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Abstract

The detection of abnormal behaviours in crowded scenes has to deal with many

challenges. This paper presents an efficient method for detection and localiza-

tion of anomalies in videos. Using fully convolutional neural networks (FCNs)

and temporal data, a pre-trained supervised FCN is transferred into an unsuper-

vised FCN ensuring the detection of (global) anomalies in scenes. High perfor-

mance in terms of speed and accuracy is achieved by investigating the cascaded

detection as a result of reducing computation complexities. This FCN-based

architecture addresses two main tasks, feature representation and cascaded out-

lier detection. Experimental results on two benchmarks suggest that detection

and localization of the proposed method outperforms existing methods in terms

of accuracy.
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1. Introduction

The use of surveillance cameras requires that computer vision technologies

need to be involved in the analysis of very large volumes of video data. The

detection of anomalies in captured scenes is one of the applications in this area.

Anomaly detection and localization is a challenging task in video analysis

already due to the fact that the definition of “anomaly” is subjective, or context-

dependent. In general, an event is considered to identify an “anomaly” when it

occurs rarely, or unexpected; for example, see [1].

Compared to the previously published deep-cascade method in [1], this paper

proposes and evaluates a different and new method for anomaly detection. Here

we introduce and study a modified pre-trained convolutional neural network

(CNN) for detecting and localizing anomalies. In difference to [1], the considered

CNN is not trained from scratch but “just” fine-tuned. More in detail, for

processing a video frame [1] outlined a method where the frame was first divided

into a set of patches, then the anomaly detection was organised based on levels of

patches. In difference to that, the input of the proposed CNN algorithm is a full

video frame in this paper. As a brief preview, the new method is methodically

simpler but faster in both the training and testing phase where the accuracy of

anomaly detection is comparable to the accuracy of the method presented in [1].

In the context of crowd scene videos, anomalies are formed by rare shapes

or rare motions. Due to the fact that looking for unknown shapes or motions

is a time-consuming task, state-of-the-art approaches learn regions or patches

of normal frames as reference models. Indeed, these reference models include

normal motion or shapes of every region of the training data. In the testing

phase, those regions which differ from the normal model are considered to be

abnormal. Classifying these regions into normal and abnormal requires exten-

sive sets of training samples in order to describe the properties of each region

efficiently.

There are numerous ways to describe region properties. Trajectory-based

methods have been used to define behaviours of objects. Recently, for mod-
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eling spatio-temporal properties of video data, low-level features such as his-

togram of gradients (HoG) and histogram of optic flow (HoF) are used. These

trajectory-based methods have two main disadvantages. They cannot handle

occlusion problems, and they also suffer from high complexity, especially in

crowded scenes.

CNNs proved recently to be useful for defining effective data analysis tech-

niques for various applications. CNN-based approaches outperformed state-

of-the-art methods in different areas including image classification [2], object

detection [3], or activity recognition [4]. It is argued that handcrafted features

cannot efficiently represent normal videos [5, 6, 7]. In spite of these benefits,

CNNs are computationally slow, especially when considering block-wise meth-

ods [3, 8]. Thus, dividing a video into a set of patches and representing them

by using CNNs, should be followed by a further analysis about possible ways of

speed-ups.

Major problems in anomaly detection using CNNs are as follows:

1. Too slow for patch-based methods; thus, CNN is considered as being a

time-consuming procedure.

2. Training a CNN is totally supervised learning; thus, the detection of

anomalies in real-world videos suffers from a basic impossibility of training

large sets of samples from non-existing classes of anomalies.

Due to these difficulties, there is a recent trend to optimize CNN-based algo-

rithms in order to be applicable in practice. Faster-RCNN [9] takes advantage

of convolutional layers to have a feature map of every region in the input data,

in order to detect the objects. For semantic segmentation, methods such as

[10, 11] use fully convolutional networks (FCNs) for traditional CNNs to extract

regional features. Making traditional classification CNNs to work as a fully con-

volutional network and using a regional feature extractor reduces computation

costs. In general, as CNNs or FCNs are supervised methods, neither CNNs nor

FCNs are capable for solving anomaly detection tasks,

To overcome aforementioned problems, we propose a new FCN-based struc-
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ture to extract the distinctive features of video regions. This new approach in-

cludes several initial convolutional layers of a pre-trained CNN using an AlexNet

model [2] and an additional convolutional layer. AlexNet, similar to [12], is a

pre-trained model proposed for image classification by using ImageNet [13, 14]

and the MIT places dataset [15]. Extracted features, by following this approach,

are sufficiently discriminative for anomaly detection in video data.

