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Abstract

In this paper, we explore the different minimal case solutions to the rotational align-

ment of IMU-camera systems using homography constraints. The assumption that a

ground plane is visible in the images can easily be created in many situations. This

calibration process is relevant to many smart devices equipped with a camera and an

inertial measurement unit (IMU), like micro aerial vehicles (MAVs), smartphones and

tablets, and it is a fundamental step for vision and IMU data fusion. Our solutions

are novel as they compute the rotational alignment of IMU-camera systems by utiliz-

ing a first-order rotation approximation and by solving a polynomial equation system

derived from homography constraints. These solutions depend on the calibration case

with respect to camera motion (general motion case or pure rotation case) and camera

parameters (calibrated camera or partially uncalibrated camera). We then demonstrate

that the number of matched points in an image pair can vary from 1.5 to 3. This en-

ables us to calibrate using only one relative movement and provide the exact algebraic

solution to the problem. The novel minimal case solutions are useful to reduce the com-

putation time and increase the calibration robustness when using Random Sample Con-

sensus (RANSAC) on the point correspondences between two images. Furthermore,

a non-linear parameter optimization over all image pairs is performed. In contrast to

the previous calibration methods, our solutions do not require any special hardware,
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and no problems are experienced with one image pair without special motion. Finally,

by evaluating our algorithm on both synthetic and real scene data including data ob-

tained from robots, smartphones and MAVs, we demonstrate that our methods are both

efficient and numerically stable for the rotational alignment of IMU-camera systems.

Keywords: IMU-camera calibration, Rotational alignment, Minimal Solution,

Homography constraint, Algebraic solution, Pure rotation

1. Introduction

With the omnipresence of smart devices, the fusion of vision and IMU data play

an important role in a wide variety of applications such as simultaneous localization

and mapping (SLAM) [1] and structure from motion (SfM) [2, 3]. In order to perform

data fusion, IMU-camera calibration must be performed in advance to determine the5

transformation between the IMU coordinate system and the camera coordinate system,

which consists of a rotational component and a translational component.

For many applications only the rotational alignment is of importance, and the trans-

lational component between the IMU and the camera coordinate systems does not need

to be calibrated. Example applications are up-righting photos on a smart phone or spe-10

cial instances of visual-inertial ego-motion estimation [3, 4]. However, the accuracy

that can be achieved with these applications highly depends on the axis alignment be-

tween the IMU and the camera coordinate system. Therefore, this paper focuses on the

rotational alignment of IMU-camera systems.
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Figure 1: Overview of the proposed IMU-camera calibration methods. Our methods not only can be used

to calibrate the rotational component between the IMU and the camera using a single image pair, but also

can be used to achieve robust calibration results using RANSAC on multiple image pairs through exhaustive

pairwise matching.

IMU-camera calibration can be regarded as hand-eye calibration regarding the IMU15

as the hand [5, 6, 7, 8, 9], which has been widely considered for robotic or automo-

tive applications. Most of these methods compute the hand-eye calibration from rigid

transformation matrices of subsequent time steps. In our work, we propose to compute

the IMU-camera calibration directly from feature matches and also propose a robust

estimator by utilizing the RANSAC [10] to cope with outliers in the data. For such a20

RANSAC scheme, a minimal case solution is of the utmost importance, because the

number of random samples that must be taken to find one outlier free sample depends

exponentially on the number of parameters to instantiate one hypothesis. The goal of

this paper is to describe a technique allowing the rotational alignment of IMU-camera

systems to be performed robustly and accurately. Figure 1 illustrates the proposed25

IMU-camera calibration methods. We derive different minimal solutions depending on

the calibration case:

• If the motion of the calibrated camera is general motion including rotation and

translation, we develop a minimal solution using 3 point correspondences. The

solution is novel as it computes the camera motion and the IMU-camera calibra-30

tion simultaneously.

• If the motion of the calibrated camera is a pure rotation or can be approximated

effectively as a pure rotation, we will see that only 1.5 point correspondences are
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required to calibrate the rotational component between the camera and the IMU.

• If there is a partially uncalibrated camera, whereby the intrinsic parameters ex-35

cept the focal length are known, and the motion of the camera is a pure rotation,

we use 2 point correspondences to retrieve the focal length of the camera and

IMU-camera calibration.

Our contributions can be summarized in the following way:

• We derive the minimal case solutions for the rotational alignment of IMU-camera40

systems using homography constraints. By applying a first-order approxima-

tion of the rotation (when the three installation angles between the IMU and the

camera are approximately known), a practically usable implementation could be

found. These methods are efficient within a RANSAC scheme, and they can also

be effectively used to perform IMU-camera calibration on devices with limited45

computational power (e.g. smartphones and tablets).

• The proposed methods remove the requirement for the prior knowledge of the

camera poses. We directly minimize the image transfer residuals based on ho-

mography constraints, rather than conduct an algebraic minimization of transfor-

mation matrices between the IMU and the camera. The objective function based50

on the image measurements is a geometrically more meaningful criterion.

• Our solutions are novel as they allow us to compute the camera motion and

the IMU-camera calibration simultaneously without using a known calibration

device or any special hardware.

The proposed methods are evaluated on synthetic and real data sets. We test the55

algorithms under different levels of rotation magnitude and image noise. The synthetic

results show that our solutions do not show a significant loss in accuracy when operat-

ing under the assumption of first-order rotation approximation. We conduct a detailed

analysis of real data sets, including a robotic data set, a MAV data set and a common

smartphone data set, and compare the results with these from state-of-the-art methods.60

In particular, we demonstrate the use of the proposed methods under the challenging
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condition of only using a small number of images for calibration. Further, we evaluate

the accuracy obtained using different calibration methods with the ground truth. The

calibration results confirm the validity and robustness of the proposed IMU-camera

calibration methods.65

The remainder of the paper is structured as follows. First, we review related work in

Section 2. In Section 3, we establish basics and notations for IMU-camera calibration

methods using homography constraints. In Section 4, we derive the different minimal

case solutions using the Gröbner basis technique or analytical method according to

the calibration case and describe the non-linear parameter optimization over all image70

pairs. In Section 5, we validate the methods experimentally using both synthetic and

real scene data. Finally, concluding remarks are given in Section 6.

