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ABSTRACT

This paper approaches the problem of geometric multi-model fitting as a data segmentation problem.
The proposed solution is based on a sequence of sampling hyperedges from a hypergraph, model
selection and hypergraph clustering steps. We developed a sampling method that significantly facili-
tates solving the segmentation problem using a new form of the Markov-Chain-Monte-Carlo (MCMC)
method to effectively sample from hyperedge distribution. To sample from this distribution effectively,
our proposed Markov Chain includes new ways of long and short jumps to perform exploration and
exploitation of all structures. To enhance the quality of samples, a greedy algorithm is used to exploit
nearby structure based on the minimization of the Least kth Order Statistics cost function. Unlike com-
mon sampling methods, ours does not require any specific prior knowledge about the distribution of
models. The output set of samples leads to a clustering solution by which the final model parameters
for each segment are obtained. The method competes favorably with the state-of-the-art both in terms
of computation power and segmentation accuracy.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Visual data segmentation is the task of partitioning data
points (in presence of noise and outliers) into segments such
that based on a specific measure, points within each segment
are more similar to each other than points from different seg-
ments. Popular segmentation methods such as Normalized
cut (NCut) (Shi and Malik (2000)) take a graph theocratic ap-
proach to solve this problem. In this approach, a weighted
graph G = (V, E) is defined where a vertex v ∈ V represents
a data point and an edge e ∈ E represents the affinity be-
tween two data points. In a weighted graph each edge is asso-
ciated with an element in a square symmetric adjacency matrix
A = (ai j), A ∈ RN×N where ai j corresponds to the similarity
between data points i and j. The graph is then partitioned into
disjoint sub graphs to obtain the final labeling solution.

Defining a pair-wise similarity remains a challenge in com-
puter vision problems where a segment (or structure) is defined
by an underlying parametrized mathematical constraint with
more than one parameter. Such problems include: identifying
multiple independently moving objects in a scene using point

∗∗Corresponding author: Tel.: +64-406-240-796;
e-mail: Alireza.Sadri@rmit.edu.au (Alireza Sadri)

correspondences in two views (Torr and Murray (1997)) or in
multiple views (Tron and Vidal (2007); Ochs et al. (2014); Vi-
dal (2011)). This list extends to include identifying planes in 3D
point clouds (Bab-Hadiashar and Gheissari (2006)), detecting
homographies (Tat-Jun et al. (2012); Rao et al. (2010)) and illu-
mination invariance face clustering (Georghiades et al. (2001)).
To solve the above robust geometric model fitting problems, it
is desired to define a similarity between a subset of points that is
larger than two. For example, in identifying multiple planes in
a 3D point cloud, any two points will perfectly fit infinite num-
ber of planes irrespective of their underlying structure, hence a
similarity cannot be derived by just using two points. In such
cases, an effective similarity measure has to be devised using
higher order affinities. For example, in the above problem, least
square error between four or more points will provide a suitable
affinity measure that indicates how well those points represent
a plane.

Relationships between larger than two data points is usually
modeled using a hypergraph. Following (Agarwal et al. (2006))
a hypergraph is defined as H = (V,E) where V and E are the
set of vertices and hyperedges, respectively. A hyperedge e ∈ E
consists of a subset of the vertices ve ⊆ V and in a weighted
hypergraph each hyperedge e is also assigned a weight w(e).
A hypergraph with all of its hyperedges having cardinality ρ
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(∀e ∈ E : |e| = ρ) is called a ρ-uniform hypergraph. Once the
hypergraph is constructed, the NCut method presented in (Agar-
wal et al. (2006)) can be used to partition the whole construct
into disjoint segments.

To construct a full hypergraph, one needs to consider all the
possible hyperedges which is in order of O(2N) where N = |V|.
Even in a ρ-uniform hypergraph with a small ρ, the number of
edges grow exponentially with the number of data points (i.e.
for a problem with N data points, number of hyperedges is |E| =(

N
ρ

)
). As such, building a full hypergraph is not practical in real

computer vision problems and needs to be approximated.
In a series of theoretical studies (Agarwal et al. (2005); Zhou

et al. (2006)), it has been argued that accurate segmentation
can be achieved by using approximate hypergraphs constructed
by sampling only a subset of hyperedges. To take advantage
of this, several methods including (Chen and Lerman (2009b);
Liu and Yan (2012); Jain and Govindu (2013)) had proposed
to use random sampling for the construction of approximate
hypergraphs. However none of these works provides theoretical
justification for the effectiveness of the random sampling based
methods.

More recently, the effect of sampling on hypergraph cluster-
ing has been studied (Florescu and Perkins (2016); Ghoshdasti-
dar and Dukkipati (2017)) and a theoretical lower bound on the
number of sampled hyperedges required to achieve a desired
error rate has been established (Theorem 9 in (Ghoshdastidar
and Dukkipati (2017))). They also compared the effect of uni-
form sampling with distribution based sampling on constructing
sparse hypergraphs. The segmentation performance plateaus
for number of samples beyond O(Nρ) for uniform sampling,
while using a carefully selected sampling distribution, such as
the one shown in equation (1) provides similar accuracy with
only O(N(ln N)2) sampled edges.

PE(e) =
we∑

e′∈E we′
,for all e ∈ E (1)

One issue with sampling from this distribution is that calcu-
lating the denominator requires knowing all the edge weights.
To overcome this issue, an iterative sampling strategy has been
proposed (Ghoshdastidar and Dukkipati (2017)). The difficulty
with such a scheme is that there is no clear mechanism to rec-
tify past mistakes in sampling. In this paper, we will discuss
the possibility of sampling efficiently, from a distribution with
similar properties to equation (1), using Markov-Chain-Monte-
Carlo (MCMC) sampling method. This technique complements
Spectral Clustering on hypergraphs and together they form a
relatively accurate and fast data segmentation method. Our con-
tributions are threefold:

• A novel MCMC sampler that samples edges from a distri-
bution resembling the distribution in equation (1).

• Effective mode jumping mechanism for edge sampling in
robust model fitting that prevents the sampler from getting
trapped in one mode (a single structure in data).

• Practical method for the inclusion of structures’ size in the
sampling process.

The remainder of paper is organized as follows. Section 2
discusses the prior works that is most relevant to the proposed
method. In section 3 the proposed sampling algorithm is in-
troduced. In section 4 we provide the experimental results of
the data segmentation method over some well-known datasets
and compare those with the state of the art methods. Section 5
concludes the paper.

2. Background

In geometric constraint based data segmentation (also re-
ferred to as robust model fitting), the intention is to cluster N
data points, X =

[
x j

]
j=1,...,N

∈ Rd into C clusters, such that
points within clusters are related to each other by a set of mod-
els parametrized by Θ =

{
θ(i)

}C

i=1
; θ(i) ∈ RΩ. The number of

data points in each groups is
{
k̂(i)

}C

i=1
; k̂(i) ∈ R. In this sec-

tion we first provide an overview of different segmentation ap-
proaches followed by how the problem can be formulated as a
hypergraph clustering problem. The methods to solve hyper-
graph clustering are also reviewed and the importance of edge
sampling is discussed.

2.1. An overview of related robust model fitting approaches

A traditional approach to perform data segmentation is the
fit-and-remove strategy (such as in Sequential RANSAC (Vin-
cent and Laganiére (2001)) in which RANSAC (Fischler and
Bolles (1981)) is used to find and remove structures, sequen-
tially. It is well known that mistakes made in early removals
within most of sequential methods can affect the remaining
structures.

The sequential dependency issue of the fit-and-remove ap-
proach has been tackled by energy minimization as well as
data clustering methods. Energy minimization methods such as
those presented in (Boykov et al. (2001)), (Yu et al. (2011)) and
(Delong et al. (2012)), define and minimize an energy function
that consists of a data fidelity term as well as a model complex-
ity term. By proper tuning of the parameters used for combin-
ing these factors, the outcomes of energy minimization methods
can be very accurate. However, in this paper, we chose hyper-
graph clustering method due to its relatively high speed and
accuracy as suggested by (Balakrishnan et al. (2011)).

Many subspace learning and clustering methods also share
the above issue and are sensitive to the choice of regularization
parameters. For instance, Robust-PCA (Candès et al. (2011))
splits the data matrix into a low-rank representation matrix and
a sparse error matrix and minimizes its cost function (which
is some norm of the error matrix) regularized by the rank of
representation matrix. Finding the appropriate degree of regu-
larization is difficult. In factorization methods such as (Cabral
et al. (2013)) the low-rank representation is obtained by learn-
ing a dictionary and coefficients for each data point, involv-
ing a hard to tune regularization parameter. In Sparse Sub-
space Clustering (SSC) method (Elhamifar and Vidal (2013))
a block-diagonal sparse matrix along with an error matrix are
again combined (with the aid of a parameter) to quantify rela-
tions between data points in each cluster. To identify structures,
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both the error and the L1 norm of the sparse matrix are mini-
mized, which involves tuning the regularization parameter. To
improve the result, in Low-Rank-Representation (LRR) method
(Liu et al. (2013)), nuclear norm of this sparse matrix was used
as the regularization term, while tuning the regularization pa-
rameter remains a challenge. To ease the tuning process, an
estimate of the regularization parameter is suggested by (Liu
et al. (2016)), which includes the number of data points. De-
spite its high speed and accuracy for small datasets, its exten-
sion to problems involving large datasets is unclear.Recently
methods such as LRSR (Wang et al. (2016)) and CLUSTEN
(Kim et al. (2016)) have added more constraints to the regular-
ization used in LRR, which makes tuning even harder. Global
Dimension Minimization in (Poling and Lerman (2014)), used
to estimate the fundamental matrix for the problem of two-view
motion segmentation, takes a similar strategy. The method is
relatively more accurate compared to LRR and SSC but remains
computationally expensive.