In general, entire frames are fed to the proposed FCN. As a result, features

of all regions are extracted efficiently. By analysing the output, anomalies in

the video are extracted and localized. The processes of convolution and pooling,

in all of the CNN layers, run concurrently. A standard NVIDIA TITAN GPU

processes ≈ 370 frames per second (fps) when analyzing (low-resolution) frames

of size 320× 240. This is considered to be “very fast”.

Convolution and pooling operations in CNNs are responsible for extracting

regions from input data using a specific stride and size. These patch-based

operations provide a description for each extracted region. Detected features in

the output and the corresponding descriptors distinguish a potential region in

a set of video frames. Both convolution and pooling operations are invertible.

However, a roll-back operation generates a receptive field (a region in a frame)

from deeper layers to more shallow layers of the network. This receptive field

results in the generation of feature vectors.

In this paper, we propose a method for detecting and localizing abnormal

regions in a frame by analyzing the output of deep layers in an FCN. The idea of

localizing a receptive field is inspired by the faster-RCNN in [9], and OverFeat

in [16, 4].

This paper uses the structure of a CNN for patch-based operations in order

to extract and represent all patches in a set of frames. A generated feature

vector, while using the CNN for each detected region, is fitted to the given

image classification task.

Similar to [17], we use a transfer learning method to gain a better description

for each region. We evaluate our method for finding the best intermediate

convolutional layer of the CNN. Then, a new convolutional layer is added after
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the best-performing layer of the CNN. The kernels of a pre-trained CNN are

adjusted based on pre-training, and considered to be constant in our FCN; the

parameters of the final new convolutional layer are trained based on our training

frames.

In other words, all regions generated by the pre-trained CNN are represented

by a sparse-auto-encoder as a feature vector of length h which is the hidden size

of the auto-encoder. We find that the feature set, generated by a pre-trained

CNN, is sufficiently discriminative for modeling “many” regions. To make the

process more accurate, those regions which are classified with low confidence, are

given to the final convolutional layer for further representation and classification.

In fact, two Gaussian models are defined based on the description of all

normal training regions. The first model is generated by the kth layer of the

CNN, while the second model is based on its transformation by the (k + 1)th

convolutional layer.

In the testing phase, those regions which differ significantly from the first

Gaussian model, are labeled as being a confident anomaly. Those regions which

fit completely to the first model are labeled as being normal. The rest of the

regions, being by a minor difference below the threshold, are represented by

a sparse-auto-encoder and evaluated more carefully by the second Gaussian

model. This approach is similar to a cascade classifier defined by two stages; it

is explained in the next sections.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first time that an FCN is used

for anomaly detection.

• We adapt a pre-trained classification CNN to an FCN for generating video

regions to describe motion and shape concurrently.

• We propose a new FCN architecture for time-efficient anomaly detection

and localization.

• The proposed method performs as well as state-of-the-art methods, but
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our method outperforms those with respect to time; we have real-time for

typical applications.

• We achieved a processing speed of 370 fps on a standard GPU; this is

about three times faster than the fastest existing method reported so far.

Section 2 provides a brief survey on existing work. We present the proposed

method in Section 3 including the overall scheme of our method, and also de-

tails for anomaly detection and localization, and for the evaluation of different

layers of the CNN for performance optimization. Qualitative and quantitative

experiments are described in Section 4. Section 5 concludes the paper.

2. Related Work

Object trajectory estimation is often of interest in cases of anomaly detec-

tion; see [18, 22, 23, 24, 25, 26, 27, 28, 29]. An object shows an anomaly if it

does not follow learned normal trajectories. This approach usually suffers from

many weaknesses, such as disability to efficiently handle occlusions, and being

too complex for processing crowded scenes.

To avoid these two weaknesses, it is proposed to use spatio-temporal low level

features such as optical flow or gradients. Zhang et al. [30] use a Markov random

field (MRF) to model the normal patterns of a video with respect to a number

of features, such as rarity, unexpectedness, and relevance. Boiman and Irani [31]

consider an event as being abnormal if its reconstruction is impossible by using

previous observations only. Adam et al. [32] use an exponential distribution for

modeling the histograms of optical flow in local regions.

