detailed analysis of topological and non-topological descrip-
tors.

5.2. Topological baseline descriptors

In an initial experiment we extract topological descriptors
which serve as a baselines for later comparison. From the depth
maps in the training and evaluation sets we extract topolog-
ical descriptors in a patch-based manner. The patch size is
128×128 pixels (i.e. 10.8×10.8 mm) and the step size between
two patches is 16 pixels (1.35 mm). The baseline descriptors in-
clude: (i) aggregated descriptors from the persistence diagram
(PD AGG), see Section 3.2 and (ii) descriptors obtained from
the persistence image (PI), see Section 3.3.

For both descriptors we select those parameters for which
they have yielded best results in our previous investigation [9].
See Tab. 1 for the parameter selections for the baseline config-
urations and an overview of all possible parameter values.

PD AGG results in an 12-dimensional feature vector (see
Section 3.2), while the feature vector derived from PI has a di-
mension D of 136 which originates from the fact that all val-
ues under the diagonal are zero and are skipped. Thus, D =

(R2 + R)/2 where R refers to the resolution of the PI (R = 16 for
the baseline configuration).

As already mentioned in Section 3.5 the input depth maps
have different depth value ranges and are z-standardized to make
different surfaces comparable. After z-standardization the depth
maps have zero mean and unit variance and thus cover a sim-
ilar value range (except for outliers). Nevertheless we unify
the PDs by defining a parameter “diagram limits” as an interval

Descriptor Parameter Possible values Baseline configuration
PD AGG Local normalization {none, z-std, p-std, minmax} none

Diagram limits [min, max] [-5, 5]
Outlier removal {yes, no} no
Mapping {none, CLBP} none
Pre-filtering {none, Schmid, MR} none

PI Local normalization {none, z-std, p-std, minmax} none
Diagram limits [min, max] [-5, 5]
Sigma R+ 0.001
Resolution N+ 16
Weighting {none, linear, exponential} none
Outlier removal {yes, no} no
Mapping {none, CLBP} none
Pre-filtering {none, Schmid, MR} none

Table 1: Topological descriptors, their computation parameters and the speci-
fication of the baseline configuration. The abbreviations “z-std” stands for z-
standardization, “p-std” for positional standardization, and “minmax” for min-
max normalization.

Descriptor DSC
PD AGG 0.655 ± 0.012
PI R = 8 R = 16 R = 32 R = 64

σ = 0.00025 0.701 ± 0.003 0.729 ± 0.003 0.732 ± 0.002 0.725 ± 0.007
σ = 0.0005 0.712 ± 0.005 0.730 ± 0.002 0.731 ± 0.004 0.730 ± 0.003
σ = 0.001 0.722 ± 0.006 0.733 ± 0.003 0.734 ± 0.004 0.735 ± 0.004
σ = 0.002 0.723 ± 0.002 0.728 ± 0.003 0.730 ± 0.003 0.730 ± 0.003

Table 2: DSC obtained for PD AGG and PI with various resolutions and sig-
mas. Numbers in bold refer to the baseline descriptors.

[min,max]. Both values [min,max] define the axis limits of the
underlying PD. We set these values to [−5, 5] which can safely
be done as after z-standardization the depth values most likely
lie in the interval [−5, 5] except for individual outliers. Note
that if patch-based normalization is used (see Section 3.5), the
diagram limits need to be adapted according to the type of nor-
malization which may change the depth value range, e.g. in the
case of min-max normalization depth values are moved to the
interval [0, 1].

The baseline configuration of PD AGG yields a DSC of
0.655±0.012. The baseline for PI outperforms PD AGG with a
DSC of 0.733±0.003. A reason for the better performance of PI
is that PI preserves spatial information from the PD as already
mentioned in Section 3.3 while PD AGG captures only overall
statistics. We repeat each experiment 10 times with different
training data (see Section 4 for details). The standard deviation
across all the 10 experiments is low (0.012 and 0.003) which
shows that the dependency on the training data is low as well
for both descriptors.

5.3. PI with different resolutions and sigmas

To investigate the sensitivity of resolution and sigma for the
computation of PI, we extract PIs for different resolutions (8,
16, 32, 64 pixels) and standard deviations (0.00025, 0.0005,
0.001, 0.002). The remaining parameters of the baseline con-
figuration remain constant.