Generally speaking, these methods require high computa-
tional power while the effect of regularization is controlled
by parameters that are difficult to tune. These parameters of-
ten depend on noise scales, complexity of structures and ever-
increasing number of structures and data points, which vary be-
tween data-sets and applications. Main advantage of our pro-
posed method is that it requires minimum prior knowledge and
avoids such parameters. The promising performance of the re-
cent sampling-clustering approaches (Tennakoon et al. (2016)
and Purkait et al. (2017)), provides a clear motivation for de-
signing an effective sampling technique. This article is an ex-
tended version of the paper (Sadri et al. (2016)) and includes a
novel element (i.e. structure size estimation) that significantly
improves the performance of the method. Indeed, this is the
most important difference between the proposed method and
other papers that benefit from the optimization method of (Bab-
Hadiashar and Hoseinnezhad (2008)). We have also included te
results of several more experiments in this paper.

Tuning optimization parameters of these algorithms is essen-
tially the same as sampling from the distribution of these pa-
rameters by an expert. The main intuition of our strategy is
to sample from the distribution of putative model in parameter
space similar to approach proposed by (Li et al. (2015)). This
method uses a Mixture of Gaussians whose parameters are ob-
tained through Expectation-Maximization steps. As the loca-
tion of structures are unknown, using low number of Gaussians
may lead to missing the structures and increasing the number
of Gaussians is computationally expensive for EM. We propose
to explore the parameter space using the distribution of hyper-
edges, form a hypergraph and perform segmentation using hy-
pergraph clustering.

2.2. Guided sampling methods for robust model fitting

There are many sampling techniques developed for the pur-
pose of data segmentation (regardless of the method of seg-
mentation). Methods such as (Liu and Yan (2012); Jain and
Govindu (2013); Chen and Lerman (2009b)) use uniform sam-
pling from data. However it has been shown that uniform sam-
pling generates mostly low quality hypotheses specially when

size of samples is large, as the probability of choosing a pure
sample decreases for larger sizes. One way to produce high
quality samples is to use guided sampling methods such as
Multi-GS (Tat-Jun et al. (2012)) and Swensden-Wang method
(Swendsen and Wang (1987)). The former is a method designed
for sampling minimal subsets. The latter was used by (Purkait
et al. (2017)) which achieved higher speed compared to Multi-
GS, partially due to use of large samples. In this method using
an iteratively refined set of random clusters (based on work of
(Pham et al. (2014)) and Swensden-Wang method), a moderate
number of large pure samples were generated. However, the
algorithm initially depends on spatial continuity and mistakes
in early clusterings can lead to generation of impure samples
later. Same problem can be seen in the sampling method given
in (Ghoshdastidar and Dukkipati (2017)). In this paper, we pro-
pose a sampling method that requires no such prior knowledge.

In LBF method (Zhang et al. (2012)), it is proposed to guide
samples by optimizing a cost function over parameter space.
The cost function of their choice is the β-number of the residu-
als of a model. The suggested optimization method relates on
the gradients of the cost function rather than second derivatives,
which limits its speed. Moreover, the cost function derivatives
are very high in areas close to structures, so prior knowledge
such as spatial continuity is necessary to produce good initial-
izations (Tran et al. (2014)).

Another guided sampling method called HMSS, using the
Least kth Order Statistics (LkOS) estimator was introduced in
(Tennakoon et al. (2016)) facilitating a fit-and-remove segmen-
tation strategy. In this method samples are randomly generated
and guided to fit data properly and the segments are removed
from the data to make recovery of other structures easier. The
LkOS cost function is defined as:

C(θ) = r2
[k],θ (2)

where r2
[k],θ is the kth sorted squared residual with respect to

model with parameters θ ∈ RΩ and k refers to the struc-
ture size. This cost function has minima around the underly-
ing structures in parameter space and is biased towards struc-
tures with low variance regardless of their size (Rousseeuw and
Leroy (2005); (Chin et al. (2009a))). Performing local opti-
mization on this function is challenging as it is highly non-
linear due to the sorting step (it is infeasible to obtain deriva-
tives of the target distribution with respect to parameters or
state). (Bab-Hadiashar and Hoseinnezhad (2008)) presented
Fast-LkOS (FLkOS) which uses approximate second deriva-
tives (similar to Newton method) to find a local minimum
which makes the method fairly fast. Unlike LBF optimiza-
tion method, it does not require prior knowledge about purity
of the initial sample. (Tennakoon et al. (2016)) shows that this
method can easily be extended to use larger sample sizes and
find more accurate estimates of the cost function minima. The
method is different to that work in two different directions: 1-
In HMSS method, samples are compared based on the cost of
finding the best candidate and structures are removed sequen-
tially. By choosing only one of many samples of a distribution,
the method becomes vulnerable to over-fitting (to that specific
sample). Then, by inaccurate removal of structures, other struc-
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Fig. 1. (a) An example of a line fitting problem. Here segmentation is done using proposed method (b) The contours of proposed PDF P̃Θ(θ) (c) Un-
normalized histogram of excessive number of samples produced by our MCMC method (d) The proposed cost function with infered k explained in section
3.4

tures will be affected and accuracy may be reduced. In our
method, we generate samples according to the distribution of
models and use Spectral Clustering which incorporates the in-
formation in all samples at once. 2- In HMSS, there is no clear
way of estimating structure size k to improve optimization (be-
cause samples are discarded after selection of the candidate). In
the proposed framework, the samples are used to sequentially
improve their probability. Other methods such as TSSE (Wang
and Suter (2004)) (which uses mean shift), MLESAC (Torr and
Zisserman (2000)) (which uses EM) and IKOSE (Wang et al.
(2012)) have also been proposed to guide samples, but these
methods are highly dependent on the quality of initial samples
and they are computationally expensive.

When a good sample is found and model parameters are de-
rived, a robust scale estimator is often used to find a structure.
Traditional robust scale estimators such as MED, MAD, KOSE,
ALKS (Lee et al. (1998)) and MSSE (Bab-Hadiashar and Suter
(1999)) provide the structure size as well as noise scale. The
underlying assumption of these methods is that the model fits
the structure with very high probability and the noise density
is often assumed to be Gaussian. On one hand, the model may
not fit the structure perfectly before finding a good sample and
on the other hand, the success of optimization method relies on
knowing the size of the structure. The major issue is that, if the
sample is not ideal, robust scale estimators produce poor esti-
mates of the structure size. Our proposed sampling framework
produces a useful estimate of the structure size before optimiza-
tion.

2.3. Robust model fitting by hypergraph clustering
A weighted hypergraph H = (V,E) can be fully defined

by a binary incident matrix H of size |V| × |E| and a diagonal
weight matrix W = diag([w(e)]e=1···|E|). Here, the e-th element
of the weight matrix, w(e), represents the affinity between the
subset of vertices, ve, belonging to edge e and for all vertices
v ∈ ve we have H(v, e) = 1. Given a ρ-tuple of data points
in e, model parameters are obtained by fitting a model to the
associated data xe such that θe = minF (θ, xe). To calculate
the residuals for all ρ data points, a distance measure is defined
such that rv,θe = R(v, θe) for all v ∈ ve. The cost function F
is defined as some norm over the fitting errors of data points
xe to model θ, i.e. F (θ, xe) = ‖R(xe, θ)‖L and L is usually 2.
The evaluation function R should be defined according to the
type of the geometric model and the number of parameters. We

continue without exact formulation of this function but the ex-
amples for Homography fitting, Fundamental matrix fitting and
subspace fitting can be found in section 4. The weight of the
hyperedge e can then be defined as:

w(e) = exp

−∑
v∈ve

r2
v,θe

2σ2
e

 (3)

where σe is a normalization constant. In this method, σe is cal-
culated by applying a robust scale estimator (i.e. MSSE (Bab-
Hadiashar and Suter (1999))) to all residuals. By generating a
number of samples of the hyperedges, accurate estimates of H
and W are obtained. Using matrix H the following two diago-
nal matrices can be constructed: Dv = diag([d(vi)]i=1,...,|V|) and
De = diag([|ve|]e=1,...,|E|). Here d(vi) =

∑
e∈E we × H[vi, e] is the

sum of weights of all edges containing vi. The matrices W, H,
Dv and De are required to perform NCut on the hypergraph.

The original NCut was generalized to hypergraphs by (Zhou
et al. (2006)). In hypergraph NCut, the vertices V are parti-
tioned in two non overlapping segments (S ∪S c) = V such that
the following criterion is minimized:

NCut(S , S c) = vol(S , S c)
(

1
vol(S )

+
1

vol(sc)

)
(4)

where vol(S , S c) =
∑

e∈c(S ,S c) w(e) × |e∩S ||e∩S c |

|e| with c(S , S c)
being the hyper edges that need to be cut in order to partition
S and S c and vol(S ) =

∑
e∈S d(v). Both (Shi and Malik (2000))

and (Zhou et al. (2006)) solved a relaxed version of the above
problem by reducing the hypergraph to a graph with the follow-
ing adjacency matrix:

A = HWD−1
e H> − Dv (5)

To cut the hypergraph, the eigenvectors corresponding to
the C largest eigenvalues of laplacian of A (defined as ∆A =

I − 1
2 D−1/2

v AD−1/2
v ) is found and data points are then partitioned

using a clustering method such as K-Means.

2.4. Quality of the resulting cut

A high quality graph has an adjacency matrix (A) with a
block-diagonal structure. Element ai j of matrix A should have a
high value if vertices vi and v j belong to same structure and low
otherwise. The dominant eigenvectors of this matrix are those
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that span most of the columns of A. This means that block-
diagonal shape happens if chosen hypotheses are densely from
underlying structures. If the density of low quality samples is
high, elements of A that represent vertices of different structures
can also have high values and the final cut can become inaccu-
rate. Detailed explanation on this phenomenon is provided in
(Agarwal et al. (2005); Ochs et al. (2014); Purkait et al. (2017)).