A mixture of dynamic textures (MDT) is proposed by Mahadevan et al. [33]

for representing a video. In this method, the represented features fit into a

Gaussian mixture model. In [34], the MDT is extended and explained in more

details. Kim and Grauman [35] exploit a mixture of probabilistic PCA (MPPCA)

model for representing local optical flow patterns. They also use an MRF for

learning the normal patterns.
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A method based on motion properties of pixels for behavior modeling is

proposed by Benezeth et al. [36]. They described the video by learning a

co-occurrence matrix for normal events across space-time. In [37], a Gaussian

model is fitted into spatio-temporal gradient features, and a hidden Markov

model (HMM) is used for detecting the abnormal events.

Mehran et al. [38] introduce social force (SF) as an efficient technique for

abnormal motion modeling of crowds. Detection of abnormal behaviors using

a method based on spatial-temporal oriented energy filtering in proposed by

In [39].

Cong et al. [40] construct an over-complete normal basis set from normal

data. A patch is considered to be abnormal if reconstructing it with this basis

set is not possible.

In [41], a scene parsing approach is proposed by Antic et al. All object hy-

potheses for the foreground of a frame are explained by normal training. Those

hypotheses, which cannot be explained by normal training, are considered to

show anomaly. Saligrama et al. in [42] propose a method based on the clus-

tering of the test data using optic-flow features. Ullah et al. [43] introduced an

approach based on a cut/max-flow algorithm for segmenting the crowd motion.

If a flow does not follow the regular motion model, it is considered as being an

anomaly. Lu et al. [44] propose a fast (140-150 fps) anomaly detection method

based on sparse representation.

In [45], an extension of the bag of video words (BOV) approach is used by

Roshtkhari et al. A context-aware anomaly detection algorithm is proposed

in [46], where the authors represent the video using motions and the context

of videos. In [47], a method for modeling both motion and shape with respect

to a descriptor (named “motion context”) is proposed; they consider anomaly

detection as a matching problem. Roshkhari et al. [48] introduce a method

for learning the events of a video by using the construction of a hierarchical

codebook for dominant events in a video. Ullah et al. [49] learn an MLP neu-

ral network using trained particles to extract the video behavior. A Gaussian

mixture model (GMM) is exploited for learning the behavior of particles using
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extracted features. In addition, in [50], an MLP neural network for extracting

the corner features from normal training samples is proposed; authors also label

the test samples using that MLP.

Authors of [51] extract corner features and analyze them based on their

properties of motion by an enthalpy model, a random forest with corner fea-

tures for detecting abnormal samples. Xu et al. [52] propose a unified anomaly

energy function based on a hierarchical activity-pattern discovery for detecting

anomalies.

Work reported in [5, 6] models normal events based on a set of representative

features which are learned on auto-encoders [53]. They use a one-class classifier

for detecting anomalies as being outliers compared to the target (normal) class.

See also the beginning of Section 1 where we briefly reviewed work reported in

[1]; this paper proposes a cascaded classifier which takes advantage of two deep

neural networks for anomaly detection. Here, challenging patches are identified

at first by using a small deep network; then the neighboring patches are passed

into another deep network for further classification.

In [54], the histogram of oriented tracklets (HOT) is used for video repre-

sentation and anomaly detection. A new strategy for improving HOT is also

introduced in this paper. Yuan et al. [55] propose an informative structural

context descriptor (SCD) to represent a crowd individually. In this work, a

(spatial-temporal) SCD variation of a crowd is analyzed to localize the anomaly

region.

An unsupervised deep learning approach is used in [19] for extracting anoma-

lies in crowded scenes. In this approach, shapes and features are extracted us-

ing a PCANet [20] from 3D gradients. Then, a deep Gaussian mixture model

(GMM) is used to build a model that defines the event patterns. A PCANet

is also used in [21]. In this study, authors exploit the human visual system

(HVS) to define features in the spatial domain. On the other hand, a multi-

scale histogram of optical flow (MHOF) is used to represent motion features of

the video. PCANet is adopted to exploit these spatio-temporal features in order

to distinguish abnormal events.
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A hierarchical framework for local and global anomaly detection is proposed

in [56]. Normal interactions are extracted by finding frequent geometric rela-

tionships between sparse interest points; authors model the normal interaction

template by Gaussian process regression. Xiao et al. [57] exploit sparse semi-

nonnegative matrix factorization (SSMF) for learning the local pattern of pixels.

Their method learns a probability model by using local patterns of pixels for

considering both the spatial and temporal context. Their method is totally

unsupervised. Anomalies are detected by the learned model.