The results are presented in Tab. 2. The performance of the
baseline descriptors is highlighted bold. Results show that the
sensitivity of PIs to both parameters is low. With increasing res-
olution the performance slightly improves (especially by going
from 8x8 to 16x16 pixels). Higher resolutions do not provide
significant improvements. Since the computation time grows
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quadratically with resolution it must be stressed that it is desir-
able to keep the resolution as small as possible.

Experiments for different sigmas show that the best results
are obtained with σ = 0.001 independently from the resolu-
tion. Thus both parameters can be optimized independently
from each other which saves computation time in parameter
tuning and model selection in practice.

5.4. Different normalization variants

We perform experiments with different normalization vari-
ants with PI and PD AGG and compare them to the baseline
feature configurations. Variants include:

1. No normalization at all: we do not provide diagram lim-
its for the computation of the PD. Thus each PD adapts
to the value range of the underlying image patch and thus
PD AGG and PI adapt completely to the value range.

2. Globally defined diagram limits: for each input patch the
same diagram limits for PD are applied. This corresponds
to the baseline features.

3. Patch-based normalization with z-standardization: each
input patch is z-standardized individually before feature
extraction.

4. Patch-based normalization with positional standardiza-
tion: same as above with positional standardization.

5. Patch-based normalization with min-max normalization:
same as above with minmax normalization.

The first variant demonstrates what happens if we apply the
topological features directly on the data without any adaptions
and is expected to represent a lower bound of performance. In
variant 2 the depth relations (i.e. the absolute depth differences)
between patches are retained. In variants 3-5 depth relations
between patches are removed and the only the pure topological
information inside each patch is retained.

Results for the different normalization variants are presented
in Fig. 8. The best accuracy is obtained with globally defined
diagram limits, which preserve the depth relations between the
patches. Applying no normalization at all is suboptimal for PI.
The three patch-based normalization variants all yield lower re-
sults. This shows that the depth relations between patches are
important for the classification task.

Interestingly, positional standardization which is robust to
outliers in the depth distribution leads to the weakest results.
This indicates that the outliers in the distribution are of high
importance for the task.

Due to the different normalizations the above descriptors
(especially variant 2 and the patch-based normalization vari-
ants) may represent complementary information that may be
beneficial in combination. To investigate this further, we eval-
uate different combinations of PD AGG and PI with different
normalization types. We select patch-based z-standardization
in the following experiments. Finally, we investigate the effect
of combining PI with PD AGG (with similar and different nor-
malizations). For the combination of features we concatenate
the respective feature vectors before feeding them into the clas-
sifier (early fusion). Results are summarized in Tab. 3.

global
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Figure 8: The effect of different normalization methods for PI (yellow line,
square markers) and PD AGG (orange line with circular markers). Patch-based
normalizations (z-std, p-std, and min-max) are outperformed by global normal-
ization. Applying no normalization at all (first experiment) is not beneficial for
3D surface analysis.

Descriptor(s) Normalization DSC
PD AGG Global limits (baseline) 0.655 ± 0.012
PD AGG Global limits + z-std 0.671 ± 0.008*
PI Global limits (baseline) 0.733 ± 0.002
PI Global limits + z-std 0.735 ± 0.004
PI+PD AGG Global limits (baselines) 0.730 ± 0.003
PI+PD AGG z-std 0.723 ± 0.005
PI+PD AGG Global limits + z-std 0.735 ± 0.002*

Table 3: DSC for combining PI with PD AGG (with the same and different
normalization types). Asterisks (*) correspond to results significantly better
than corresponding baseline topological descriptors with p < 0.05.
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Figure 9: The effect of outliers on the PI. A PD containing 4 sample points
[−2,−1.5], [−1,−0.5], [0, 0.5] and [3, 6] (a) and the corresponding PIs gen-
erated without (b) and with (c) outlier removal, with diagram limits [−5, 5].
Although the point [3, 6] lies outside of the domain of the PI (and is thus con-
sidered an outlier), the Gaussian centered around it still extends into the domain
of the PI when outliers are not explicitly removed.

The only result in Tab. 3 where the combination of different
normalized descriptors improves results is for PD AGG (DSC
increases to 0.671 ± 0.008 with p < 0.053). In case of PI only
a small improvement by 0.002 is observed which is not signif-
icant. Interestingly, the combination of PI with PD AGG does
not improve results over the baseline of PI alone. A reason for
this may be that PI implicitly captures the information that is
represented in PD AGG.