2. Related work

The IMU-camera calibration problem and the related hand-eye calibration problem

have already been addressed by various authors in many papers. A class of approaches75

to this problem use a filter-based approach to estimate the calibration information as

part of visual-inertial sensor fusion [11, 12, 13]. These approaches use inertial mea-

surements directly and consider the correlations between the IMU measurements. A

high camera frame rate is required because of the large number of DOFs in those ap-

proaches.80

In addition, some methods address the problem of rolling shutters in camera sen-

sors due to high frame rate [14, 15, 16, 17]. Rolling shutter constraints are important

for calibrating from video sequences, where the camera is moving during acquisition.

But in our case, we are taking images but not recording the video. There is not fast

relative motion between the scene and the camera. Even when we use a rolling shutter85

camera, we will acquire still images. In addition, we require a static scene, so a rolling

shutter camera will not produce artifacts with a non-moving camera and a static scene.

The rolling shutter effect is not necessary to taken into account in our paper. Moreover,

some methods require knowledge about the properties of the scene, e.g. known calibra-

tion targets [12, 18, 19]. In contrast, a method for IMU-camera calibration without the90
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use of a known calibration device or any special hardware is presented in this paper,

which is useful in many situations where calibration device or special hardware will

not be allowed or provided.

Typically, common IMUs output the complete rotation information with respect to

the IMU reference coordinate system. Hence, in the following review, we focus on95

the different approaches which directly use rotation information from the IMU to solve

the IMU-camera calibration problem. Hand-eye calibration has been studied by many

researchers in the past. The standard formulation of the hand-eye calibration problem

leads to a solution to the well-known equation AX = XB, where A and B are the

known relative rigid motions of the camera and the IMU, respectively. It has been100

shown that the transformation between the IMU coordinate system and the camera

coordinate system X can be determined with at least two motions along non-parallel

rotation axes [9]. The existing methods can be divided into three groups. The first

group of methods solves the rotational and translational components separately [6, 8, 9]

or only solves the rotational component [20]. The second group of methods solves the105

rotational and translational components simultaneously [5, 6, 7, 21]. Kukelova et al.

[7] presented the minimal problem of hand-eye calibration for the situations, whereby

the translational components of the hand can be measured but rotational components

are not known. The transformation X is solved by the minimal number of two relative

movements, and the solution can be refined afterward by applying the optimization110

method of Zhuang and Shiu [21]. However, both groups of methods require the prior

knowledge of the camera poses, which are recovered by a calibration pattern or a SfM

approach.

Recently, another group of methods has been described that use image measure-

ments directly and do not require prior knowledge of the camera poses. Ruland et115

al.[22] and Heller et al.[23, 24] solved for the rotation and translation simultaneously

by minimizing the residuals in image space. The above-mentioned methods employ

the branch-and-bound algorithm to obtain a globally-optimal estimate with respect to

L∞-norm minimization. As these methods have not adopted any procedures to cope

with outliers, their accuracy is highly influenced by feature mismatches. For an air-120

craft equipped with a camera and a GPS-corrected inertial navigation system, Ben-
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der et al.[25] performed an in-flight calibration of camera parameters and boresight

with a graph optimization framework. Moreover, for smart devices like smartphones

and tablets, the IMU alone cannot provide the position information as the actuator of

robots can. The approaches which solve simultaneously the rotational and translational125

components cannot be used.

Moreover, there is a special IMU-camera calibration situation where the motion of

the camera is assumed to be pure rotation. Seo et al.[26] assumed all the translations

to be zero and solved the rotational component between the IMU and the camera us-

ing image correspondences. Hwangbo et al.[27] also presented a calibration method130

based on homography transformation of image correspondences assuming pure rota-

tion. Karpenko et al.[28] calibrated the camera and gyroscope system from a single

input video, which was obtained by quickly shaking the camera while pointing it at

a far-away object. Pure rotation case has practical relevance. By rotating the camera

outside, where everything is far away, the parallax-shift of most objects is hardly no-135

ticeable. Such data is close enough to a pure rotation case such that an algorithm for

a pure rotation case can be applied to it. In the pure rotation case, it also has already

been established that it is possible to recover the focal length of the camera [29].

Mathematically, given the relative rotations as measured in two coordinate frames,

the relative rotation between two coordinate frames can be found using the Procrustes140

method [30]. As the relative camera rotations in this case are computed from image

features, the accuracy of the relative rotations depend on the image features. In [31],

error propagation was used to analyze the dependency on the quality of the image

features, and it has been stated that the method which directly minimizes the image

transfer residuals leads to better results than the Procrustes method.145

In this work, rather than computing essential matrices to extract the relative mo-

tions, the relative motions are extracted from homographies computed between image

pairs. The estimation of a homography needs fewer point correspondences than the

estimation of the essential matrix, which is beneficial for use in a RANSAC loop. The

assumption that a ground plane is visible in the images lowers again the number of150

necessary point correspondences, while this condition can easily be created in many

situations.
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Ventura et al.[32] propose a minimal solution for estimating the motion of a multi-

camera rig by using a first-order approximation to relative pose. In many practical

cases, the approximate installation relationship between the IMU and the camera is155

known (e.g. hand-measured or extracted from device layouts). Therefore, we can safely

use a first-order approximation of the rotation matrix, which simplifies the IMU-camera

calibration problem and allows us to find minimal case solutions.

3. Basics and notations

With known intrinsic camera parameters, a general homography relation between160

two different views is represented as follows [33]:

λxj = Hxi = (R− 1

d
tNT )xi, (1)

where xi = [xi, yi, 1]T and xj = [xj , yj , 1]T are the normalized homogeneous image

coordinates of the points in views i and j, and λ is a scale factor. H is the homography

matrix, R and t are the rotation and the translation from views i to j, respectively, and

d is the distance between the view i frame and the 3D plane. N is the unit normal165

vector of the 3D plane with respect to the view i frame.
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Figure 2: The illustration of the camera coordinate systemFc, IMU coordinate systemFimu, IMU reference

coordinate system Fr and aligned camera coordinate system Fa. We show both a general image pair (left)

and aligned image pair (right).