In [58], an efficient method for representing human activities in video data

with respect to motion characteristics is introduced and named as motion influ-

ence map. Those blocks of a frame which have a low occurrence are labelled as

being abnormal. A spatio-temporal CNN is developed in [? ] to define anoma-

lies in crowded scenes; this CNN model is designed to detect features in both

spatial and temporal dimensions using spatio-temporal convolutions.

Li et al. [59] propose an unsupervised framework for detecting the anomalies

based on learning global activity patterns and local salient behavior patterns

via clustering and sparse coding.

3. Proposed Method

This section explains at first the overall outline of the method. Then, a

detailed description of the proposed method is given.

3.1. Overall Scheme

Abnormal events in video data are defined in terms of irregular shapes or

motion, or possibly a combination of both. As a result of this definition, iden-

tifying the shapes and motion is an essential task for anomaly detection and

localization. In order to identify the motion properties of events, we need a se-

ries of frames. In other words, a single frame does not include motion properties;

it only provides shape information of that specific frame.

For analyzing both shape and motion, we consider the pixel-wise average

of frame It and previous frame It−1, denoted by I ′t (not to be confused with a

9



derivative),

I ′t(p) =
It(p) + It−1(p)

2
(1)

where It is tth frame in the video. For detecting anomalies in It, we use the

sequence Dt = 〈I ′t−4, I ′t−2, I ′t〉.

We start with this sequence Dt when representing video frames on grids of

decreasing size w×h. Dt is defined on a grid Ω0 of size w0×h0. The sequence Dt

is subsequently passed on to an FCN, defined by the kth intermediate convolu-

tional layer, for k = 0, 1, . . . , L, each defined on a grid Ωk of size wk×hk, where

wk > wk+1, and hk > hk+1. We use L = 3 for the number of convolutional

layers.

The output of the kth intermediate convolutional layer of the FCN are feature

vectors fk ∈ Rmk (i.e. each containing mk real feature values), satisfying mk ≤

mk+1, starting with m0 = 1. For the input sequence Dt, the output of the kth

convolutional layer is a matrix of vector values:{
f tk(i, j, 1 : mk)

} (wk,hk)

(i,j)=(1,1)
=
{[
f tk(i, j, 1), . . . , f tk(i, j,mk)

]>} (wk,hk)

(i,j)=(1,1)
(2)

Each feature vector f tk(i, j, 1 : mk) is derived from a specific receptive field (i.e.

a sub-region of input Dt).

In other words, first, a high-level description of Dt is provided for the tth

frame of the video. Second, Dt is represented subsequently by the kth interme-

diate convolutional layer of the FCN, for k = 1, . . . , L. This representation is

used for identifying a set of partially pairwise overlapping regions in Ωk, called

the receptive fields. Hence, we represent frame It at first by sequence Dt on Ω0,

and then by mk maps

fk,l =
{
f tk(i, j, l)

} (wk,hk)

(i,j)=(1,1)
, for l = 1, 2, . . . ,mk (3)

on Ωk, for k = 1, . . . , L. Recall that the size wk × hk decreases with increases

of k values.

Suppose that we have q training frames from a video which are considered

to be normal. To represent these normal frames with respect to the kth convo-

lutional layer of the FCN (AlexNet without its fully connected layers), we have
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wk × hk × q vectors of length mk, defining our 2D normal region descriptions;

they are generated automatically by a pre-trained FCN . For modeling the nor-

mal behavior, a Gaussian distribution is fitted as a one-class classifier to the

descriptions of normal regions so that it defines our normal reference model. In

the testing phase, a test frame It is described in a similar way by a set of re-

gional features. Those regions which differ from the normal reference model are

labeled as being abnormal. In particular, the features generated by a pre-trained

CNN (2nd layer of AlexNet) are sufficiently discriminative. These features are

learned based on a set of independent images which are not necessarily related

to video surveillance applications only.

Consequently, suspicious regions are represented by a “more discriminant”

feature set. This new representation leads to a better performance for distin-

guishing abnormal regions from normal ones. In other words, we transform the

generated features by AlexNet into an anomaly detection problem. This work

is done by an auto-encoder which is trained on all normal regions. As a result,

those suspicious f tk(i, j, 1 : mk) regions are passed to an auto-encoder to have a

better representation. This is done by the (k + 1)st convolutional layer whose

kernels are learned by a sparse auto-encoder.

Let T t
k(i, j, 1 : mk) be the transformed representation of f tk(i, j, 1 : mk) by

a sparse auto-encoder; see Figure 1. The abnormal region is visually more

distinguishable in the heat-map when the regional descriptors are represented

again by the auto-encoder (i.e. the final convolutional layer).