To provide an example, an instance of a simple line fitting
problem is shown in figure 1(a). In this example, the aim is
to segment N = 500, 2D data points into C = 5 clusters in
presence of outliers. The contours of putative model distribu-
tion P̃Θ(θ) (based on exhaustive sampling) is shown in figure
1(b) while our approximation of this distribution is shown in
figure 1(c). Comparison of these two figures shows that the
sampling strategy has been successful in generating samples,
densely from the high probability areas. The success of method
depends on the success of the optimization step that finds local
minima of the cost function in equation (2). The contours of
this function for the line fitting example is given in figure 1(d).

2.5. Markov Chain Monte Carlo sampling from multi mode dis-
tributions

Markov Chain Monte Carlo (MCMC) is the most commonly
used method in sampling from a distribution that can be eval-
uated only up to a proportional constant. Detailed description
of this technique is outside the scope of this paper and inter-
ested readers are refereed to (Andrieu et al. (2003)). As the
distribution of putative models in the prescribed model fitting
problem may include multiple isolated modes, a mode jumping
mechanism has to be included. Inspired by the mode jumping
mechanism developed in (Tjelmeland and Hegstad (2001)) for
continuous spaces, we designed a similar Markov chain for the
discrete space. In this method, the Markov Chain is constructed
by short jumps and long jumps as well as local optimization
steps.

3. The proposed method

As discussed previously, the use of hypergraphs to solve a
model fitting problem involves two challenges: 1) The struc-
ture of the graph is not known a priori; therefore we need to
construct the full hypergraph, calculating which is very expen-
sive; 2) The weight measure for robust model fitting is sensitive
to accidental alignment of outliers.

Our aim is therefore to efficiently and effectively construct a
sampled version of the hypergraph in order to solve the robust
model fitting problem. The formulation of our edge sampling
distribution and the method to effectively sample edges are out-
lined in sections 3.1 and 3.2. Afterwards we analyses the im-
portance of k in section 3.3 and our proposed method to sample
from its distribution in section 3.4. We will finish this section
with providing the overall algorithm in section (3.5).

3.1. The sampling distribution

In robust model fitting, each hyperedge e ∈ E has a corre-
sponding model instance with parameters θ ∈ Θ. Sampling

edges from PE(e) in equation (1) can be viewed as sampling θ
from PΘ(θ | X). For any given set of input data X, we have:

PΘ(θ | X) ∝ PΘ(X | θ)PΘ(θ). (6)

Given that all parameters θ are equally likely at the outset, the
uninformative prior PΘ(θ) is assumed to be uniform. This is a
significantly less restrictive assumption, compared to methods
that impose a prior spatial continuity constraint, such as used
in (Brox and Malik (2010)), (Zhang et al. (2012)) and (Purkait
et al. (2017)). For the calculation of likelihood PΘ(X | θ), we
use a slightly modified version of the robust k-th order cost
function:

PΘ(X | θ) =
1
Z

exp(
−r2

θ [k]
σθ

) (7)

where r2
θ [ j] is the j-th sorted square residual with respect to

model θ and σθ is a normalization constant. The parameter k
in this equation is the minimum number of points accepted to
form a structure and is problem dependent. The value of this
likelihood will be high only if the corresponding edge contains
vertices that are all members of the same structure. As will be
described in section 3.2, the proposed MCMC sampling strat-
egy does not need any knowledge of the normalization factor
Z.

3.2. The proposed Markov chain

A Markov chain consists of a transition kernel QΘ(·|θ) and an
acceptance criterion, such as Metropolis-Hastings, which de-
fines a probability of accepting a new sample as:

α(θ∗|θ) = min
{

1,
PΘ(X | θ∗)
PΘ(X | θ)

QΘ(θ|θ∗)
QΘ(θ∗|θ)

}
. (8)

As the distribution PΘ(θ | X) is multi-modal, we need to con-
struct the transitions so that the Markov chain is not trapped
in any local maximum. To achieve this, we compose our pro-
posed Markov chain to include short jumps to exploit a single
structure and random long jumps for exploring the space of Θ.
This long jump is the key that the chain visits all structures and
since their model is not a given priori it has to be random. It is
noteworthy that we only use data supported states in the param-
eter space which means that random jump would be nothing but
random sampling from data as is explained shortly.

Long jump construction as illustrated in figure 2 uses a sim-
ple 2D distribution (with two modes) as the target distribution
P̃Θ(.) and has two elements: The first is to move from θ → θ∗

(the forward path) and to quantify Q(θ∗|θ); The second is to
quantify Q(θ|θ∗), the probability of going from θ∗ → θ (the re-
verse path). These two elements are used to find the acceptance
probability for a new sample. This construction is explained in
5 following steps:
Step 1: A large random transition

The first step is to make a large random transition (ϕ) in pa-
rameter space. This hopefully moves the state away from the
basin of attraction of the current mode, to a new state, denoted
by θϕ = T0(θ, ϕ). Constructing such a move requires two ele-
ments: 1) a method to generate ϕ; 2) a function that performs
the translation. Examples of T0 include T0(θ, ϕ) = θ + ϕ for
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𝜽

𝜽∗

)

)

Fig. 2. A typical 2D bi-modal distribution, here the purpose is to make a
jump between two modes, e.g. from θ to θ∗. Top: The overall transition
which is modeled by Q(·|·), Bottom: The proposed multi-step transition
ending with a short transition according to the model q(·|·).

translation by a vector ϕ or T0(θ, ϕ) = ϕ θ for rotation or scale
by a properly contained matrix ϕ.

At the first look, the long jump may seem to be the outcome
of selection of the next point in the parameter space accord-
ing to some criterion. Indeed, the most widely used method
of generating ϕ in MCMC methods is to assume a distribution
with a very large variance around the current state (θ) and to
use it to make the long jump. This would require some knowl-
edge of the separation between modes (how far is far enough?),
which may not be practical in data segmentation problems. In
our algorithm, instead of commonly these used random jumps,
we propose the selection of a new state based on an inliers or
outliers dichotomy of the current hypothesis (state).

The state θϕ is derived as follows: Sort the squared residuals
{r2

j,θ}
N
j=1 and perform the MSSE to separate inliers from outliers.

Randomly select a data point from the outliers and get the ρ− 1
points around it in sorted residual space, where ρ is the cho-
sen sample size. Then a model can be fitted to these ρ points
to obtain θϕ. The rationale here is that, since there is an ef-
fective method to dichotomize inliers/outliers, a state obtained
by sampling among outliers would be distant from the current
mode. Selecting the ρ subset in the sorted residual space is ben-
eficial because of the fact that data points from the same struc-
tures tend to cluster together in that space (Toldo and Fusiello
(2008)). However, the algorithm does not require the ρ points to
be purely from the one structure because the local optimization
that follows will guide the sample to a local optimum.
Step 2: Local optimization

Next, a local optimization on P̃Θ(θ) is performed to transit

to a state in a high probability area denoted by θ∗. This lo-
cal optimization step improves the sample quality. From the
Markov chain property perspective, it is a deterministic move
that simply guides the sample to the closest local maximum of
the distribution. However, the success of this step is sensitive to
an accurate estimate of the structure size k before the optimiza-
tion. Our heuristic method, which samples from the distribution
of P(k|θ), is given in section 3.4.
Step 3: Short transition

A short jump to θ∗ is performed using a local distribution
q(·|θF). Given that θF is the location of the optimum and Σ(θF)
is the inverse of the Hessian of the P̃Θ(θ) at the optimum, i.e.
Σ(θF) = [∇2P̃Θ(θ)|θ=θF ]−1, one typical choice of the local distri-
bution can be:

q(θ∗|θF) = NΩ(θ∗; θF ,Σ(θF)) (9)

which is the density of an Ω dimensional Gaussian random vari-
able with mean θF and covariance Σ(θF).

Calculation of q(·|·) using a normal distribution, as given in
equation ((9)), is not practical in the data segmentation prob-
lems because of the difficulty of estimating the covariance ma-
trix. Therefore, in our implementation, the jump from θF to θ∗

is made by taking one more step in the optimization process.
The probability value q(θ∗|θF) (and q(θ|θ∗F) in the reverse path)
is measured via a novel measurement based on the T-distance
(Wang et al. (2015)). We define the probability of moving from
one state to another as:

q(θ∗|θF) =
1
N
〈wθ∗ ,wθF 〉 (10)

q(θ|θ∗F) =
1
N
〈wθ,wθ∗F

〉 (11)

where 〈·,·〉 denotes the inner product and wθ is the vector of
affinities for all data points to the model with parameters θ.
Step 4: The reverse path

In order to construct the reverse path we begin by moving
from θ∗ to θ∗ϕ = T1(θ∗, ϕ). We rather choose T1 based on T0 such
that T1(T0(θ, ϕ), ϕ) = θ. Examples include T1(θ∗, ϕ) = θ∗ − ϕ
for translation by vector ϕ or T1(θ∗, ϕ) = ϕ−1 θ∗ for rotation or
scale by inverse of matrix ϕ. The next step is to perform a local
optimization to move to θ∗F , in the hope that we get back close
to the original mode. The last step is to calculate q(θ|θ∗F) to find
the probability of jumping from θ∗F to θ.
Step 5: Calculation of Q(·|·)

Assuming the independence of the random long transition
from the short jump, Q(θ|θ∗) = q(θ|θ∗F) Φ(θ∗ϕ|θ

∗) and QΘ(θ∗|θ) =

q(θ∗|θF) Φ(θϕ|θ) where Φ(·|·) is the density function of the state
after a random long transition from another state. The focus
of this work is mainly on applications where the target struc-
tures are of relatively small sizes compared to the overall data
population (i.e. the number of outliers and pseudo-outliers are
far larger than inliers for any structure). With this approxima-
tion, the possible domain of the parameter values after a long
transition asymptotically covers the whole parameter space, as
the number of data points approaches infinity. Considering that
the p-tuples selected from outliers (to select the next state for a
long jump) are equally probable, we deduce that the parameter
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value after a long transition is almost uniformly distributed in
the parameter space, and so is its conditional density. Hence,
for the two long transitions involved in our method we have
Φ(θ∗ϕ|θ

∗) = Φ(θϕ|θ) = cte., and we end up with QΘ(θ|θ∗)
QΘ(θ∗ |θ) =

q(θ|θ∗F )
q(θ∗ |θF ) .