As shown in Figure 2, the rotational alignment difference between Fc and Fimu is
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expressed with Rcalib, while the orientation estimations from Fimu to Fr are given by

Rimu. The rotations of views i and j can be expressed as Ri
imuRcalib, Rj

imuRcalib in

Fr, respectively. We can align image features from Fc to Fa, which coincides with the

coordinate axes of Fr. Then the relationship between two aligned views ĩ and j̃ only

has a translation component t̃ left. The unit normal vector of the ground plane with

respect to the aligned view ĩ is expressed as Ñ = [0, 0, 1]T . The homography relation

between views i and j can be re-expressed as:

λxj = (RT
calib(R

j
imu)TRi

imuRcalib −
1

d
RT

calib(R
j
imu)T t̃ÑTRi

imuRcalib)xi. (2)

Note that in t = RT
calib(R

j
imu)T t̃, the camera-plane distance d is set to 1 and

absorbed by t [3]. By this the homography between views i and j can be rewritten as:

H = RT
calib(R

j
imu)TRi

imuRcalib − tÑTRi
imuRcalib. (3)

In order to further eliminate the unknown scale factor λ, we multiply both sides of

Eq. 1 by the skew-symmetric matrix [xj ]×, which yields the equation:

[xj ]×Hxi = 0. (4)

Eq. 4 has three rows and only imposes two independent constraints on H. More-

over, we exploit the fact that image correspondences are still related by homography

when the motion of the camera between two views is a pure rotation or can be ef-

fectively approximated as a pure rotation. In this way, we also consider the special170

IMU-camera calibration case that the translation t from views i to j is zero.

4. IMU-camera calibration using homography constraints

This section describes the proposed algorithms for the rotational alignment of IMU-

camera systems using a homography formulation. In particular we describe the deriva-

tion of polynomial equation systems to be used to compute the unknown rotational175

alignment parameters. We describe how these polynomial equation systems can be

solved by making use of a Gröbner basis solver or in a specific case by making use of

the 3Q3 method.
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In the following subsections, we give the derivation of the 3pt algorithm for the

calibrated camera for a general motion case. Then we give the derivation of the 1.5pt180

algorithm for the calibrated camera for a pure rotation case. Finally, we give the deriva-

tion of the 2pt algorithm for the partially uncalibrated camera (unknown focal length)

for the pure rotation case.

4.1. 3pt calibration method for the general motion case

By parametrizing Rcalib by three rotations (x, y, z) and substituting it into Eq.

3, we attain polynomial equations with 9 unknowns, i.e. 6 rotation parameters r =

[cos(x), sin(x), cos(y), sin(y), cos(z), sin(z)]T , and 3 translation parameters for t =

[tx, ty, tz]T . Each point correspondence gives 2 linearly independent equations based

on Eq. 4. The equations from 3 point correspondences give a total of 6 polynomial

equations:

fm(r, tx, ty, tz) = 0, m = 1, 2...6. (5)

The three additional trigonometric constraints in rotation parameters r can be uti-

lized:
cos2(x) + sin2(x) = 1,

cos2(y) + sin2(y) = 1,

cos2(z) + sin2(z) = 1.

(6)

Combining Eqs. 5 and 6, we attain 9 polynomial equations in 9 unknowns. A185

suitable way to find an algebraic solution to such a polynomial equation system is to use

the Gröbner basis technique [34]. We use the automatic Gröbner basis solver described

by Kukelova et al.[35]. Evaluating the Gröbner basis, we find that the polynomial

equation system has a maximum polynomial degree of 6 and up to 48 solutions. The

produced Matlab-code indicates the number of operations necessary, which involves190

equations that need 18018 lines to print them out, which leads to an extremely long run-

time for the solver. We also experienced numerical stability issues with this derivation.

As this solver should be used within a RANSAC loop, it is important to find a faster

solver, especially to perform IMU-camera calibration on smart devices with limited

computational power.195
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Our key observation is that in smart devices such as smartphones and tablets, the

approximate installation relationship between the IMU and the camera which is de-

fined as RA is known from hand measurements or obtained from device layouts and is

usually approximated with 0◦, ±90◦ or 180◦. We can safely approximate the rotation

matrix to the first-order, which simplifies the polynomial equation system. First, we ro-

tate the image features in views i and j using the approximate installation relationship

RA:

x̂i = RAxi, x̂j = RAxj . (7)

The remaining rotation between the IMU coordinate system and the rotated camera

coordinate system is small. This allows us to replace the remaining rotation matrix

R̂calib by its first-order expansion:

R̂calib = I3×3 + [̂r]×, (8)

where r̂ = [r̂x, r̂y, r̂z]T is a three-dimensional vector. The corresponding exact rotation

matrix can be retrieved by projecting the matrix to the closest rotation matrix. Like Eq.

3 and Eq. 4, we attain the new homography equation and homography constraints for

the rotated image features:

Ĥ = R̂T
calib(R

j
imu)TRi

imuR̂calib − t̂ÑTRi
imuR̂calib, (9)

[x̂j ]×Ĥx̂i = 0. (10)

The unknowns we are seeking for are the calibration parameters r̂ = [r̂x, r̂y, r̂z]T

and the translation t̂ = [t̂x, t̂y, t̂z]T from the rotated views i to j. Based on Eq. 10, the

equations from 3 point correspondences give a total of 6 polynomial equations:

fw(r̂x, r̂y, r̂z, t̂x, t̂y, t̂z) = 0, w = 1, 2...6. (11)

The automatic Gröbner basis solver [35] shows that this polynomial equation sys-

tem has a maximum polynomial degree of 2 and at most 24 solutions. This equation

system only needs 766 lines to print out. We use each solution to compose the homog-

raphy for the rotated image features with Eq. 9 and choose the solution which has the
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maximum number of inliers in the RANSAC loop. From this robust estimation proce-

dure, we obtain R̂calib and t̂ for each image pair. We finally calculate the rotational

component Rcalib between the IMU and the camera with:

Rcalib = R̂calibRA. (12)

At the same time, the camera motion is recovered as well. The relative motion

between views i and j in Eq. 1 is calculated by:

R = RT
calib(R

j
imu)TRi

imuRcalib, (13)

t = RT
At̂. (14)

4.2. 1.5pt calibration method for the pure rotation case

By again using the first-order approximation of the rotation, we propose two meth-

ods to perform IMU-camera calibration for the pure rotation case with the calibrated

camera, specifically, the Gröbner basis method and the proposed analytical solver

called the 3Q3 method.200

4.2.1. Gröbner basis method

Assuming that t̂ is [0, 0, 0]T in Eq. 9, the homography matrix Ĥ with pure rotation

case is given by:

Ĥ = R̂T
calib(R

j
imu)TRi

imuR̂calib, (15)

The unknowns we are seeking for are the calibration parameters r̂ = [r̂x, r̂y, r̂z]T .