Then, for the new feature space, those regions which differ from the normal

reference model are labeled as being abnormal. This proposed approach ensures

both accuracy and speed.

Suppose that f(i, j, 1 : mk) ∈ Rmk is the description of an abnormal region.

By moving backward from the kth to the 1st layer of the FCN, we can identify

regions in input frames with descriptions f tk(i, j, 1 : mk). This is due to the fact

that convolution and mean pooling operator of the FCN (from 1st to 2nd layer)

are approximately invertible.

For instance, the 1st and 2nd convolutional layer, and the 1st sub-sampling
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Figure 1: Effect of representing receptive fields with an added convolutional layer. Left:

Input frame. Middle: Heat-map visualisation of the 2nd layer of a pre-trained FCN. Right:

Heat-map visualisation of the 3nd layer of a pre-trained FCN with added convolutional layer.

layer are called C1, C2, and S1, respectively. As usual, (.)−1 identifies below the

inverse of a function. The exact location of description f tk(i, j, 1 : mk) in the Dt

sequence (the input of the FCN) is located at C−11 (S−11 (C−12 (f(i, j, 1 : mk))).

See the following sections for more details.

Figure 2 shows the work-flow of the proposed detection method. First, input

frames are passed on to a pre-trained FCN. Then, hk × wk regional feature

vectors are generated in the output of the kth layer. These feature vectors are

verified using Gaussian classifier G1. Those patches, which differ significantly
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12



from G1 as a normal reference model, are labeled as being abnormal. More

specifically, G1 is a Gaussian distribution which is fitted to all of the normal

extracted regional feature vectors; regions which completely differ from G1 are

considered to be an anomaly.

Those suspicious regions which are fitted with low confidence are given to a

sparse auto-encoder. At this stage, we also label these regions based on Gaussian

classifier G2 which works similar to G1. G2 is also a Gaussian classifier, trained

on all extracted regional feature vectors from training video data which are

represented by an auto-encoder. Finally, the location of those abnormal regions

can be annotated by a roll-back on the FCN.

3.2. Anomaly Detection

In this paper, the video is represented using a set of regional features. These

features are extracted densely and their description is given by feature vectors

in the output of the kth convolutional layer. See Equ. (2).

Gaussian classifier G1(.) is fitted to all normal regional features generated by

the FCN. Those regional features for which their distance to G1(.) is bigger than

threshold α are considered to be abnormal. Those ones that are compatible to

G1 (i.e. their distance is less than threshold β) are labeled as being normal. A

region is suspicious if it has a distance to G1 being between α and β.

All suspicious regions are given to the next convolutional layer which is

trained on all normal regions generated by the pre-trained FCN. The new rep-

resentation of these suspicious regions is more discriminative and denoted by

Tk,n =
{
T t
k(i, j, n)

} (w′
k,h

′
k)

(i,j)=(1,1)
, for n = 1, 2, . . . , h (4)

where h is the size of the feature vectors generated by the auto-encoder, which

equals the size of the hidden layers.

In this step, only the suspicious regions are processed. Thus, some points

(i, j) in grid (wk, hk) are ignored and not analysed in the grid (w′k, h
′
k). Similar

to G1, we create a Gaussian classifier G2 on all of the normal training regional
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features which are represented by our auto-encoder. Those regions which are

not sufficiently fitted to G2 are considered to be abnormal.

Equations (5) and (6) summarize anomaly detection by using two fitted

Gaussian classifiers. First, we have that

G1(f tk(i, j, 1 : mk)) =


Normal if d(G1, f

t
k(i, j, 1 : mk)) ≤ β

Suspicious if β < d(G1, f
t
k(i, j, 1 : mk)) < α

Abnormal if d(G1, f
t
k(i, j, 1 : mk)) ≥ α

(5)

Then, for a suspicious region represented by T t
k(i, j, 1 : h), we have that:

G2(T t
k(i, j, 1 : hk)) =

Abnormal if d(G2, T
t
k(i, j, 1 : h)) ≥ φ

Normal otherwise

(6)

Here, d(G,x) is the Mahalanobis distance of a regional feature vector x from

the G-model.

3.3. Localization

The first convolutional layer has m1 kernels of size x1 × y1. They are con-

volved on sequence Dt for considering the tth frame. As a result of this convo-

lution, a feature is extracted.

Recall that each region for the input of the FCN is described by a feature

vector of length m1. In this continuous process, we have mk maps as output

for the kth layer. Consequently, a point in the output of the kth layer is a

description for a subset of overlapping (x1 × y1)th receptive fields in the input

of the FCN.