If the reverse path moves the state to a mode other than the
original, q(θ|θ∗F) will be small and so will the probability of ac-
ceptance α(θ∗|θ) be.

The short jumps are performed simply by selecting a random
sample hϕ (modeled by θϕ) among the inliers of θ.

3.3. Importance of k:

An important parameter in the cost function (2) is the mini-
mum structure size k. We have observed that k has a significant
effect on the shape of the cost function in equation (2). When
the value of k is increased, the peaks corresponding to smaller
structures (e.g. the accidental alignment of outliers or the detec-
tion of multiple structures as a result of over-segmentation) will
disappear from the sampling distribution and the cost function
would become smoother. This means that the ideal value of k
changes for different structures even within the same dataset.
This directly affects the optimization step, as the size of the
basin of attraction also depends on the value of k.

For example, in the earlier line fitting problem, a set of mod-
els are generated uniformly, with intercepts and slopes from the
range [−1.5, 1.5] with resolution 0.01. The optimization is
then performed for each model to reach the optimum state. If
the Euclidean distance of the optimum state from any of the
structures is less than 0.1, it is assumed to have come from the
basin of attraction of that structure. The color-coded basins of
attractions, for k = 12, are shown in Figure 3(a) and for k = 35
in Figure 3(b) (structure sizes are 50). Figure 3 shows that the
basins of attractions become larger as k increases, which leaves
us with fewer local optima. In section 4, we show by simulation
that choosing a small k results in a high error rate for segmen-
tation. To reduce the segmentation error, we devise a method in
section 3.4 to infer the ideal value of k before the optimization
step.

3.4. Calculation of k:

We propose a novel method for using the previously sampled
hyperedges to calculate the probability that the closest k data
points to the current model (θϕ) are from the same structure. In
other words, the aim is to estimate the hyperedge weight con-
taining the closest k data points to the model, using weights of
previously sampled hyperedges. Since hyperedge samples are
theoretically independent (except for the identical structures),
the weights of the hyperedges corresponding to the closest k
data points are proportional to discrete distribution PK(k|θ). As-
suming that we have an estimate of the model parameters before
the optimization step, we state that k is also a parameter of the
model and we have PΘ,K(k, θ) = PK(k|θ)PΘ(θ).

One way to use the hypergraph information as a priori is
to use iterative clustering such as that used in (Purkait et al.
(2017)). We however infer the value of k from the hypergraph
information using the definition of the NCut criterion in equa-
tion (4). To estimate the values of PK(k|θ) for all k, the value of

the NCut criterion for separating the closest k data points to the
model is found, and we choose the likelihood:

PK(k|θ) ∝ NCut
(
{vI(1), · · · , vI(k)}, {vI(k+1), · · · , vI(N)}

)
(12)

where I is the indices of sorted residuals in an ascending order
with respect to the current model θϕ.

The first local minimum of this function gives the closest k
data points that can be segmented out with the lowest cost, de-
noted by k̂ϕ. The PK(k|θφ) for k larger than this k̂ϕ is set to zero.
This procedure is illustrated better by algorithm 1.

Algorithm 1 Proposed likelihood PK(k|θ) up to a scale
Require: Hyperedges weights vectorW ∈ RNM , the incidence matrix

H ∈ RN×NM)
Ensure: The likelihood PK(k|θ) up to a scale

1: for k = km, · · · ,N do
2: calculate PK(k|θ) up to a scale by Eq. (12)
3: if k > km and PK(k|θ) < PK(k − 1|θ) then
4: break
5: end if
6: end for

3.5. Overall Sampling Algorithm

Algorithm 2 Proposed sampling method
Require: Data points X, number of samples M, a random state θ
Ensure: Hyperedges weights vectorW ∈ RNM , the incidence matrix

H ∈ RN×NM)
1: A = 0 ∈ RN×N

2: while M > 0 do
3: Evaluate θ to find λ (probability of long jump)
4: if u < λ where u ∼ U(0, 1) then
5: sample eϕ (a ρ-tuple from outliers)
6: Find θϕ = minF (θ, eϕ)
7: Sample from P(k|θφ) using algorithm 1
8: Perform FLKOS to find eF and θF = minF (θ, eF) s
9: One more FLKOS step to find e∗ and θ∗ = minF (θ, e∗)

10: Calculate Q(θ∗|θ) and Q(θ|θ∗)
11: Calculate PΘ(X|θ∗) and PΘ(X|θ) using Eq. (7)
12: Calculate Metropolis-Hastings α = α(θ∗|θ)
13: else
14: sample e∗ (a ρ-tuple from inliers)
15: Find θ∗ = minF (θ, e∗)
16: Calculate PΘ(X|θ∗) and PΘ(X|θ) using Eq. (7)
17: Calculate Metropolis α = α(θ∗|θ)
18: end if
19: if α > v (where v ∼ U(0, 1)) then
20: θ ← θ∗, and M ← M − 1
21: Store [w j,θ∗ ] j=1,··· ,N inW
22: Hvi ,M+M̃ ← 1 for vi ∈ ve∗ and M̃ = 1, · · · ,N
23: end if
24: end while

The MCMC chain is initialized at a random state. A mix-
ture of long and short jumps are performed in order to generate
samples from the target distribution P̃Θ(·), as described in Al-
gorithm 2. The probability of performing a long jump λ is set
to λ = 1

N
∑N

j=1 w j,θ, which means that if the number of inliers is



8

-1.5 -1 -0.5 0 0.5 1 1.5

1

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

1

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Fig. 3. (a) Basin of attraction of each structure for the optimization step for the line fitting problem (where all structures sizes are 50) with k = km = 12. (b)
Same for k = 35.

small, it would rather exploit the local vicinity by making short
jumps. Otherwise it is preferred to explore the data by a long
jump. M samples and their affinity vectors are generated using
this algorithm. After the generation of each sample, the inci-
dence matrix H and the weights vector W are updated. If H is
not updated, then k remain km (similar to our previous work in
(Sadri et al. (2016))). When M samples are provided, the hyper-
graph is used to segment the data using NCut. In this algorithm
theU(0, 1) denotes uniform distribution from 0 to 1.

4. Experimental Results

In this section we discuss our choices of parameters for
the different methods outlined above. We have evaluated our
method for a few well-known datasets. One is the Adelaide-
RMF dataset introduced in Wong et al. (2011) which has two
parts. One part is for two-view motion segmentation by funda-
mental matrices for motions of different objects and the other
is for planar homography estimation. The second dataset is the
155-Hopkins dataset introduced in Tron and Vidal (2007) for
multiple-view motion segmentation using subspace analysis.

We have evaluated our method called MCNC (Monte Carlo
& NCut) 100 times for each problem in these datasets. The
threshold parameter of the MSSE robust estimator is set to 2.35
in all problems proposed by (Wang et al. (2012)). The parame-
ter km should be high enough to avoid generating a large finite
sample bias for the MSSE, which is set to 12, proposed by (Ho-
seinnezhad et al. (2006)). The parameter ρ, the size of a sample,
is set to ρm + 4 as proposed by (Tennakoon et al. (2016)), where
ρm is the number of parameters of the model. The total number
of samples is intended to be M = 100 C log (N), where C is
number of clusters. The results are given for two cases: once
when k is not updated and is set to km (called MCNC(km)) and
the other when inference is used (called MCNC). It is observed
that the results are generally better in the latter case. It is note-
worthy that our method does not explicitly include any other
sensitive parameter that requires tuning.

4.1. Results on Adelaide-RMF dataset
We have tested how our method performs on the Adelaide-

RMF dataset (Wong et al. (2011)) which includes pairs of

matched feature-points between two views together with the
ground truth labels. The task is to segment the pairs, belonging
to each structure with different motions. For each model fitting,
the minimization step, θe = minF (θ, e), will fit a fundamental
matrix Fθe or a Homography matrix Hθe to subset ve of pair-data
points Xe = [X1,e, X2,e]. Fundamental matrix fitting is done by
solving X>1,eFθe X2,e = 0, where Fθe ∈ R3×3, X1,e = (x1, y1, 1)>

and X2,e = (x2, y2, 1)> are the coordinates of the sampled subset
in each view (Torr and Murray (1997)). Homography estima-
tion is done via solving X>1,eHθe = X2,e. The Evaluation function
R(θe) uses Sampson distance (Hartley and Zisserman (2003)) to
find residuals of each pair to the model.

Following (Wang et al. (2018)), we have evaluated our
method for all sequences in the Adelaide-RMF dataset for two-
view motion segmentation as shown in Table 1. We have
also examined the performance of our method for homography
based segmentation on the second part of the Adelaide-RMF
dataset, with the results shown in Table 2.