According to the homography constraints in Eq. 10, the equations from 1.5 point

correspondences give a total of 3 polynomial equations:

fw(r̂x, r̂y, r̂z) = 0, w = 1, 2, 3. (16)

The Gröbner basis solver [35] shows that this polynomial equation system has a205

maximum polynomial degree of 2 and at most 8 solutions. This equation system only

needs 151 lines to print out. An interesting fact in this case is that only one of the

two available equations from the second point is used. Although the RANSAC loop
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requires us to sample 2 points for this method, it is now possible to run a consistency

check on the second point correspondence. To identify an outlier free homography210

hypothesis, one remaining equation has also to be fulfilled. We choose the solution

which has the maximum number of inliers in the RANSAC loop, then we finally attain

the rotational component Rcalib between the IMU and the camera by Eq. 12.

4.2.2. 3Q3 method

The IMU-camera calibration for the pure rotation case can be formulated as the 3Q3215

problem [36], which contains three quadratic equations with three unknowns. Now, we

denote the problem of solving the three quadrics with three unknowns and propose the

analytical solver as a 3Q3 solver.

Now, we expand the equations Eq.10 and 15 on the unknowns r̂ = [r̂x, r̂y, r̂z]T :

c11 c12 c13 c14 c15 c16 c17 c18 c19 c110

c21 c22 c23 c24 c25 c26 c27 c28 c29 c210





r̂2
x

r̂2
y

r̂2
z

r̂xr̂y

r̂xr̂z

r̂y r̂z

r̂x

r̂y

r̂z

1



= 0, (17)

with:

∆RIMU = RT
IMUjRIMUi =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (18)
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

c11 = I32 + I22yj − I33yi − I23yjyi

c12 = I11yj − I13yjxi

c13 = −I11yi + I12xi

c14 = −I31 − I12yj − I21yj + I33xi + I13yjyi + I23yjxi

c15 = −I12 − I32xi + I13yi + I31yi − I22yjxi + I21yjyi

c16 = I11 − I13xi + I12yjxi − I11yjyi

c17 = I22 − I33 − I23yj − I32yj − I31xi − I23yi − I32yi

− I21yjxi − I22yjyi + I33yjyi

c18 = −I21 + I13yj + I31yj + I23xi + I11yjxi − I33yjxi + I12yjyi

c19 = I13 + I11xi − I22xi + I12yi + I21yi + I32yjxi − I31yjyi

c110 = I33yj − I23 − I21xi − I22yi + I31yjxi + I32yjyi

(19)



c21 = −I22xj + I23xjyi

c22 = −I31 + I33xi − I11xj + I13xjxi

c23 = I22xi − I21yi

c24 = I32 + I12xj + I21xj − I33yi − I23xjxi − I13xjyi

c25 = −I22 + I23yi + I22xjxi − I21xjyi

c26 = I21 − I23xi − I32xi + I31yi − I12xjxi + I11xjyi

c27 = −I12 + I23xj + I32xj + I13yi + I21xjxi + I22xjyi − I33xjyi

c28 = I11 − I33 − I13xi − I31xi − I32yi − I11xjxi + I33xjxi − I12xjyi

− I13xj − I31xj

c29 = I23 + I12xi + I21xi − I11yi + I22yi − I32xjxi + I31xjyi

c210 = I13 − I33xj + I11xi + I12yi − I31xjxi − I32xjyi

(20)

The equations have a maximum polynomial degree of 2. Using 1.5 points, we can220

compute the three unknowns (r̂x, r̂y, r̂z) based on three equations. We use the two

constraint equations of the first point and the first constraint equation of the second
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point. The polynomial equation system can be expressed as follows:

ci

[
r̂2
x r̂2

y r̂2
z r̂xr̂y r̂xr̂z r̂y r̂z r̂x r̂y r̂z 1

]T
= 0, (21)

where the problem coefficients are cij , i = 1, 2, 3, j = 1, 2......, 10. We ‘hide’ the

unknown r̂x, which leaves us with two unknowns r̂y, r̂z , and Eq. 21 can be rewritten

[36]: 
s

[2]
11(r̂x) s

[2]
12(r̂x) s

[3]
13(r̂x)

s
[2]
21(r̂x) s

[2]
22(r̂x) s

[3]
23(r̂x)

s
[3]
31(r̂x) s

[3]
32(r̂x) s

[4]
33(r̂x)



r̂y

r̂z

1

 = M(r̂x)


r̂y

r̂z

1

 = 0 (22)

where the upper index [·] denotes the maximum possible degree of the respective poly-

nomial sij(r̂x).225

Now, as in the hidden variable resultant method mentioned previously, we can find

an up to degree 8 polynomial in r̂x:

det(M(r̂x)) = 0 (23)

The unknown r̂x has at most 8 solutions and can be computed as the eigenvalues

of the companion matrix of det(M(r̂x)). Then, the corresponding solutions for the

unknowns r̂y , r̂z can be obtained by performing SVD after substituting the particular

solutions for r̂x into M(r̂x).