The order of layers in the modified version of AlexNet is denoted by

AlexNet Order→ [C1, S1, C2, S2, C3, fc1, fc2] (7)

where C and S are a convolutional layer and a sub-sampling layer, respectively.

The two final layers are fully connected.

Assume that n regional feature vectors (i1, j1) · · · (in, jn), generated in layer

Ck on grid Ωk, are identified as showing an anomaly. The location (i, j) in Ωk
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corresponds to

C−11 (· · ·S−1k−1(C−1k (i, j))) (8)

as the rectangular region in the original frame.

Suppose we have mk kernels of size xk × yk which are then convolved with

stride d on the output of the previous layer of Ck. C−1k (i, j) is the (rectangular)

set of all locations in Ωk−1 which are mapped in the FCN on (i, j) in Ωk.

Function S−1k is defined in an analogous way.

The sub-sampling (mean pooling) layer can also be considered as a con-

volutional layer which has only one kernel. Any region, detected as being an

abnormal region in the original frame (i.e. in Ω0), is then a combination of some

overlapping and large patches. This leads to a poor localization performance.

As a case in point, a detection in the 2nd layer causes 51 × 51 overlapping

receptive fields. To achieve more accuracy in anomaly detection, those pixels in

Ω0 are identified to show an anomaly which are covered by more than ζ related

receptive fields (we decided for ζ=3 experimentally).

3.4. FCN Structure for Anomaly Detection

This section analyses the quality of different layers of a pre-trained CNN

for generating regional feature vectors. We adapt (in this paper in general) a

classification by CNN into an FCN by solely using convolutional layers. Selecting

the best layer for representing the video is crucial considering the following two

aspects:

(1) Although deeper features are usually more discriminative, using these

deeper features is time-consuming. In addition, since the CNN is trained

for image classification, going deeper may create over-fitted features for

image classification.

(2) Going deeper leads to larger receptive fields in the input data; as a result,

the likelihood of inaccurate localization increases which then has inverse

effects on performance.
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For the first two convolutional layers of our FCN model, we use a modified

version of AlexNet named Caffe reference model.1

This model is trained on 1183 categories, each with 205 scene categories from

the MIT places database [15], and 978 object categories from the train data of

ILSVRC2012 (ImageNet) [13, 14] having 3.6 million images.

The implemented FCN has three convolutional layers. For finding the best

convolutional layer k, we set initially k to 1, and then increase it to 3. When

the best k is decided, deeper layers are ignored.

The general findings are described at an abstract level. First we use the out-

put of layer C1. For distinguishing abnormal from normal regions, correspond-

ing receptive fields are small in size, and generated features are not capable of

achieving the suitable results. Therefore, here we have lots of false positives.

Later, the output of C2 is used as a deeper layer. At this stage, we achieve bet-

ter performance compared to C1 due to the following reasons: A corresponding

receptive field in the input frames of C1 is now sufficiently large, and the deeper

features are more discriminative.

At k = 3, we have the results in layer C3 as output. Although the capacity

of the network increases, results are not as good as for the 2nd convolutional

layer. It seems that by adding one more layer, we achieved deeper features;

however, these features are also likely to over-fit the image classification tasks

since the network is trained for ImageNet.

Consequently, we decided for the C2 output for extracting regional features.

Similar to [17], we transformed the description of each generated regional feature

using a convolutional layer; the kernels of the layer are learned using a sparse

auto-encoder. This new layer is called CT that is on top of the C2 layer of the

CNN. The combination of three (initial) layers of a pre-trained CNN (i.e. C1, S1,

and C2) with an additional (new) convolutional layer is our new architecture for

detecting anomalies. Figure 3 shows the proposed FCN structure. To emphasise

further the effects of using this structure, see Tables 1 to 3.

1 Caffe is a framework maintained by UC Berkeley [61].
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Figure 3: Proposed FCN structure for detecting anomalies. This FCN is only used for

regional feature extraction. At later stages, two Gaussian classifiers are embedded for labeling

abnormal regions.

Table 1 shows the performance of different layers of the pre-trained CNN.

Table 1: Evaluating CNN convolutional layers for anomaly detection

Layer Output in C1 Output in C2 Output in C3

Proposed size 11× 11 51× 51 67× 67

Frame-level EER 40% 13% 20%

Pixel-level EER 47% 19% 25%

Table 2 reports the performance of using the proposed architecture with

different numbers of kernels in the (k + 1)th convolutional layer. We represent

video frames with our FCN. A Gaussian classifier is exploited at the final stage

of the FCN (see the performance for 100, 256, and 500 kernels in Table 2).