In these two tables (Table 1 and Table 2), M1 represents the
method called KF (Chin et al. (2009b)) which is a data clus-
tering method based on random sampling and outlier removal
(which occasionally removes some inliers), M2 represents the
method HMSS (Tennakoon et al. (2016)) which is a sequential
fit-and-remove method that uses random sampling to initialize
the optimization method used in our work, M3 represents the
method called Multi-GS (Tat-Jun et al. (2012)) which is a hy-
pergraph clustering method similar to our method, with the only
difference being in the sampling part which is minimal subset
sampling (the number of samples for Multi-GS is set to same as
ours). In these two tables, the results of running methods M1,
M2 and M3 on our computer system (with a Core-i7-2.2GHz-
4970k Mobile CPU and 16GB Memory, running MS-Windows
10) are shown. In order to see the effect of sampling method,
we have incorporated their sampling strategy and used our clus-
tering method to find final labels, which occasionally resulted
in different accuracies compared to the ones presented in their
papers. Also we have used similar parameters wherever possi-
ble. To compare our method with the recent state-of-the-art, we
also included the results for MSHF (Wang et al. (2018)), which
is M5 in tables. We borrowed the results reported therein, and
acknowledged the fact that the computation time would not be
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Table 1. Results for two-view motion segmentation on Adelaide-RMF dataset

Sequence (#) M1 M2 M3 M4
MCNC

(km) MCNC

Std. 0.21 5.68 23.06 0.55 5.2 5.47
Avg. 0.48 14.71 25.84 1.3 12.8 13.91Biscuit 1
Time 7.86 0.50 79.34 5.27 1.86 1.68
Std. 0.38 5.66 18.58 0.42 7.27 1.55
Avg. 4.22 19.78 24.54 0.64 11.66 21.02Book 1
Time 6.11 0.24 24.97 4.81 3.06 2.47
Std. 0.17 5.56 22.34 0.66 0.49 2.63
Avg. 8.11 11.60 23.07 2.08 1.32 3.07Cube 1
Time 6.98 0.34 79.48 5.11 1.34 1.44
Std. 0.1 4.05 32.65 0.74 11.27 1.55
Avg. 30.45 11.37 38.15 2.44 5.11 2.58Game 1
Time 5.95 0.24 42.7 4.95 0.89 0.91
Std. 0.2 6.06 0.85 0.98 17.63 7.76
Avg. 1.41 14.60 5.63 3.55 19.07 4.31Cubechips 2
Time 12.29 0.76 64.87 5.18 2.56 2.57
Std. 0.18 6.13 0.8 0.79 2.54 0.51
Avg. 1.71 18.18 5.62 2.16 1.97 2.3Cubetoy 2
Time 12.66 0.86 51.65 4.89 2.32 2.44
Std. 0.21 4.16 1.32 0.78 19 4.19
Avg. 3.88 25.74 4.96 2.31 10.58 0.37Breadcube 2
Time 12.05 1.14 46.17 4.82 2.33 2.52
Std. 0.39 1.58 1.85 0.74 1.39 3.6
Avg. 1.72 20.57 7.32 1.95 4.85 7.33Gamebiscuit 2
Time 12.98 0.68 91.49 5.81 13.37 7.82
Std. 0.15 6.12 1.5 7.76 17.36 7.88
Avg. 3.73 17.27 7.33 4.86 10.73 3.33Breadtoy 2
Time 13.26 1.40 68.62 5.87 6.8 3.96
Std. 0.19 5.71 1.43 1.96 3.24 1.56
Avg. 9.58 15.56 4.42 5.42 4.61 3.95Breadtoycar 3
Time 17.14 0.82 24.15 5.06 2.09 5.75
Std. 0.22 5.74 1.16 1.82 13.69 4.95
Avg. 3.21 17.90 2.55 2.4 16.11 4.71Biscuitbook 2
Time 14.75 0.78 129.47 6.57 4.94 4.55
Std. 0.26 3.49 1.6 0.9 9.95 1.91
Avg. 4.65 24.82 1.93 1.54 23.24 3.13Biscuitbookbox 3
Time 19.78 0.92 53.44 5.44 12 5.95
Std. 0.19 4.07 7.03 1.75 8.51 0.92
Avg. 7.07 19.48 1.06 1.74 19.2 5.86Breadcubechips 3
Time 17.87 1.14 57.11 4.35 3.41 4.85
Std. 0.11 5.27 7.72 6.62 7.81 2.95
Avg. 11.36 22.87 3.11 4.25 22.16 7.19Cubebreadtoychips 4
Time 27.6 2.62 91.05 4.7 5.96 4.13
Std. 4.65 5.41 9.45 6.14 5.41 3.83
Avg. 16.69 18.47 16.96 25.06 11.98 5.13Breadcartoychips 4
Time 24.31 1.40 40.76 4.02 4.52 5.93
Std. 0.1 3.32 0.44 7.56 5.97 2.61
Avg. 10.91 19.76 17.51 25.51 30.42 4.72Carchipscube 3
Time 17.07 0.80 18.52 3.81 4.46 5.56
Std. 0.41 4.03 1.2 6.57 6.61 4.14
Avg. 17.98 19.37 16.2 14 24.77 13.1Toycubecar 3
Time 16.68 0.74 25.35 4.73 3.91 9.26
Std. 0.27 4.87 1.91 7.77 8.77 5.11
Avg. 10.16 19.21 28.6 21.57 21.54 10.1Boardgame 3
Time 19.83 1.14 58.07 4.63 14.51 4.99
Std. 4.24 4.89 1.85 2.08 10.11 10.1
Avg. 14.71 20.40 19.52 18.05 26.43 15.9Dinobooks 3
Time 20.43 1.92 118.96 4.89 13.78 5.25
Std 0.64 4.83 7.19 2.97 8.53 4.22
Avg 8.52 18.51 13.38 7.41 14.66 7.01Total Average
Time 15.03 0.97 61.37 4.99 3.8 4.67
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Table 2. Results for Homography based segmentation on Adelaide-RMF dataset

Sequence (#) M1 M2 M3 M4
MCNC

(km) MCNC

Std. 2.5 1.08 16.54 0.01 0.76 1.85
Avg. 29.04 3.70 28.28 0 0.16 0.32Bonython 1
Time 1.19 0.28 11.65 0.96 0.21 0.22
Std. 1.33 9.28 14.87 0.01 11.81 10.54
Avg. 13.21 19.96 39.43 0 5.57 4.97Physics 1
Time 0.96 0.20 12.68 1.75 0.16 0.16
Std. 0.64 0.43 26.66 0.01 18.55 18.41
Avg. 17.02 1.78 24.81 0.3 12.08 11.15Unionhouse 1
Time 1.46 0.32 38.05 1.02 0.26 0.26
Std. 0.33 6.53 0.45 0.15 0.5 2.73
Avg. 6.78 7.46 1.17 0.93 1.02 1.43Elderhalla 1
Time 2.28 0.44 15.28 2.16 0.31 0.3
Std. 0.83 2.02 0.58 1.1 7.62 7.82
Avg. 10.39 6.06 12.63 2.94 14.72 13.94Elderhallb 2
Time 3.36 0.68 30.47 2.18 0.59 0.58
Std. 0.22 5.70 0.32 0.31 0.84 0.82
Avg. 6.09 5.02 2.5 1.9 1.96 1.9Hartley 2
Time 2.61 0.52 62.16 1.63 0.43 0.44
Std. 0.66 2.70 3.38 0.82 1.84 1.61
Avg. 20 4.50 4.65 2.37 2.46 2.16Library 2
Time 2.21 0.52 16.04 1.8 0.36 0.37
Std. 0.28 8.80 0.37 0.13 0.22 0.25
Avg. 15 5.86 0.44 0.24 0.66 0.67Sene 2
Time 2.43 0.48 22.78 1.8 0.57 0.57
Std. 22.55 10.47 0.51 0.27 0.17 0.11
Avg. 15.94 6.96 1.88 0.2 0.84 0.82Nese 2
Time 2.31 0.48 24.15 2.32 0.59 0.6
Std. 10.14 9.34 2.58 0.86 1.07 1.48
Avg. 22.78 10.51 5.06 2.62 7.67 7.87Ladysymon 3
Time 2.3 0.44 20.86 2.39 0.85 0.84
Std. 0.75 0.43 0.25 0.33 0.86 0.77
Avg. 11.08 2.92 1.27 1.08 2.16 2.2Oldclassicswing 2
Time 2.89 0.56 74.89 1.81 0.84 0.86
Std. 1.17 7.81 4.96 0.48 0.57 0.7
Avg. 7.05 10.32 3.82 1.78 6.46 6.34Neem 3
Time 3.33 0.72 21.4 2.13 0.56 0.57
Std. 0.38 7.18 4.73 1.43 7.01 7.03
Avg. 35.92 12.62 4.03 3.02 9.16 9.28Johnsona 3
Time 5.43 0.88 57.11 2.24 1.13 1.15
Std. 0.33 5.34 10.51 4.96 4.77 5.18
Avg. 64.64 18.06 18.39 16.61 20.69 21.79Johnsonb 4
Time 13.42 1.72 261.62 5 4.83 4.75
Std. 0.47 5.33 4.54 3.26 9.16 7.86
Avg. 31.13 13.18 23.37 27.78 12.19 10.33Napiera 4
Time 2.53 0.72 29.88 2.18 0.38 0.38
Std. 0.82 5.50 5.14 4.12 1.09 0.86
Avg. 30.69 11.83 19.92 13.12 8.38 8.27Napierb 3
Time 3.47 0.76 21.93 1.87 0.97 0.97
Std. 0 5.99 6.65 9.5 8.61 6.21
Avg. 11.62 5.99 29.33 24.48 4.17 3.15Barrsmith 3
Time 2.32 0.92 18.91 1.42 0.32 0.32
Std. 0.07 6.00 4.98 0.38 3.09 2.93
Avg. 46.93 10.47 14.04 9.29 9.29 9.34Unihouse 3
Time 50.83 3.04 2908.61 10.5 8.25 8.22
Std. 1.59 11.14 0.13 8.69 4.76 4.16
Avg. 64.04 18.05 29.06 31.65 24.01 23.23Bonhall 3
Time 20.65 4.68 835.38 7.87 3.59 3.57
Std. 2.3716 5.85 13.89 7.38 5.38 3.9
Avg. 24.177 9.22 12.32 10.3 8.56 7.3Total Average
Time 6.6317 0.96 12.63 2.37 1.4 1.5
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Fig. 10. Some fitting results obtained by MSHF2 for homography based segmentation on the AdelaideRMF dataset.
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Fig. 11. Some fitting results obtained by MSHF2 for two-view based motion segmentation on the AdelaideRMF dataset.

for homography fitting - which we use here - and 19 image
pairs for motion segmentation - which we use in Sec. 5.2.4
devoted to that topic) for homography based segmentation.
We repeat each experiment 50 times, and show the standard
variances, the average fitting errors (in percentage) and the
average CPU time (in seconds) in Table 4 (we exclude the
time used for sampling and generating potential hypothe-
ses, which is the same for all the fitting methods). Some
fitting results obtained by MSHF2 are also shown in Fig. 10.