4.3. 2pt calibration method with an unknown focal length for the pure rotation case230

In this case, we assume that we have a camera equipped with an IMU with known

intrinsic camera parameters except for an unknown common focal length. This is a

typical case encountered in practice. For example, it is often practical to assume that

the principal point and aspect ratio can be considered as fixed and known for a certain

camera [33], the focal length of camera is constant across multiple views.235

Brown et al.[29] have presented a solution to the problem of estimating rotation and

the focal length from two images in the same scene undergoing pure rotation by using

two point correspondences. Inspired by Brown et al.[29], we firstly compute the focal

length f using two point correspondences and normalize image coordinates using the
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focal length. Then, we use the Gröbner basis method in Section 4.2.1 or 3Q3 method240

in Section 4.2.2 to calibrate the rotational alignment between the IMU and the camera.

4.4. Non-linear parameter optimization

Using the 3pt calibration method for the general motion case or the 1.5pt calibration

method for the pure rotation case, Rcalib, tij and the corresponding inliers can be

obtained for each image pair, leading to Np inliers in M image pairs, whereby each245

image pair is referenced by p. Note that all translation parameters tij are 0 in the

pure rotation case. In the optimization step, the translation parameters of the M image

pairs are fixed, and the rotation parameters Rcalib between the IMU and the camera

are optimized using all the inliers. The cost function which minimizes the total transfer

errors is as follows:250

ε = min
R̄

M∑
p=1

Np∑
k=1

∥∥xk
j −Hpx

k
i

∥∥
= min

R̄

M∑
p=1

Np∑
k=1

∥∥xk
j − g(R̄, tpij ,R

p
imu)xk

i

∥∥, (24)

where R̄ is the three-parameter rotation estimate used for optimization. For initializa-

tion, we set it to the mean or median angles computed from the M calibration results

obtained in the previous step. k is the index of the inliers within each image pair p,

which is composed of views i and j. xk
i = [xki , y

k
i , 1]T and xk

j = [xkj , y
k
j , 1]T are the

homogeneous image coordinates of the inlier k, with a unit of pixel. tpij is the trans-255

lation vector in image pair p, and Rp
imu denotes the IMU rotation matrices of views i

and j. The homography g(R̄, tpij ,R
p
imu) is the transformation model, which transfers

the homogeneous image coordinate xi in view i to the corresponding image coordinate

xj in view j.

Using 2pt calibration method with the unknown focal length for the pure rotation

case, the focal length f and the rotation parameters Rcalib between the IMU and the

camera are optimized together using all the inliers. The cost function which minimizes

the total transfer errors is as follows:

ε = min
(f̄ ,R̄)

M∑
p=1

Np∑
k=1

∥∥xk
j − g(f̄ , R̄,Rp

imu)xk
i

∥∥, (25)
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where f̄ and R̄ are the parameters to optimize. For initialization, we also set f̄ and R̄260

to the mean or median values computed from the M calibration results obtained in the

previous step. The definitions of parameters xk
i , xk

j and Rp
imu are the same as in Eq.

24, please refer to Eq. 24.

The Cauchy function is used to create a robust cost function in the optimization

process, to reduce the influence of outliers that may still be present.

ρ(ε) =
σ2

2
log(1 +

ε2

σ2
). (26)

We set the σ parameter of the Cauchy function to 2 pixels, which is similar to the

inlier threshold of the RANSAC loop, which is also 2 pixels.265

5. Experiments

We validated the performance of the proposed IMU-camera calibration methods

using both synthetic and real scene data, including the 3pt calibration method for the

general motion case (3pt), the 1.5pt calibration method for the pure rotation case (1.5pt-

GB and 1.5pt-3Q3) and the 2pt calibration method with the unknown focal length for270

the pure rotation case (2pt-GB and 2pt-3Q3).

In all of the experiments, we compared the rotational component between the IMU

and the camera (in Euler angles) and compared the relative translation between views

i and j separately. The used error measure compares the angle difference between the

true rotation and estimated rotation. Since the estimated translation between views i275

and j is only known up to scale, we compare the angle difference between the true

translation and estimated translation. The errors are computed as follows:

• Rotation error: ξR = arccos((Tr(RgtR
T
calib)− 1)/2)

• Translation error: ξt = arccos((tTgtt)/(‖tgt‖ ‖t‖))

Rgt, tgt denote the ground-truth transformation and Rcalib, t are the corresponding280

estimated transformations.
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5.1. Experiments with synthetic data

5.1.1. Accuracy with increasing rotation

We evaluate our approach with respect to increasing amounts of remaining rota-

tion, as we approximate the remaining rotation matrix to the first-order and truncate285

the higher-order terms. For this experiment, normalized image points are generated

randomly and point matches are computed by the ground truth homography. The num-

ber of independent trials is 10000, and three approximate installation angles between

the IMU and the camera are chosen randomly, from −180◦ to 180◦. We set three ap-

proximate angles between the IMU and the camera as known and use this approximate290

rotation matrix to rotate the image features first. The three remaining angles between

the IMU and the camera are then increased from 0◦ to 10◦ in steps of 1◦. We assess the

rotation and translation error in three different ways: Mean denotes the mean value

of the errors, Median denotes the median value of the errors and RMSE denotes the

root mean square error of the errors.295

We report the results on the data points within the first interval of a 5-quantile

partitioning1 (Quintile) of 10000 trials. The errors for the rotational component and

translation are reported in Figures 3. There is no significant difference among Mean,

Median and RMSE, and when the three approximate installation angles between the

IMU and the camera are known, the errors increase slowly as the remaining rotation300

magnitude increases. It shows that our methods are numerically stable and do not show

a significant loss in accuracy even at the maximum magnitude for the remaining rota-

tion angles up to 10◦. From the Figures 3, we can also see that the 3pt calibration

method for the general motion case returns slightly more accurate estimates than the

1.5pt calibration method for the pure rotation case. One reason for this is that Eq. 15305

is only composed of a rotation matrix, so the pure rotation case is generally more sen-

sitive to the rotation magnitude. Notice that the 1.5pt-GB and 1.5pt-3Q3 methods have

similar accuracy with increasing magnitudes of rotation. The 2pt calibration method

with the unknown focal length has not been performed, because the computation of

1k-quantiles divide an ordered data set into k regular intervals
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focal length is not influenced by the rotation magnitude between the IMU and the cam-310

era, so the rotational component error for the 2pt method is as same as for the 1.5pt

method.
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Figure 3: Mean, Median and RMSE for the rotational component and translation with increasing magnitudes

of remaining rotation. No noise is added to the observations. (a) and (b) are the rotational component and

translation errors for the 3pt method, respectively. (c) and (d) are the rotational component errors for the

1.5pt-GB and 1.5pt-3Q3 methods, respectively.