We also evaluated the performance when two Gaussian classifiers are used in a

similar approach to a cascade. The frame-level and pixel-level EER measures

Table 2: Effect of the number of kernels in the (k + 1)th convolutional layer, used for repre-

senting regional features when using C2 as outputs

Number of kernels 100 256 500 500 & two classifiers

Frame-level EER 19% 17% 15% 11%
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are introduced in the next section. Recall that the smaller values of EER, the

“better” performance.

Table 3 reports the performance of processing the network outputs in C2

output and CT output with cascaded classifiers.

Table 3: Effect of adding the (k + 1)th convolutional layer, used for representing regional

features when using C2 for outputs

Layer C2 CT and two classifiers

Frame-level EER 13% 11%

Our results when evaluating the different CNNs confirm that the proposed

CNN architecture is the best architecture for the studied data.

4. Experimental Results

We evaluate the performance of the proposed method on UCSD [60] and

Subway benchmarks [32]. We show that our proposed method detects anomalies

at high speed, similar to a real-time method in video surveillance, with equal or

even better performance than other state-of-the-art methods.

For implementing our deep-anomaly architecture we use the Caffe library

[61]. All experiments are done using a standard NVIDIA TITAN GPU with

MATLAB 2014a.

4.1. UCSD and Subway Datasets

To evaluate and compare our experimental results, we use two datasets.

UCSD Ped2 [60]. Dominant dynamic objects in this dataset are walkers

where crowd density varies from low to high. An appearing object such as a

car, skateboarder, wheelchair, or bicycle is considered to create an anomaly. All

training frames in this dataset are normal and contain pedestrians only. This

dataset has 12 sequences for testing, and 16 video sequences for training, with

320 × 240 resolution. For evaluating the localization, the ground truth of all
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test frames is available. The total numbers of abnormal and normal frames are

≈2,384 and ≈2,566, respectively.

Subway [32]. This dataset contains two sequences recorded at the entrance

(1 h and 36 min, 144,249 frames) and exit (43 min, 64,900 frames) of a subway

station. People entering and exiting the station usually behave normally. Ab-

normal events are defined by people moving in the wrong direction (i.e. exiting

the entrance or entering the exit), or avoiding payment. This dataset has two

limitations: The number of anomalies is low, and there are predictable spatial

localizations (at entrance or exit regions).

4.2. Evaluation Methodology

We compare our results with state-of-the-art methods using a receiver oper-

ating characteristic (ROC) curve, the equal error rate (EER), and the area under

curve (AUC). Two measures at frame level and pixel level are used, which are

introduced in [33] and often exploited in later work. According to these mea-

sures, frames are considered to be abnormal (positive) or normal (negative).

These measures are defined as follows:

(1) Frame-level: In this measure, if one pixel detects an anomaly then it is

considered to be abnormal.

(2) Pixel-level: If at least 40 percent of anomaly ground truth pixels are cov-

ered by pixels that are detected by the algorithm, then the frame is con-

sidered to show an anomaly.

4.3. Qualitative and Quantitative Results

Figure 4 illustrates the output of the proposed system on the samples of

the UCSD and Subway dataset. The proposed method detects and localizes

anomalies correctly in these samples. The main problem of an anomaly detection

system is a high rate of false-positives.

Figure 5 shows regions which are wrongly detected as being an anomaly

using our method. Actually, false-positives occur in two situations: too crowded
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(A) (B) 

Figure 4: Output of the proposed method on Ped2 UCSD and Subway dataset. A-left and

B-left: Original frames. A-Right and B-Right: Anomaly regions are indicated by red.

 

Figure 5: Some examples of false-positives in our system. Left: A pedestrian walking in

opposite direction to other people. Middle: A crowded region is wrongly detected as being an

anomaly. Right: People walking in different directions.

scenes, and when people walk in different directions. Since walking in opposite

direction of other pedestrians is not observed in the training video, this action

is also considered as being abnormal using our algorithm.