From Fig. 10 and Table 4, we can see that MSH-
F1/MSHF2 obtain good results, achieving the lowest av-
erage fitting errors in 16 out of 19 image pairs. Although
MSHF1 is slightly slower than MSH, it significantly im-
proves the fitting accuracy over MSH in 12 out of 19 image
pairs. The reason behind this is that MSHF1 removes less
vertices corresponding to model hypotheses than MSH, and
thus MSHF1 takes more time to seek modes in a hyper-
graph. However, MSHF1 retains more good vertices corre-
sponding to significant model hypotheses, which improves
its fitting accuracy. MSHF2 achieves the same fitting errors
as MSHF1, but it is faster than MSHF1 in all the 19 image
pairs. In contrast, AKSWH only succeeds in fitting 10 out of

19 image pairs with low fitting errors. Although T-linkage
can also achieve low fitting errors in most of image pairs, it
is much slower than the other six competing methods. Both
KF and RCG achieve bad results in most cases. We note that
KF clusters many outliers together with inliers, and RCG is
very sensitive to its parameters when there exist many bad
model hypotheses in the generated model hypotheses. For
the overall fitting errors, MSH and MSHF1/MSHF2 achieve
the top-three best performance on the mean and median fit-
ting errors among all the seven competing fitting methods.
MSHF1/MSHF2 also achieve the lowest standard variances
of fitting errors. For the performance of computational time,
RCG achieves the lowest values in 17 out of 19 image
pairs, but it cannot obtain low fitting errors. In short, MSH
and MSHF1/MSHF2 can achieve low fitting errors within
reasonable time for most image pairs.

5.2.4 Two-view Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the other 19 image pairs of the AdelaideRMF dataset to
evaluate the performance of the competing fitting methods.
The results are shown in Table 5 and Fig. 11.
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for homography fitting - which we use here - and 19 image
pairs for motion segmentation - which we use in Sec. 5.2.4
devoted to that topic) for homography based segmentation.
We repeat each experiment 50 times, and show the standard
variances, the average fitting errors (in percentage) and the
average CPU time (in seconds) in Table 4 (we exclude the
time used for sampling and generating potential hypothe-
ses, which is the same for all the fitting methods). Some
fitting results obtained by MSHF2 are also shown in Fig. 10.

From Fig. 10 and Table 4, we can see that MSH-
F1/MSHF2 obtain good results, achieving the lowest av-
erage fitting errors in 16 out of 19 image pairs. Although
MSHF1 is slightly slower than MSH, it significantly im-
proves the fitting accuracy over MSH in 12 out of 19 image
pairs. The reason behind this is that MSHF1 removes less
vertices corresponding to model hypotheses than MSH, and
thus MSHF1 takes more time to seek modes in a hyper-
graph. However, MSHF1 retains more good vertices corre-
sponding to significant model hypotheses, which improves
its fitting accuracy. MSHF2 achieves the same fitting errors
as MSHF1, but it is faster than MSHF1 in all the 19 image
pairs. In contrast, AKSWH only succeeds in fitting 10 out of

19 image pairs with low fitting errors. Although T-linkage
can also achieve low fitting errors in most of image pairs, it
is much slower than the other six competing methods. Both
KF and RCG achieve bad results in most cases. We note that
KF clusters many outliers together with inliers, and RCG is
very sensitive to its parameters when there exist many bad
model hypotheses in the generated model hypotheses. For
the overall fitting errors, MSH and MSHF1/MSHF2 achieve
the top-three best performance on the mean and median fit-
ting errors among all the seven competing fitting methods.
MSHF1/MSHF2 also achieve the lowest standard variances
of fitting errors. For the performance of computational time,
RCG achieves the lowest values in 17 out of 19 image
pairs, but it cannot obtain low fitting errors. In short, MSH
and MSHF1/MSHF2 can achieve low fitting errors within
reasonable time for most image pairs.

5.2.4 Two-view Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the other 19 image pairs of the AdelaideRMF dataset to
evaluate the performance of the competing fitting methods.
The results are shown in Table 5 and Fig. 11.
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Fig. 4. Examples of Homography based segmentation, first row is for scene ”Hartley” and second row is for ”johnsonb”. (a) groud truth (b) Multi-GS (c)
MSHF (d) MCNC

the same for both computer systems. However, since in their
experiments, they used a 2.4Ghz-core-i7-3960 CPU which has
similar or better performance compared to our system, the time
comparison is still reasonable. Examples of running MSHF,
Multi-GS and our method on two scenes from each dataset are
shown in figures 4 and 5.

From the results in Table 1, we observe that in total, for fun-
damental matrix estimation, our method returns a lower mean
error than all the other methods, except for Multi-GS which
is well-known to be a computationally expensive solution. In
addition, the total average run times reported in Table 1 demon-
strate that our method is faster than the others. The results re-
ported in Table 2 demonstrate that in total, for homography-
based segmentation, our method is both more accurate (with
smaller mean estimation error) and faster (with smaller mean
computation time). In particular, with the Multi-GS method,
we observe that although it can recover fundamental matrices
more accurately than our method (at the expense of heavy com-
putations), it struggles with detection of planar homographies.

The main reason why our method generally outperforms
KF (Chin et al. (2009b)) and HMSS is that these methods
perform random sampling at their cores (blindly or guided),
but ours samples from the distribution of hyperedges. In
MSHF (Wang et al. (2018)), the vertices in hypergraph are
hypotheses and the hyperedges are data points. Using ran-
dom minimal samples (different from ours), a set of models
is produced and a weight is given to each vertex (similar to
our likelihood but with a different kernel). Then, an infor-
mation theocratic approach is suggested to reduce the hyper-
graph to keep significant samples (where we use probabilities
on Markov chain to decide about importance of samples). In
our method, we explicitly treat vertices as data points and hy-
peredges as models and sample from distribution of hyperedges
by their probability. However, as we use an acceptance crite-
rion we are making much more effort to improve our samples

sequentially (which seems to be more successful than the infor-
mation theocratic approach). Also our design of Markov chain
with optimization steps, assists our samples to represent struc-
tures more accurately. The long jumps ensure exploration of
the space and short jumps tend to exploit each structure effi-
ciently. As the tabulated results indicate, performance of our
proposed method surpasses theirs in terms of average accuracy
and speed, while standard deviations of errors of their method
are generally lower, which suggests more stability.

4.2. Rigid body motion segmentation by subspace fitting

4.2.1. Real data
The task in this set of 155 video sequences is motion seg-

mentation based on multiple-view trajectories tracked on each
object in each video sequence. In this dataset, there are either
two or three objects with different motions; this information is
used as prior knowledge in the NCut implementation. If the
affine camera projections of N points to the image plane within
F frames are available, the trajectories belonging to a rigid ob-
ject span a subspace of rank ≤ 4 (Vidal (2011)). Therefore,
subspace clustering can be used to solve the problem. The data
will have the form X =

[
x fα

] f =1,...,F

α=1,...,N
, x ∈ R2. The model fit-

ting step, θe = minF (θ, e), performs two steps on the sam-
pled subset in e: first, to remove its translation te =

∑|e|
j=1 x j

(x j ∈ R2F), which means X̃e = Xe − te (Xe = [x j] j=1,...,|e| and
te = [te te ... te] ∈ R2F×|e|), and second to take the first r eigen-
vectors of X̃e, U(e,r) ∈ R2F×r where r is chosen based on the
eigenvalues of X̃e (Note that the sampled subset may live on a
lower dimensional subspace than 4 dimensions (Vidal (2011))).
It should be noted that proper model selection can be very effec-
tive in recovery of model instances. Even though in our current
setting, we use the simple method explained above, effective
methods such as Transfer Cost based model selection (Frank
et al. (2011)) can be very useful and would help with estimat-
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for homography fitting - which we use here - and 19 image
pairs for motion segmentation - which we use in Sec. 5.2.4
devoted to that topic) for homography based segmentation.
We repeat each experiment 50 times, and show the standard
variances, the average fitting errors (in percentage) and the
average CPU time (in seconds) in Table 4 (we exclude the
time used for sampling and generating potential hypothe-
ses, which is the same for all the fitting methods). Some
fitting results obtained by MSHF2 are also shown in Fig. 10.

From Fig. 10 and Table 4, we can see that MSH-
F1/MSHF2 obtain good results, achieving the lowest av-
erage fitting errors in 16 out of 19 image pairs. Although
MSHF1 is slightly slower than MSH, it significantly im-
proves the fitting accuracy over MSH in 12 out of 19 image
pairs. The reason behind this is that MSHF1 removes less
vertices corresponding to model hypotheses than MSH, and
thus MSHF1 takes more time to seek modes in a hyper-
graph. However, MSHF1 retains more good vertices corre-
sponding to significant model hypotheses, which improves
its fitting accuracy. MSHF2 achieves the same fitting errors
as MSHF1, but it is faster than MSHF1 in all the 19 image
pairs. In contrast, AKSWH only succeeds in fitting 10 out of

19 image pairs with low fitting errors. Although T-linkage
can also achieve low fitting errors in most of image pairs, it
is much slower than the other six competing methods. Both
KF and RCG achieve bad results in most cases. We note that
KF clusters many outliers together with inliers, and RCG is
very sensitive to its parameters when there exist many bad
model hypotheses in the generated model hypotheses. For
the overall fitting errors, MSH and MSHF1/MSHF2 achieve
the top-three best performance on the mean and median fit-
ting errors among all the seven competing fitting methods.
MSHF1/MSHF2 also achieve the lowest standard variances
of fitting errors. For the performance of computational time,
RCG achieves the lowest values in 17 out of 19 image
pairs, but it cannot obtain low fitting errors. In short, MSH
and MSHF1/MSHF2 can achieve low fitting errors within
reasonable time for most image pairs.