5.1.2. Accuracy with increasing image noise

We synthesize a pinhole camera with zero skew and an unit aspect ratio that has a

resolution of 800×640 pixels. The principle point is assumed to be at the image cen-315

ter. A different level of Gaussian noise with a standard deviation ranging from 0 to 2

pixels is then added to the image feature observations. The approximate installation

angles between the IMU and the camera are set to (180◦, 0◦,−90◦), while keeping the
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remaining rotation angles constant at (1◦, 1◦,−1◦). The focal length is chosen as 600

pixels, so that one pixel corresponds to about 0.1◦. At each noise level, 10000 indepen-320

dent trials are conducted, and for each test, we select 3 image features randomly for the

3pt method, or 2 image features randomly for the 1.5pt and 2pt methods. The errors for

the rotational component and translation are reported in Figure 4. As in the previous

experiment, we report the results on the data points within the first one interval of a

5-quantile partitioning. The accuracy of our method is observed to decrease almost325

linearly with the increase in image noise. We can clearly see that the 3pt calibration

method for the general motion case produces much better results than the 1.5pt and 2pt

calibration methods for the pure rotation case. For the pure rotation case, no matter

what the focal length error or rotational component error, we do not find any differ-

ence in accuracy between the GB method and 3Q3 method. Figure 4(e) and (g) are330

significantly different in terms of the Mean, Median and RMSE of the focal length

error, and the RMSE is quite shaky, because we generate 2 image points randomly to

compute the focal length for each test, and the accuracy of focal length is influenced

by the distribution of the image points.
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Figure 4: Mean, Median and RMSE for the rotational component and translation with increasing image noise,

with the approximate installation angles (180◦, 0◦,−90◦) and the remaining rotation angles (1◦, 1◦,−1◦)

between the IMU and the camera. (a) and (b) are the rotational component and translation errors for the

3pt method, respectively. (c) and (d) are the rotational component errors for the 1.5pt-GB and 1.5pt-3Q3

methods, respectively. (e, f), and (g, h) are the estimated focal length and rotational component errors for the

2pt-GB and 2pt-3Q3 methods, respectively.
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5.2. Real scene data experiment335

Our real image data sets consist of a data set from a mobile robot, a data set acquired

with a common smartphone (SONY LT22i) and a data set from a micro aerial vehicle

(MAV). For each of these data sets, we show the results of a detailed analysis and

compare these with those obtained using state-of-the-art methods. The robotic scenario

and smartphone data set are used to evaluate the 3pt method. Using the smartphone data340

set, we also demonstrate that the proposed method can be used with a small number

of images under challenging conditions. All the proposed calibration methods were

also evaluated with the MAV data set. We compared our methods to state-of-the-art

methods that can handle the same input data, which are small wide baseline image data

sets without calibration targets. Methods which need specific calibration targets in the345

images and require video data were not used in our comparison e.g. Crisp [17] and

Kalibr [19, 37].

For each data set, we consider feasible image pairs for image matching. For each

image pair, features matches are created using SURF feature matching [38], and the cal-

ibration parameters are estimated using our method within a RANSAC loop [10]. We350

use an inlier threshold of 2 pixels and a fixed number of 100 iterations for RANSAC.

All inliers of all the image pairs are stored for the subsequent optimization step. Con-

sidering that different rotational estimates have been computed for each image pair, we

choose the median and mean angle values of the rotations of all image pairs as the initial

values for non-linear parameter optimization, respectively. However, the optimization355

converged to the same result for both initializations in all experiments. The intrinsic

parameters of the cameras were obtained in advance, except for the 2pt method. Fi-

nally, we also obtained a comparison to the ground truth by using a calibration target

for all our methods.

5.2.1. Real data from the Vicon data set360

The Vicon data set has been acquired with a perspective camera mounted on a mo-

bile robot. The camera is synchronized with a Vicon motion capture system consisting

of 22 tracking cameras. Vicon markers are attached to the camera mount and the pose is

tracked by the Vicon system. In this experiment, the Vicon poses are used as IMU data.
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Furthermore, for the comparisons, we scale our translation directions with the metric365

scale obtained from the Vicon system. The approximate installation angles between

the IMU and the camera are (180◦, 0◦, 0◦). The camera is typically looking towards

the ground, and 219 images of 1624×1234 pixels are captured. To obtain expressive

results, we compare the 3pt method to a range of reference implementations: Tsai89

[9], Park94 [8], Horaud952 [6], Daniilidis99 [5] and Heller16 [24]. As the methods370

require the prior knowledge of the camera poses or the image correspondences, the

open source SfM pipeline COLMAP [39] is used to recover the poses of images. The

metric scale is recovered by using the data from the Vicon system. The image poses are

taken as input parameters for the hand-eye calibration methods Tsai89 , Park94, Ho-

raud95 and Daniilidis99, while the inlier matches determined by COLMAP are used in375

Heller16.

Table 1 shows the calibration results obtained by the computations using all the

methods. There is no ground truth for the rotational component between the IMU and

the camera, so we cannot assess the accuracy quantitatively. As can be seen, Park94,

Horaud95 and our approach are close to the installation angles. We were not able to380

produce a result with Heller16 for a data set of this size, Tsai89 and Daniilidis99 have

a significant deviation from the actual installation angles. The hand-eye calibration

methods typically rely on accurate and outlier free pose estimates, and small inaccura-

cies, typical to SfM pipelines, will already produce large deviations in the calibration

results. Although the methods of Tsai89, Park94, Horaud95 and Daniilidis99 solve for385

the same equation system, they use different parameterization for the transformation

parameters, leading to different results. Heller16 requires the use of outlier free feature

tracks for each image pair to construct the optimization task. As these methods have

not adopted any procedures to cope with outliers, either in the transformations or in

the feature matches, the accuracy is inevitably influenced by such outliers. In contrast,390

our 3pt method uses three point correspondences directly and performs RANSAC as a

framework for robust estimation. This experiment successfully demonstrates the prac-

ticability of our proposed 3pt method. The histogram of inlier transfer errors for the