5.5. Outlier removal

Outliers are usually considered as unwanted artifacts. In
persistence homology, however the role of outliers is different.
Outliers in the PD, i.e. points with a large distance to the diag-
onal, are usually considered as the most meaningful and strong
topological components of the underlying data.

In our approach outliers are those points in the PD which
extend the pre-defined diagram limits. There are two alter-
natives: to keep them or to remove these outliers completely
from the further computation. For the two investigated topolog-
ical descriptors this has different consequences. In the case of
PD AGG the outliers are simply included in the derived statis-
tics, which is the same as extending the diagram limits to the
farthest outliers. For PI this means that although the outliers lie
outside of the domain of the PI the Gaussian centered around an
outlier during PI construction may still extend into the domain
of the PI (see Fig. 9c).

We compare the effect of outlier removal by computing re-
spective variants of our baseline features. The results show that
removing outliers decreases results for PI from 0.733±0.003 to
0.731 ± 0.003 and for PD AGG from 0.655 ± 0.012 to 0.639 ±
0.011. In case of PD AGG the decrease is significant with
p < 0.05). This indicates that outliers play an important role
for the topological descriptors.

5.6. Weighting in PI computation

The original formulation of PI includes a weighting func-
tion for the individual Gaussian components which grows ex-
ponentially with distance to the diagonal of the PD (function g
in Equation 1 in Section 3.3). The intuition behind this is to

3Statistical significance is computed with the Wilcox signed rank test, as
most of the samples do not pass the Shapiro-Wilk normality test.

emphasize stronger topological components in the PD (further
away from the diagonal) and to attenuate the influence of noise
which is often located close to the diagonal. Previous experi-
ments have shown that the weighting is in practice not always
beneficial [9]. To further investigate the role of weighting in
the PI computation, we compare the performance of PI with
different weighting functions namely: constant weighting, lin-
ear weighting and exponential weighting.

Experiments reveal that weighting significantly decreases
performance with p < 0.005: from 0.733 ± 0.003 to 0.714 ±
0.008 in case of linear weighting and to 0.715 ± 0.007 in case
of exponential weighting. Best results are obtained when all
Gaussians are equally weighted. This indicates that short inter-
vals close to the diagonal play an important role in the context
of surface texture description. This contradicts with the origi-
nal assumptions made in the design of PI. We investigate this
aspect further in Section 5.13.

5.7. Pre-filtering

We investigate different ways to pre-filter the surface patches
before extracting topological features. This has recently been
proposed to obtain more robust and expressive representations [30,
31]. We employ three different methods for pre-filtering (as de-
scribed in Section 3.4): (i) Schmid filter bank [40], (ii) MR filter
bank [41] and (iii) CLBP encoding [42].

For MR and Schmid filter banks we employ the default pa-
rameters proposed by the respective authors. The only excep-
tion is that in case of Schmid filter banks we use two times
smaller τ, as in preliminary experiments there is hardly any dif-
ference in the filter responses for τ > 2. Each patch is filtered
with all filters from the respective filter bank. For each filtered
patch topological features are extracted separately and are then
concatenated into one high-dimensional feature vector.

Additionally, we extract CLBP features [42] from the raw
patches as proposed in [30] and [31] and then extract topo-
logical descriptors from the CLBP S and CLBP M maps. For
CLBP computation we employ the implementation of [54] with
different encodings: rotation invariant LBP (ri) and rotation
invariant uniform LBP (riu2) as well as different numbers of
neighborhood samples n = {8, 16} and different radii r = {3, 5}.

The results of experiments are presented in Tab. 4. It can be
observed that prefiltering with Schmid and MR filter banks does
not improve performance, both for PD AGG and PI. CLBP,
however, improves DSC significantly in case of PD AGG (from
0.655±0.012 to 0.708±0.005, p < 0.01 and CLBP with “riu2”
encoding, r = 5 and n = 8). The effect of pre-filtering is further
analyzed in Section 5.12. From the experiments so far it seems
that for PI the best strategy is to apply it on the raw data di-
rectly, while for PD AGG which are much simpler and coarser
descriptors the additional pre-filtering can be beneficial.