5.2.4 Two-view Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the other 19 image pairs of the AdelaideRMF dataset to
evaluate the performance of the competing fitting methods.
The results are shown in Table 5 and Fig. 11.

(c) (d)

(e) (f)

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2803173, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 11

(a) Elderhalla

(f) Ladysymon

(b) Elderhallb

(g) Oldclassicswing

(c) Hartley

(h) Neem

(d) Library

(i) Johnsona

(e) Sene

(j) Johnsonb

Fig. 10. Some fitting results obtained by MSHF2 for homography based segmentation on the AdelaideRMF dataset.

(a) Cubechips

(f) Breadtoycar

(b) Cubetoy

(g) Biscuitbook

(c) Breadcube

(h) Biscuitbookbox

(d) Gamebiscuit

(i) Breadcubechips

(e) Breadtoy

(j) Cubebreadtoychips

Fig. 11. Some fitting results obtained by MSHF2 for two-view based motion segmentation on the AdelaideRMF dataset.

for homography fitting - which we use here - and 19 image
pairs for motion segmentation - which we use in Sec. 5.2.4
devoted to that topic) for homography based segmentation.
We repeat each experiment 50 times, and show the standard
variances, the average fitting errors (in percentage) and the
average CPU time (in seconds) in Table 4 (we exclude the
time used for sampling and generating potential hypothe-
ses, which is the same for all the fitting methods). Some
fitting results obtained by MSHF2 are also shown in Fig. 10.

From Fig. 10 and Table 4, we can see that MSH-
F1/MSHF2 obtain good results, achieving the lowest av-
erage fitting errors in 16 out of 19 image pairs. Although
MSHF1 is slightly slower than MSH, it significantly im-
proves the fitting accuracy over MSH in 12 out of 19 image
pairs. The reason behind this is that MSHF1 removes less
vertices corresponding to model hypotheses than MSH, and
thus MSHF1 takes more time to seek modes in a hyper-
graph. However, MSHF1 retains more good vertices corre-
sponding to significant model hypotheses, which improves
its fitting accuracy. MSHF2 achieves the same fitting errors
as MSHF1, but it is faster than MSHF1 in all the 19 image
pairs. In contrast, AKSWH only succeeds in fitting 10 out of

19 image pairs with low fitting errors. Although T-linkage
can also achieve low fitting errors in most of image pairs, it
is much slower than the other six competing methods. Both
KF and RCG achieve bad results in most cases. We note that
KF clusters many outliers together with inliers, and RCG is
very sensitive to its parameters when there exist many bad
model hypotheses in the generated model hypotheses. For
the overall fitting errors, MSH and MSHF1/MSHF2 achieve
the top-three best performance on the mean and median fit-
ting errors among all the seven competing fitting methods.
MSHF1/MSHF2 also achieve the lowest standard variances
of fitting errors. For the performance of computational time,
RCG achieves the lowest values in 17 out of 19 image
pairs, but it cannot obtain low fitting errors. In short, MSH
and MSHF1/MSHF2 can achieve low fitting errors within
reasonable time for most image pairs.

5.2.4 Two-view Based Motion Segmentation

For the two-view based motion segmentation problem, we
use the other 19 image pairs of the AdelaideRMF dataset to
evaluate the performance of the competing fitting methods.
The results are shown in Table 5 and Fig. 11.
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Fig. 5. Examples of two-view motion segmentation, first row is for scene ”gamebiscuit” and second row is for ”breadcubechips”. (a) groud truth (b)
Multi-GS (c) MSHF (d) MCNC

ing both r and C. In this work however, we chose the simplest
method to achieve higher speeds.

The evaluation function R(θe) also takes two steps: it first
removes sample’s translation from all points X̃ = X − t̂e where
t̂e ∈ R2F×N , and then uses the subspace projection error rθe =∥∥∥∥X̃ − U(e,r)UT

(e,r)X̃
∥∥∥∥

2
to find the fitting residuals of all data points.

As can be seen from the results in Table 3, our method runs
at relatively high speed and outperforms selected methods in
terms of average and median error accuracy.

In Table 3 The selected methods include Spectral Curva-
ture Clustering (SCC (Chen and Lerman (2009b)) and HOSC
(Purkait et al. (2017)) which use iterative clustering to guide
samples. The results for HOSC is obtained by testing the
method with parameters given in the paper, and the results for
SCC is borrowed from (Chen and Lerman (2009a)). The ta-
ble also includes results for the method called QP-MF (Yu et al.
(2011))) (The results are borrowed from the paper), since it pro-
vides an accurate and stable optimization for the task of energy
minimization. Other methods included here are (HMSS (Ten-
nakoon et al. (2016)) (The results are borrowed from the paper)
and Multi-GS which we tested using the clustering method we
used for evaluating our own sampling technique without chang-
ing parameters such as number of samples.

The reason that the accuracy of our method surpasses that
of SCC and HOSC can be due to the fact that iterative cluster-
ing can easily fail if the clustering is inaccurate in early stages.
The speed of our method is less than some methods because
our method rejects some samples during the MCMC process.
The performance of our method however, succeeds that of the
energy minimization based method QP-MF mainly because it
uses random sampling.

4.2.2. Synthetic data
In order to show the importance of using proper k, we devised

a synthetic scene with a set of feature points on three boxes (see

figure 6). These are similar to the objects used in the Hopkins
dataset. The boxes, which have 50 data points on each face, ro-
tate and translate in 3D space for 25 frames. The Locations of
feature points are also perturbed by small, normally distributed
random values. The final adjacency matrix A in equation (5)
is given for three values of k in this figure. If the value of k is
small (e.g. k = 15), each face will have a block in the matrix
and the over-segmentation becomes inevitable. This is demon-
strated in figure 6(b). Increasing the value of k improves the
chance of generating a sample that includes data points from
multiple faces. While each face has 50 data points, the result
for k = 65 is shown in figure 6(c). On the other hand, when
the value of k is accurately inferred, the adjacency matrix finds
the desired three blocks as is shown in Figure 6(d). The eigen-
values of the Laplacian of these matrices for different values
of k are also shown in figure 6(e). It shows that, with small
value of k, the largest 9 eigenvalues are close to 1 where 6 of
these eigenvalues are supposed to be significantly smaller that
the largest three. The significance of finding the right value of
k can be seen in the difference between the three largest and the
six smaller eigenvalues. This difference, relied upon for suc-
cessful segmentation, is significantly increased using the pro-
posed method of inferring k.

4.3. Motion segmentation using dense trajectories

The Berkeley motion segmentation dataset includes video se-
quences provided for the purpose of motion segmentation. The
task is very similar to the previous one, except that in this
dataset, the trajectories are not hand-trimmed. The data in-
cludes structures with very small or large sizes with strongly
varying noise scales along with outliers. The data may be in-
complete, which means that each trajectory may be available for
only a few frames in the sequence. We use the same data, pro-
vided by (Ochs et al. (2014)), and the same clustering method.
However, we compare the accuracy and speed of our method
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Table 3. Comparative performance in terms of accuracy and speed using the Hopkings 155 dataset.
Multi-GS QP-MF HMSS SSC SCC HOSC MCNC(km) MCNC

2 Motions
Mean 1.93 4.16 3.98 2.23 1.40 5.28 6.9 1.36

Median 0.78 0.46 0.00 0.00 0.10 0.02 1.20 0.00
Time 5.6 - - 0.65 0.66 1.27 0.75 0.60

3 Motions
Mean 6.11 7.25 11.06 5.77 5.90 7.38 8.9 5.71

Median 2.63 4.9 1.20 0.95 1.99 1.53 3.2 0.18
Time 6.1 - - 1.47 1.29 2.00 2.00 1.94
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Fig. 6. (a) An example of 3D motion segmentation problem with synthetically generated feature points on three boxes; (b) The adjacency matrix when
k = 12; (c) When k = 65; (d) When k is inferred through iterations; (e) The largest 9 eigenvalues of the normalized adjacency matrices for comparison

as a result of the new sampling technique. The accuracy of
segmentation is calculated using manually created and labeled
masks for different objects in each video. The reader is referred
to the original article in (Ochs et al. (2014)) for more details.
We have tested our method on all frames of the 26 video se-
quences provided in the dataset and the results are given in
Table 4. In this table, We have included the result from the
method called BM (Brox and Malik (2010)) which uses spa-
tial continuity to find pair-wise distances between data points
and form a graph. The other method included here is called
OB (Ochs et al. (2014))) which forms the complete 3-uniform
hypergraph. Even though this method is very accurate, it is
extremely expensive in terms of computation (see the substan-
tially large computation time listed in Table 4). Also we have
mentioned the results for HOSC method Purkait et al. (2017)).
As can be seen, our MCNC method is comparable in terms of
speed and accuracy to the state of the art.