2We use the first method to solve for the rotational and translational components separately.
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Method Calibration results (degree)

Approximate installation angle (180.0, 0.0, 0.0)

Tsai89 (-8.91, -56.05, 12.21)

Park94 (180.73, -0.84, -2.33)

Horaud95 (180.72, -0.79, -2.30)

Daniilidis99 (33.46, -34.00, -176.81)

Heller16 \

Our method

Mean: (181.35, 0.16, -0.17)

Median: (181.18, 0.61, -0.16)

Optimization: (181.40, 1.74, 1.10)

Table 1: The calibration results for the Vicon data set. For our method, non-linear parameter optimization

yields the same final calibration result when initialized with either the mean or the median values, so only

one optimization calibration result is shown here. Tsai89 and Daniilidis99 show strong deviations in this

experiment.

Vicon data set is shown in Figure 5. The inlier transfer error is computed from the

individual terms in Equation 24.395
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Figure 5: Histogram of inlier transfer errors for the Vicon data set using the 3pt method. In all of experiments,

the labels “Sum“, “Mean“ and “Std Dev“ stand for total number of inlier, mean and standard deviation of

inlier transfer errors, respectively.
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Method Calibration results (degree)

Approximate installation angle (180.0, 0.0, 180.0)

Tsai89 (-32.06, 25.07, -67.71)

Park94 (184.00, -0.39, 187.54)

Horaud95 (194.49, -7.08, -31.53)

Our method

Mean: (181.16, 0.82, 179.43)

Median: (180.25, 0.39, 179.69)

Optimization: (179.47, 3.26, 180.23)

Table 2: The calibration results for the Sony data set using all the 42 images. Tsai89 and Horaud95 cannot

produce correct results.

5.2.2. Real data from the SONY LT22i smartphone

To demonstrate that the 3pt method also works on currently-available consumer

smartphones, we tested it with the SONY LT22i equipped with a camera and an IMU.

We determined the approximate installation angles of the SONY LT22i to be (180◦,

0◦, 180◦). 42 images of 3264×2448 pixels are captured by its rear camera. Due to the400

lack of translation information of the smartphone, Daniilidis99 and Heller16 cannot be

tested for comparison.

Like the Vicon data set, the image poses are computed using COLMAP. Table

2 shows the calibration results computed by the 3pt method and the other hand-eye

calibration methods. As can be seen, the results yielded by Tsai89 and Horaud95405

significantly deviate from the actual installation angles. Park94 and our 3pt method, in

comparison, yield results that are close to the installation angles. This shows that our

3pt method is effective for this scenario as well. The histogram of inlier transfer errors

for the Sony data set is shown in Figure 6(a). The orthophotos of the images rectified

using the calibration results are shown in Figure 7.410
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Figure 6: Histogram of inlier transfer errors for the Sony data set.

Figure 7: Orthophotos created using the calibration results. Three representative images are shown as orig-

inal images (left) and orthophotos (right), and the size of the orthophotos is determined by the maximum

value of image boundaries. Obviously, the edges of the magazines are perpendicular in the orthophotos.
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Method Calibration results (degree)

Approximate installation angle (180.0, 0.0, 180.0)

Tsai89 (-0.57, -3.35, 206.68)

Park94 (-53.39, -12.82, 189.70)

Horaud95 (1.17, -12.47, 190.74)

Our method

Mean: (178.76, 1.31, 176.71)

Median: (178.51, 0.04, 179.11)

Optimization: (181.28, -0.78, 178.30)

Table 3: The calibration results for the Sony data set using only a subset of 8 images. Only our 3pt method

produces a correct result.

To test the robustness of our 3pt method, we perform an experiment under the

challenging condition of using only a small number of images. We only take 8 images

of the data set for a calibration experiment. The calibration results in Table 3 show that

only our 3pt method works effectively for this challenging data set. The histogram of

inlier transfer errors is shown in Figure 6(b).415

Our 3pt method computes the camera motion and the IMU-camera calibration si-

multaneously. This allows us to visualize the camera motion. We align the pose of

one camera of the data set with an estimate from COLMAP and transfer the scale from

COLMAP to our results. The camera motion of the challenging data set recovered

by our 3pt method is shown in Figure 8. Compared with COLMAP, the rotation and420

translation differences are shown in Table 4. Our method achieves comparable recon-

struction results as SfM pipelines, while the rotational component between the IMU

and the camera is computed as well. It should be noted that most methods require

performing SfM on the images to create the input data, while ours can also be used to

compute the camera motion.425
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Images 1 2 3 4 5 6 7

ξR(deg.) 2.52 0.93 0.56 0.64 1.65 1.40 1.41

ξt(deg.) 1.76 0.77 0.67 0.73 2.20 1.40 1.13

Table 4: The rotation and translation differences of the camera poses between our 3pt method and COLMAP

for the Sony 8 images data set.

8

7

6

5

1

4

2

3

Red  Camera - Our Method

Blue Camera - Colmap

Figure 8: Camera poses for the 8 images Sony data set. The camera motion recovered by our 3pt method

and COLMAP. The 8 images used are shown in the lower right corner.

5.2.3. Real data from the MAV

To demonstrate the 3pt (both rotation and translation for the camera), the 1.5pt

(pure rotation for the camera) and the 2pt (pure rotation for the camera with unknown

focal length) calibration methods in a realistic scenario we have collected two data

sets with our Pixhawk drone, see Figure 9. The data sets under general motion and430

pure rotation have been obtained by conducting the experiments in a room equipped

with a motion capture system consisting of 10 cameras. Markers are attached to the

camera mount and the pose is tracked by the motion capture system. In this exper-

iment, the marker poses are used as IMU data in the experiments. The approxi-
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mate installation angles between the IMU and the RGB camera are (113◦, 0◦, 90◦),435

which come from the design of the 3D printed mount. The offset of the RGB cam-

era and the depth camera has been calibrated beforehand, which is a pure translation

(0.000,−0.020, 0.000)m. The camera is typically looking towards the ground, and the

resolution of images is 640×480 pixels. The intrinsic matrix of RGB camera has been

calibrated using the popular Bouguet toolbox [40]: K = [536.29461 0 317.76263;440

0 536.18547 238.81011; 0 0 1], and the lens distortion is (0.04234, −0.12481,

−0.00040, −0.00029, 0.00000). 23 images under general motion are captured for the

3pt calibration methods, and 81 images under pure rotation are captured for the 1.5pt

and the 2pt calibration methods.