Finally, we combine our baseline features with the respec-
tive Schmid, MR and CLBP filtered variants by early fusion
(concatenation) to investigate if the descriptors can benefit from
each other. Experiments show that most of the combinations de-
crease performance (see Fig. 10), which is consistent with the
pre-filtering results presented above. The only positive effect in
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Descriptor Pre-filtering DSC
PD AGG (baseline) 0.655 ± 0.012
PD AGG Schmid 0.643 ± 0.023
PD AGG MR 0.607 ± 0.044

n = 8 n = 16
PD AGG CLBP riu2 r = 3 0.671 ± 0.004** 0.674 ± 0.009**

CLBP r = 5 0.708 ± 0.005** 0.678 ± 0.008**
CLBP ri r = 3 0.697 ± 0.006** 0.670 ± 0.019*
CLBP r = 5 0.700 ± 0.006** 0.687 ± 0.006**

PI (baseline) 0.733 ± 0.002
PI Schmid 0.702 ± 0.007
PI MR 0.698 ± 0.004

n = 8 n = 16
PI CLBP riu2 r = 3 0.712 ± 0.014 0.725 ± 0.004

CLBP r = 5 0.707 ± 0.014 0.719 ± 0.006
CLBP ri r = 3 0.709 ± 0.009 0.722 ± 0.007
CLBP r = 5 0.706 ± 0.006 0.706 ± 0.005

Table 4: Results for pre-filtering depth maps before extraction of topological features. Asterisks (*) and (**) correspond to results significantly better than corre-
sponding baseline topological descriptor with p < 0.05 and p < 0.01, respectively. Bold represent the best results for PD AGG and PI.
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Figure 10: DSC for combining baseline topological descriptors with the re-
spective Schmid, MR and CLBP filtered variants. For PI the combination is
not able to further improve results. PD AGG benefits from adding the CLBP-
filtered variant but not significantly.

performance is achieved by the combination of PD AGG with
the respective CLBP filter variant. This is also consistent with
the previous results where CLBP improved PD AGG. The re-
sult of the combined descriptors is, however, weaker than that
of PD AGG based on CLBP alone (0.674 vs 0.708). This shows
that there is no synergy attained by the combination.

5.8. Feature selection

By applying pre-filtering (as in the previous Section 5.7)
or by using PIs with high resolutions the dimension of the re-
sulting feature vectors grows linearly and quadratically, respec-
tively. Thus, strategies to reduce the dimension may be useful
in practice. We apply different feature selection strategies to
the PI descriptors to investigate to which degree dimensionality
reduction affects classification performance and how much re-
dundancy the descriptors exhibit. We apply the following three

strategies:

1. Gini importance: we select Gini importance [55] as a
strategy because it is a by-product of the employed clas-
sifier (RUSBOOST, see Section 4) and it can be obtained
without additional cost. It directly reflects the importance
of each descriptor entry for distinguishing between the
classes.
Computation: we compute the Gini importance for each
entry of the PI descriptor during training of the classi-
fier and keep only the N most important (highest values)
entries.

2. Fisher criterion: While Gini takes dependencies between
descriptor entries into account (through the classifier tree
hierarchy), the Fisher criterion [56] is completely inde-
pendent from the classifier and evaluates the importance
of every entry independently. For this reason we decided
to use is as a complementary strategy.
Computation: we compute the Fisher criterion for each
descriptor entry during training of the classifier and keep
only the N most discriminative entries (highest Fisher cri-
terion)

3. Combined Gini and Fisher criterion: we combine both
strategies to see if there are synergy effects between them.
Computation: for each descriptor entry we compute Gini
importance and Fisher criterion and average the rankings
obtained by both measures. The N entries with the high-
est combined ranking are retained.

Additionally, to provide a baseline, we select features ran-
domly to investigate the actual benefit of feature selection strate-
gies.

For all three feature selection approaches we vary N from 2,
4, 8, 16, 32, 64 to 100% of the PI descriptor (136 dimensions).
Results are illustrated in Fig. 11. Note, that the x-axis in Fig. 11
is not linear. By selecting only 2% of the components, Gini
yields a DSC of 0.6015±0.0197. With the Fisher criterion even
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Figure 11: Classification performance (DSC) with different feature selection
strategies for differently large subsets of the baseline PI descriptor.