5. Conclusion

This paper presents a sampling framework for choosing ap-
propriate hyperedges of a hypergraph that will enable effec-

tive data segmentation using the NCut method. We argued
that sampling from the distribution of hyperedges is similar to
sampling from the distribution of putative models in parameter
space. An elaborate Markov Chain was designed to effectively
sample from this distribution. The chain includes greedy long
jumps for exploration and random short jumps for exploitation
of structures. The design of long jumps exploits the accumu-
lated knowledge of the (sensitive) structure size parameter and
uses that to produce informative samples. Compared to other
methods, our method performs reliably and efficiently in solv-
ing data segmentation problems using geometric constraints.
The improved performance of our method is mainly due to
the better quality of samples generated through the proposed
sequence of transitions in the parameter space. An extension
of this work is to investigate how various segmentation algo-
rithms can benefit from the high-quality samples generated by
this method. In particular, in conjunction with energy mini-
mization methods such as (Delong et al. (2012)), if method’s
parameters are properly tuned, we can achieve significantly im-
proved performance.
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Table 4. Results for Berkeley motion segmentation benchmark

Density overall error average error over-segmentation rate extracted objects Total Time(s)
BM 1.03% 7.86% 28.76% 1.35 30 9323
OB 1.03% 5.68% 24.74% 1.48 30 434545

HOSC 1.03% 5.46% 22.57% 2.1 29 18339
MCNC(km) 1.03% 14.9% 29.02% 1.7 25 15971

MCNC 1.03% 5.21% 20.02% 1.75 29 16115

6. Acknowledgment

This work was supported by the Australian Research Council
grants DP130102524 and LP160100662.

References

Agarwal, S., Branson, K., Belongie, S., 2006. Higher order learning with
graphs, in: International Conference on Machine Learning.

Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., Belongie, S.,
2005. Beyond pairwise clustering, in: Computer Vision and Pattern Recog-
nition, IEEE.

Andrieu, C., de Freitas, N., Doucet, A., Jordan, M., 2003. An introduction to
MCMC for machine learning. Machine Learning 50, 5–43.

Bab-Hadiashar, A., Gheissari, N., 2006. Range image segmentation using sur-
face selection criterion. Transactions on Image Processing 15.

Bab-Hadiashar, A., Hoseinnezhad, R., 2008. Bridging parameter and data
spaces for fast robust estimation in computer vision, in: International Con-
ference on Digital Image Computing: Techniques and Applications, IEEE.
pp. 1–8.

Bab-Hadiashar, A., Suter, D., 1999. Robust segmentation of visual data using
ranked unbiased scale estimate. Robotica 17, 649–660.

Balakrishnan, S., Xu, M., Krishnamurthy, A., Singh, A., 2011. Noise thresholds
for spectral clustering, in: Neural Information Processing Systems, IEEE.
pp. 954–962.

Boykov, Y., Veksler, O., Zabih, R., 2001. Fast approximate energy minimiza-
tion via graph cuts. Transactions on Pattern Analysis and Machine Intelli-
gence 23, 1222–1239.

Brox, T., Malik, J., 2010. Object segmentation by long term analysis of point
trajectories, in: Europian Conference on Computer Vision, IEEE.

Cabral, R., De La Torre, F., Costeira, J.P., Bernardino, A., 2013. Unifying nu-
clear norm and bilinear factorization approaches for low-rank matrix decom-
position, in: International Conference on Computer Vision, pp. 2488–2495.

Candès, E.J., Li, X., Ma, Y., Wright, J., 2011. Robust principal component
analysis? Journal of the ACM (JACM) 58, 11.

Chen, G., Lerman, G., 2009a. Motion segmentation by scc on the hopkins 155
database, in: Computer Vision Workshops (ICCV Workshops), 2009 IEEE
12th International Conference on, IEEE. pp. 759–764.

Chen, G., Lerman, G., 2009b. Spectral curvature clustering (SCC). Interna-
tional Journal of Computer Vision 81, 317–330.

Chin, T.J., Wang, H., Suter, D., 2009a. The ordered residual kernel for robust
motion subspace clustering, in: Neural Information Processing Systems, pp.
333–341.

Chin, T.J., Wang, H., Suter, D., 2009b. Robust fitting of multiple structures:
The statistical learning approach, in: Computer Vision, 2009 IEEE 12th
International Conference on, IEEE. pp. 413–420.

Delong, A., Osokin, A., Isack, H.N., Boykov, Y., 2012. Fast approximate en-
ergy minimization with label costs. International journal of computer vision
96, 1–27.

Elhamifar, E., Vidal, R., 2013. Sparse subspace clustering: Algorithm, theory,
and applications. Transactions on Pattern Analysis and Machine Intelligence
35, 2765–2781.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24, 381–395.

Florescu, L., Perkins, W., 2016. Spectral thresholds in the bipartite stochastic
block model, in: Conference on Learning Theory, pp. 943–959.

Frank, M., Chehreghani, M.H., Buhmann, J.M., 2011. The minimum transfer
cost principle for model-order selection, in: Gunopulos, D., Hofmann, T.,

Malerba, D., Vazirgiannis, M. (Eds.), Machine Learning and Knowledge
Discovery in Databases, Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
423–438.

Georghiades, A., Belhumeur, P., Kriegman, D., 2001. From few to many: illu-
mination cone models for face recognition under variable lighting and pose.
Transactions on Pattern Analysis and Machine Intelligence 23, 643–660.

Ghoshdastidar, D., Dukkipati, A., 2017. Uniform hypergraph partitioning:
provable tensor methods and sampling techniques. Journal of Machine
Learning Research 18, 1–41.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision.
Cambridge university press.

Hoseinnezhad, R., Bab-Hadiashar, A., Suter, D., 2006. Finite sample bias of
robust scale estimators in computer vision problems. Advances in Visual
Computing , 445–454.

Jain, S., Govindu, V.M., 2013. Efficient higher-order clustering on the grass-
mann manifold, in: International Conference on Computer Vision, IEEE.

Kim, E., Lee, M., Oh, S., 2016. Robust elastic-net subspace representation.
Transactions on Image Processing .

Lee, K.M., Meer, P., Park, R.H., 1998. Robust adaptive segmentation of range
images. Transactions on Pattern Analysis and Machine Intelligence 20, 200–
205.

Li, B., Zhang, Y., Lin, Z., Lu, H., 2015. Subspace clustering by mixture of
gaussian regression, in: Computer Vision and Pattern Recognition.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y., 2013. Robust recovery of sub-
space structures by low-rank representation. Transactions on Pattern Anal-
ysis and Machine Intelligence 35, 171–184.

Liu, G., Xu, H., Tang, J., Liu, Q., Yan, S., 2016. A deterministic analysis for
lrr. Transactions on Pattern Analysis and Machine Intelligence 38, 417–430.

Liu, H., Yan, S., 2012. Efficient structure detection via random consensus
graph, in: Computer Vision and Pattern Recognition, IEEE.

Ochs, P., Malik, J., Brox, T., 2014. Segmentation of moving objects by long
term video analysis. Transactions on Pattern Analysis and Machine Intelli-
gence 36, 1187–1200.

Pham, T.T., Tat-Jun, C., Jin, Y., Suter, D., 2014. The random cluster model
for robust geometric fitting. Transactions on Pattern Analysis and Machine
Intelligence 36, 1658–1671.

Poling, B., Lerman, G., 2014. A new approach to two-view motion segmen-
tation using global dimension minimization. International Journal of Com-
puter Vision 108, 165–185.

Purkait, P., Chin, T.J., Sadri, A., Suter, D., 2017. Clustering with hypergraphs:
the case for large hyperedges. Transactions on Pattern Analysis and Machine
Intelligence 39, 1697–1711.

Rao, S., Yang, A., Sastry, S.S., Ma, Y., 2010. Robust algebraic segmentation of
mixed rigid-body and planar motions from two views. International Journal
of Computer Vision 88, 425–446.

Rousseeuw, P.J., Leroy, A.M., 2005. Robust regression and outlier detection.
volume 589. John Wiley & Sons.

Sadri, A., Tennakoon, R., Hoseinnezhad, R., Bab-Hadiashar, A., 2016. Mcmc
based sampling technique for robust multi-model fitting and visual data seg-
mentation, in: International Conference on Image Processing Theory Tools
and Applications (IPTA), IEEE. pp. 1–6.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. Transactions
on Pattern Analysis and Machine Intelligence 22, 888–905.

Swendsen, R.H., Wang, J.S., 1987. Nonuniversal critical dynamics in monte
carlo simulations. Physical review letters 58, 86.

Tat-Jun, C., Jin, Y., Suter, D., 2012. Accelerated hypothesis generation for
multistructure data via preference analysis. Transactions on Pattern Analysis
and Machine Intelligence 34, 625–638.

Tennakoon, R.B., Bab-Hadiashar, A., Cao, Z., Hoseinnezhad, R., Suter, D.,
2016. Robust model fitting using higher than minimal subset sampling.



15

Transactions on Pattern Analysis and Machine Intelligence 38, 350–362.
Tjelmeland, H., Hegstad, B.K., 2001. Mode jumping proposals in mcmc. Scan-

dinavian Journal of Statistics 28, 205–223.
Toldo, R., Fusiello, A., 2008. Robust Multiple Structures Estimation with J-

Linkage. Springer Berlin Heidelberg. volume 5302 of Lecture Notes in Com-
puter Science. book section 41. pp. 537–547.

Torr, P.H., Zisserman, A., 2000. Mlesac: A new robust estimator with appli-
cation to estimating image geometry. Computer Vision and Image Under-
standing 78, 138–156.

Torr, P.H.S., Murray, D.W., 1997. The development and comparison of robust
methods for estimating the fundamental matrix. International Journal of
Computer Vision 24, 271–300.

Tran, Q.H., Chin, T.J., Chojnacki, W., Suter, D., 2014. Sampling minimal sub-
sets with large spans for robust estimation. International Journal of Com-
puter Vision 106, 93–112.

Tron, R., Vidal, R., 2007. A benchmark for the comparison of 3-D motion seg-
mentation algorithms, in: Computer Vision and Pattern Recognition, IEEE.

Vidal, R., 2011. Subspace clustering. Signal Processing Magazine 28, 52–68.
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