Markers

RGBD Camera

(a) Pixhawk drone (b) Sample image

Figure 9: MAV data set. (a). Pixhawk drone capturing image. (b). Sample image captured by the Pixhawk

drone.

In Table 5, we show the calibration results of the different calibration algorithms.445

All calibration results are similar. All our methods (the 1.5pt, 2pt, GB and 3Q3 meth-

ods) have quite consistent calibration results. The focal length estimation using the

2pt method is also quite accurate compared to the calibration results obtained with the

Bouguet toolbox.

5.2.4. Accuracy evaluation450

In this final experiment, we continue to use the MAV to acquire a data set of images

for a calibration target to evaluate the accuracy of the calibration results as compared to

the ground truth (see Table 5). The calibration target consists of a checkerboard which
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Method Calibration results (degree)/ Focal length (pixel)

Approximate installation angle (113.0, 0.0, 90.0)

3pt (114.1171, 1.3155, 88.6784)

1.5pt-GB (114.4211, 1.2609, 88.7395)

1.5pt-3Q3 (114.4241, 1.2845, 88.74310)

2pt-GB (114.5166, 2.6220, 88.4692), f = 539.4631

2pt-3Q3 (114.3481, 2.4268, 88.6699), f = 543.5531

Table 5: The calibration results for the MAV data set. Only the calibration results after non-linear parameter

optimization are shown in this table.

is horizontally placed on the ground floor. Four motion tracking markers are placed

onto the corners of the checkerboard, see Figure 10(a). The size of each checker is455

3.5cm × 3.5cm. The coordinates of the four markers are measured using the motion

capture system, which are the coordinates of the four outmost corners of the checker-

board. The precise coordinates on the calibration target are estimated, taking into ac-

count the radius of the markers, which is 0.85cm. Then, all the remaining coordinates

of the checkerboard corners are computed from the measured outmost corner coordi-460

nates.

We randomly take 49 images around the checkerboard at the distance of 1m, and

we use OPnP algorithm [41] to compute the pose of each image. Combined with the

corresponding IMU data for each image, we can compute the relationship between

the IMU and the camera directly and accept the mean of 49 images as the ground465

truth. The relationship between the IMU and the camera is as follows: the rota-

tional component is (114.1497◦, 1.1152◦, 88.7120◦) and translational component is

(0.0316, 0.0222,−0.0638)m.

For comparison, we fix the translational component between the IMU and the cam-

era as (0.0316, 0.0222,−0.0638)m. Only the rotational component between the IMU470

and the camera is calibrated using our methods. The reprojection error is used to eval-

uate the accuracy of our calibration results. The reprojection error is the mean distance

between the measured image corners and the reprojection of the 3D corner of the cal-
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ibration target using our calibration results. The results of the different methods are

shown in Table 6. When we use the approximate installation angles between the IMU475

and the RGB camera (113◦, 0◦, 90◦) which come from the design of the 3D printed

mount, the reprojection error is 11.5408 pixel. However, the calibration results of our

methods produce lower reprojection errors than using the approximate installation an-

gles directly. It means that even though the final estimation is mostly very close to

the initial estimation (within 2 degrees), it is still necessary to calibrate the rotational480

component between the IMU and the camera. The table shows that the 3pt method out-

performs other methods in terms of accuracy, it is consistent with the synthetic results

that the pure rotation case is more sensitive to rotation magnitude and image noise than

general motion case, as showed in Figures 3 and Figure 4. Our GB method and 3Q3

method exhibit similar accuracy in terms of reprojection error. The 1.5pt method per-485

forms better than the 2pt method, because the 1.5pt method has been performed with

known intrinsic parameters, but the 2pt method has been performed with unknown fo-

cal length and lens distortion parameters and cannot handle any image distortion. The

2pt method inevitably results in terms of a loss in accuracy for lenses with distortion.

After performing IMU-camera calibration, we obtain the pose of the RGBD camera490

directly. To verify the calibration results intuitively, we reconstruct a common scene

using the RGBD camera. We take the reconstruction results based on the calibration

results of the 3pt method, as example, see Figure 10(b). This experiment successfully

demonstrates the practicability of our proposed calibration method.
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(a) Checkerboard (b) Reconstruction result

Figure 10: Accuracy evaluation. (a). Checkerboard and four markers in red box. (b). Reconstruction result

using RGBD camera based on the calibration results of 3pt method.

Calibration results Ground Truth 3D printer 3pt 1.5pt-GB 1.5pt-3Q3 2pt-GB 2pt-3Q3

Reprojection error (pixel) 1.3495 11.5408 1.5441 2.7785 2.8244 3.6832 3.6494

Table 6: The results of the accuracy evaluation using the checkerboard data set captured by the MAV. The

reprojection errors are used to evaluate the accuracy of different calibration methods as shown in Table 5.

6. Conclusion495

In this paper, we focused on the rotational alignment of IMU-camera systems. We

presented novel minimal case solutions to the IMU-camera calibration problem uti-

lizing a first-order rotation approximation. We formulated this problem as a problem

of solving a polynomial equation system derived from homography constraints. This

made it possible to derive algorithms that need fewer point correspondences for IMU-500

camera calibration as compared to state-of-art methods. We derived the solution with

minimal point correspondences varying from 1.5 to 3 using Gröbner basis method and

analytical solver. By evaluating our algorithm on synthetic and real-world image data

sets, we demonstrated that our method is more efficient and numerically stable for

IMU-camera calibration compared to state-of-the-art methods.505
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Future work includes developing applications for smart devices, such as real-time

rectification for tilted pictures and image stabilization.
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