a DSC of 0.6560 ± 0.0213 is achieved. Both values strongly
outperform the random baseline (0.535 ± 0.06). With increas-
ing number of features the performance increases continuously
for Gini. The Fisher criterion is less stable and is outperformed
in most cases by Gini as can be seen in Fig. 11. A reason for
the better performance of Gini is that Gini is computed dur-
ing classifier training and expresses the importance of a given
entry for the classifier training. Fisher, in contrast, is com-
puted independently from the classifier from the training data
directly. The combined scheme is located approximately be-
tween the two approaches which may stem from averaging the
respective rankings of the individual measures. Interestingly,
feature selection is only reasonable up to a certain number of
features. By selection of more than 16% of features the random
baseline outperforms the selection strategies. The reason for
this behavior is that the feature selection strategies do not take
the inter-correlations between the entries into account and thus
redundant components are easily selected when the number of
selected features increases. We further investigate the impor-
tance and discriminativity of individual entries in Section 5.13.

5.9. Comparison with non-topological features

From the patches of the depth map we extract a number of
non-topological image descriptors in the same patch-wise man-
ner as the topological descriptors. Non-topological descrip-
tors include: MPEG-7 Edge Histogram (EH) [57], Dense SIFT
(DSIFT) [58], Local Binary Patterns (LBP) [59], Histogram
of Oriented Gradients (HOG) [60], Gray-Level Co-occurrence
Matrix (GLCM) [61], Global Histogram Shape (GHS) [8], Spa-
tial Depth Distribution (SDD) [8], as well as enhanced versions
of GHS and SDD (short EGHS and ESDD) that apply addi-
tional enhancements to the depth map described in [8].

For the extraction of non-topological features, we employ
publicly available implementations if available, such as VLFEAT
for SIFT and HOG[62], the LBP implementation of [63], and
the GLCM implementation of [64]. GHS, SDD, EGHS, and
ESDD are implemented as in [8].

Results for the individual descriptors are shown in Fig. 12
(blue line). The best individual non-topological descriptor is
ESDD (DSC of 0.743 ± 0.002) followed by the combination

of EGHS+ESDD (DSC of 0, 728 ± 0.005). The performance
of our two baseline descriptors are shown with a dotted line
(PD AGG) and a dashed line (PI) in black for comparison. The
PD AGG descriptor achieves similar results to LBP, EH, GLCM,
and EGHS. Remarkably, PI alone already outperforms all non-
topological features except ESDD. This attests a strong explana-
tory power of the PI for the description of surface texture while
PD AGG rather lacks in expressiveness.

5.10. Combination with non-topological features

In previous investigations the addition of topological de-
scriptors to other (non-topological) descriptors has improved
classification performance [9]. We investigate the effect of com-
bining both types of descriptors by adding the best configura-
tions of PI and PD AGG to the evaluated non-topological de-
scriptors from Section 5.9. The results are shown as additional
curves in Fig. 12. The orange curve (square markers) shows the
performance when non-topological descriptors are combined
with PD AGG and the yellow curve (diamond-shaped markers)
shows the performance in combination with PI. The combina-
tion with PD AGG improves all descriptors except for EH. PI
improves all descriptors and some in fact by a large margin.
Even the performance of the best non-topological descriptor
(ESDD) can be further improved when combined with PI (from
0.743 ± 0.002 to 0.788 ± 0.005 with p < 0.01). A correspond-
ing example result is shown in Figure 13. The surface shows
a horse with a rider that holds a long spear in its hand. The
first row shows the original rock-surface, the depth map, and
the ground-truth labeling (engraved areas in red, remaining ar-
eas uncolored). The second row shows the results of ESDD, PI
and ESDD+PI. Classification results are color coded: red refers
to true positive detections of class 1 (engraved area), green to
false positive detections of class 1 and blue to false negative
detections of class 1. Uncolored areas are true positive detec-
tions of class 2. The results for ESDD and PI are comparable
in overall quality but show different strengths and weaknesses
of the descriptors. ESDD better captures fine details than PI
(e.g. the rear legs) but produces more false detections (green)
at natural surface irregularities like the vertical and diagonal
cracks in the rock surface. PI is more robust to such irregulari-
ties and captures the shape of the engraved ares well but gener-
ates more false detections along the boundary of the engraved
areas (e.g. along the spear and the horse’s tail). In combination
the mutual weaknesses compensate each other (e.g. the shaft
of the spear and the arm of the rider are better detected) and
yield a more accurate overall segmentation. These results illus-
trate well that topological descriptors represent complementary
information about the surface texture compared to traditional
texture descriptors and that their combination is beneficial.