Frame-level and pixel-level ROCs of the proposed method in comparison to

state-of-the-art methods are provided in Figure 6; left and middle for frame-level

and pixel-level EER on UCSD Ped2 dataset, respectively. The ROCs show that

the proposed method outperforms the other considered methods in the UCSD

dataset.
Table 4 compares the frame-level and pixel-level EER of our method and

other state-of-the-art methods. Our frame-level EER is 11%, where the best

result in general is 10%, achieved by Tan Xiao et al. [57]. We outperform all

other considered methods except [57]. On the other hand, the pixel-level EER of

the proposed approach is 15%, where the next best result is 17%. As a result, our

method achieved a better performance than any other state-of-the-art method

in the pixel-level EER metric by 2%.
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Figure 6: ROC comparison with state-of-the-art methods. Upper left: Frame-level of UCSD

Ped2. Bottom left: Pixel-level of UCSD Ped2. Upper right: Subway dataset.

The frame-level ROC of the Subway dataset is shown in Figure 6 (right). In

this dataset, we evaluate our method in both the entrance and exit scenes. The

ROC confirms that our method has a better performance than MDT [34] and

SRC [40] methods. We also discuss the comparison of AUC and EER in this

dataset in Table 5.

For the exit scene, we outperform the other considered methods in respect

to both AUC and EER measures; we outperform by 0.5% and 0.4% in AUC and

EER, respectively. For the entrance scenes, the AUC of the proposed method

achieves better results compared to all other methods by 0.4%. The proposed

method gains better outcomes in terms of EER for all methods except Saligrama

et al. [42]; they achieve better results by 0.3%.
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Table 4: EER for frame and pixel level comparisons on Ped2; we only list first author in this

table for reasons of available space

Method Frame-level Pixel-level Method Frame-level Pixel-level

IBC [31] 13% 26% Reddy [62] 20% —

Adam [32] 42% 76% Bertini [63] 30% —

SF [38] 42% 80% Saligrama [42] 18%

MPCCA [35] 30% 71% Dan Xu [6] 20% 42%

MPCCA+SF [33] 36% 72% Li [34] 18.5% 29.9%

Zaharescu [39] 17% 30% Tan Xiao [57] 10% 17%

MDT [33] 24% 54% Sabokrou [5] 19% 24%

Ours 11% 15%

Table 5: AUC-EER comparison on Subway dataset

Method SRC [40] MDT [33] Saligrama et al. [42] Ours

Exit 80.2/26.4 89.7/16.4 88.4/17.9 90.2/16

Entrance 83.3/24.4 90.8/16.7 –/– 90.4/17

4.4. Run-time Analysis

For processing a frame, three steps need to be performed: Some pre-processing

such as resizing the frames and constructing the input of the FCN, and rep-

resenting the input by the FCN are considered as the first and second step,

respectively. In the final step, the regional descriptors must be checked by a

Gaussian classifier.

With respect to these three steps, run-time details of our proposed method

for processing a single frame are provided in Table 6. The total time for detecting

Table 6: Details of run-time (second/frame)

Pre-processing Representation Classifying Total

Time (in sec) 0.0010 0.0016 0.0001 0.0027
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an anomaly in a frame is ≈0.0027 sec. Thus, we achieve 370 fps, and this is

much faster than any of the other considered state-of-the-art methods.

Table 7 shows the speed of our method in comparison to other approaches.

There are some key points which make our system fast. The proposed method

benefits from fully convolutional neural networks. These types of networks

perform feature extraction and localization concurrently. This property leads

to less computations.

Table 7: Run-time comparison on Ped2 (in sec)

Method
IBC
[31]

MDT
[33]

Roshtkhari et al.
[45]

Li et al.
[34]

Xiao et al.
[57] Ours

Run-time 66 23 0.18 0.80 0.29 ≈0.0027

Furthermore, by combining six frames into a three-channel input, we process

a cubic patch of video frames at just one forward-pass. As mentioned before,

for detecting abnormal regions, we only process two convolutional layers, and

for some regions we classify them using a sparse auto-encoder. Processing these

shallow layers results in reduced computations. Considering these tricks, besides

processing fully convolutional networks in parallel, results in faster processing

for our system compared to other methods.

5. Conclusions

This paper presents a new FCN architecture for generating and describing

abnormal regions for videos. By using the strength of FCN architecture for

patch-wise operations on input data, the generated regional features are context-

free. Furthermore, the proposed FCN is a combination of a pre-trained CNN

(an AlexNet version) and a new convolutional layer where kernels are trained

with respect to the chosen training video. This final convolutional layer of the

proposed FCN needs to be trained. The proposed approach outperforms existing

methods in processing speed. Besides, it is a solution for overcoming limitations
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in training samples used for learning a complete CNN. This method enables us

to run a deep learning-based method at a speed of about 370 fps. Altogether,

the proposed method is both fast and accurate for anomaly detection in video

data.
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