5.11. Large-scale experiments

Experiments so far were performed on the small-scale dataset
which was chosen to save computation time and in turn gave us
the opportunity to broaden our evaluation to many different as-
pects, parameter values, configurations etc. A central question
in our evaluation is how topological descriptors compete with
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Figure 12: Classification results (DSC) for different non-topological descrip-
tors (blue line with circular markers). The orange (square marker) and yellow
(diamond marker) lines represent the performance when the features are com-
bined with PD AGG and PI, respectively. The baselines for PD AGG and PI
are plotted as dotted and dashed lines, respectively.

non-topological descriptors which currently represent the state-
of-the-art for 3D surface and texture analysis [11]. To answer
this question more profoundly, we run the experiments from
Sections 5.9 and 5.10 on the large-scale dataset from Section 4.
We evaluate all descriptors without further parameter tuning to
obtain objective and unbiased results, i.e. no fine tuning is per-
formed on the large-scale dataset at all. The topological de-
scriptors are then compared to a selection of the most promis-
ing non-topological descriptors. Furthermore, we evaluate the
performance of the best descriptor combinations evaluated so
far.

Results for the large-scale dataset (together with the cor-
responding results for the small-scale dataset) are presented in
Fig. 14. The overall performance of all descriptors drops for
the large-scale dataset. This is expected and results from the
higher complexity of the dataset (more heterogeneous data).
The absolute performance difference between the two datasets
is, however, quite consistent between all descriptors (∆ = 0.082
with a quite low standard deviation of ±0.014), which shows
that the classifier can generalize well from all descriptors. The
best topological descriptor is again PI with 0.654±0.002 which
is similar to the best non-topological descriptor (ESDD) with
0.661±0.001 (dashed line). The smaller difference in peak per-
formance between topological and non-topological descriptors
compared to the small-scale dataset shows that the topological
descriptors better generalize to the more complex data in the
large dataset.

The combination of topological and non-topological descrip-
tors yields a performance gain in most cases. Peak perfor-
mance is obtained when all evaluated descriptors are combined:
0.681 ± 0.002. This improvement is significant with p < 0.01
compared to the best combination of non-topological descrip-
tors. The two horizontal lines in Fig. 14 represent the peak per-
formance without and with topological information. The ver-
tical spacing between the lines represents the gain obtained by
adding topological information in classification (+0.02). Note
that the gain for the small-scale dataset is even larger (+0.045).

We further compare our results with those obtained in [11]

on the same dataset. In contrast to the investigation in [11]
which uses 4-fold cross-validation on the entire dataset, we em-
ploy 5-fold cross-validation on the training set and additionally
use half of the dataset as a completely independent test set. The
use of an independent test set makes our evaluation protocol
is more demanding that that of [11]. Reference [11] reports
results for two approaches: Random Forests (RF) and Convolu-
tional Neural Networks (CNNs). For the CNN the fully convo-
lutional net by [65] has been fine-tuned on randomly selected
patches from the training data, see [11] for details. RF yields
a DSC of 0.568. CNN outperforms RF with a DSC of 0.667.
With a DSC of 0.654 our best topological feature (PI) yields a
similar performance level as CNNs in [11]. PI combined with
non-topological descriptors even outperforms the results of the
CNN with a peak performance of 0.681. Thus, the performance
of the investigated descriptors can be considered state-of-the-
art.

5.12. Robustness and sensitivity

A crucial property of persistent homology is stability. In
the following experiments we evaluate if the theoretical con-
clusions about stability from Section 3.6 hold in practice. For
this purpose, we randomly select number of patches and add
different levels of random Gaussian noise (see Fig. 15a-c for an
example). Next, we compute the differences between the raw
patches and their noisy variants as well as the differences be-
tween the PIs computed from the raw and noisy patches. The
normalized difference d between two patches is computed as:

d(P,N) =

∑
p∈P |P(p) − N(p)|∑

p∈P |P(p)| + |N(p)|
,

where N and P is the original patch with and without random
Gaussian noise. The normalized difference between two PIs is
computed analogously to that of patches by replacing N and P
with the corresponding PIs. In Fig. 16 we plot the differences
between the patches (x-axis) vs. the differences between the PIs
(y-axis). Color encodes the signal-to-noise ratio (SNR).

With decreasing SNR (increasing noise level) the differ-
ences between patches and PIs increases, see Fig. 16a. Interest-
ingly, the differences between the PIs exceeds the differences
between the raw patches (i.e. points are above the diagonal)
which shows that there is a strong sensitivity to the introduced
noise.

Different types of pre-filtering (described in Section 3.4)
can also influence the stability of the resulting representations.
To evaluate this further, we perform a similar analysis for patches
filtered with Schmid filter, MR filter and CLBP (see Fig. 16b-
d). Experiments reveal that the difference between PIs grows
much slower in case of Schmid filter and MR filter (nearly all
points are below the diagonal). This is due to the fact, that
both filters are defined based on Gaussian functions and have a
low-pass characteristic. Thus, noise is removed to a wide ex-
tent in both cases. For CLBP the behavior is similar to the raw
patches. However, the absolute value of difference d is much
lower (d < 0.6 instead of d < 0.9) than for the raw patches
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(a) Surface (b) Depth map (c) Expert ground truth

(d) Result ESDD (e) Result PI (f) Result ESDD+PI

Figure 13: Classification results for a surface from the test set: (a) the original rock surface; (b) the depth map of the surface (in false color and contrast enhanced);
(c) the ground truth labeling obtained by domain experts (engraved areas are highlighted red); (d,e,f) show the classification results of ESDD, PI and the combination
of both features. Red areas correspond to correctly classified engraved areas (class 1), green areas are false positives detections of class 1 and blue refers to false
negatives (non-detected engraved areas). All remaining (uncolored) pixels are true positives for class 2.
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Figure 14: Performance comparison between small-scale and large-scale
dataset in terms of DSC. Also for the large-scale dataset the topological descrip-
tors add additional information and are necessary to obtain peak performance.
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Figure 15: The patch from Fig. 3a with random Gaussian noise. SNR equals:
(a) 5; (b) 10; (c) and 15.
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Figure 16: The noise analysis: abscissa represents difference between the orig-
inal patch and the same patch with random Gaussian noise; ordinate represents
normalized difference between their PIs; color corresponds to value of SNR.
The dashed line is the diagonal ( f (x) = x) of the plot. Plots correspond to: (a)
original patches; as well as patches filtered with (b) Schmid filter; (c) MR filter;
(d) and CLBP.
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Figure 17: Displacement analysis: abscissa represents displacement between
the original patch and its neighbor; ordinate represents normalized difference
between their PIs. Each curve corresponds to a single patch. Middle black
curve represents mean value, while the upper and lower black lines presents
the standard deviation, i.e. the grayish area represents the interval of mean ±
standard deviation. Plots correspond to: (a) original patches; as well as patches
filtered with (b) Schmid filter; (c) MR filter; (d) and CLBP.

which shows that CLBP contributes to the robustness of the re-
sulting PI.

Furthermore, we investigate how sensitive PIs are towards
displacement of the underlying patches. For this purpose we
compute the differences in the PIs stemming from a pair of
neighboring and overlapping patches. Again, we randomly se-
lect number of patches. Next we shift the patches by 4, 8, 16,
32, and 64 pixels. From the resulting 5 pairs of patches we com-
pute PIs and compute their normalized difference as above. In
Fig. 17a-d we plot the differences in PIs for all displacements
as separate lines for each patch. The trend of the curves shows
that the difference between the PIs grows with the amount of
displacement in all four cases. Interestingly, the differences are
noticeably smaller in the case of CLBP, which indicates that it
introduces an additional robustness to displacements to the PI
which is not the case for Schmid and MR filters.

We observe, that our experiments confirm theoretical results
from Section 3.6. Furthermore, the computational results show
that the constants in the stability theorems have only little influ-
ence on the results.

5.13. Discriminativity

An important question in the context of PI is if all entries
in the PI (pixels) are of equal importance or if some pixels are
more important than others. Experiments of feature selection
in Section 5.8 have indicated that a small set of pixels exist
that are more important than the other pixels. To determine the
importance of the individual pixels we compute for each pixel
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Figure 18: Importance of PI pixels in the classification process, measured with:
(a) Fisher discriminant; (b) and Gini importance. The scale in both cases is
logarithmic (base 10). Brighter pixels are more important (discriminative) in
classification. Red arrows correspond to three groups of important pixels.

(a) the Fisher discriminant and (b) the Gini importance for the
entire training set. Fig 18 shows the resulting images where
each pixel in the PI is colored according to its importance.

It turns out that the most important pixels are those located
in the center of the PI quite near to the diagonal. According to
Fisher criterion there are also two smaller groups of important
pixels, above and below the center. This is less visible but also
present in case of Gini, see red arrows in Fig. 18b.

In order to further understand those results, we generated
average PIs for the investigated classes of surface texture sep-
arately, see Fig. 19. The averaged PIs clearly show that the
two classes exhibit highly different spatial patterns in the PIs
which strongly correlate with the three groups of pixels identi-
fied with Fisher discriminant and Gini importance. This shows
that PI captures the different classes of surface textures well.

The results are further consistent with those obtained for
the synthetic dataset (see Section 5.1). Class 1 representing en-
graved areas has bimodal distribution, while class 2 represent-
ing the natural rock surface is unimodal.

The analysis on discriminativity further provides insights
into the question of weighting in PI computation (see Section
5.6). In general, PI requires a proper weighting function for
stability reasons (see [32]). Our analysis on discriminativity
shows, however, that the components near the diagonal are most
important and thus most probably do not represent noise. The
reason for this is that the 3D surfaces have been smoothed and
filtered for outliers prior to our processing. Thus noise (which
usually appears along the diagonal of PD) has already been re-
moved and all the remaining points actually represent important
topological information. In our case, points near to the diag-
onal represent small surface deviations that correspond to the
fine-structure of the surface and that are of high importance for
surface texture classification (see Fig. 18). Thus, using weight-
ing would be counterproductive in our case. In other situations,
it is possible to avoid instability issues with PI by using another
approach for constructing PI, such as the one described by Eqn.
(9) in [31], which reduces the influence of the low-persistence
points close to the diagonal when the scale σ increases.
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Figure 19: Averaged PIs of the training patches from (a) class 1 and (b) class 2.

6. Conclusions

In this article we have presented an extensive study on topo-
logical descriptors for 3D surface texture analysis. From patches
of the surfaces’ depth maps we extract different topological de-
scriptors which build upon the persistence diagram. The de-
scriptors have fixed dimensions and can thus easily be com-
bined with conventional classifiers as well as with traditional
non-topological descriptors. We perform experiments on sur-
face texture classification and investigate different aspects of
the topological descriptors, such as sensitivity to parameters,
robustness to noise, their discriminative power and the infor-
mation density. Moreover, we propose and evaluate different
normalization strategies, pre-filtering, and alternative weighting
functions and investigate the complementary nature of topolog-
ical and non-topological descriptors. The major conclusions
drawn from our study are:

• PD AGG and PI capture relevant and discriminative in-
formation on surface textures, whereby our study clearly
shows that the spatial information from the PD preserved
in PI leads to a more powerful descriptor.

• PIs exhibit a low sensitivity to changes in resolution and
sigma whereas a certain minimum resolution must be en-
sured to obtain an expressive descriptor. Sigma shows to
be independent from resolution to a large extent.

• For 3D surfaces with varying depth ranges, depth normal-
ization is essential to obtain comparable topological de-
scriptors. In our experiments global normalization leads
to the best results.

• While related works propose LBP-based representations
our study shows that such a pre-filtering does not neces-
sarily improve results in practice.

• Contrary to our expectations, it turned out that the most
important information in PI is located near to the diag-
onal of the PD. A deeper analysis reveals that the most
expressive information is spatially clustered in the PI and
that these clusters are characteristic for the investigated
classes.

A number of open questions and future research directions
were identified in our study. Major questions include: (i) how

can weighting in PI construction be improved in a way that
characteristics of the underlying data are taken into account?
(ii) how can the resolution of PI be improved in areas where
the most important information is concentrated to increase the
expressiveness of PI? (iii) do more powerful pre-filter functions
that build upon topological attributes such as [66] improve the
descriptors and can we learn them from the data?

Overall our investigation shows that topological descriptors
can compete with non-topological descriptors for surface tex-
ture classification. A comparison with [11] shows that our ap-
proach can compete with (and even slightly outperform) the
performance of a CNN on the same dataset. Topological and
non-topological descriptors achieve a significant improvement
of performance when they are combined with each other. This
confirms that topological descriptors capture relevant informa-
tion that is not captured by traditional descriptors. Thus, they
are a promising approach for further research.
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