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Abstract

Recognizing packaged grocery products based solely on
appearance is still an open issue for modern computer vi-
sion systems due to peculiar challenges. Firstly, the num-
ber of different items to be recognized is huge (i.e., in the
order of thousands) and rapidly changing over time. More-
over, there exist a significant domain shift between the im-
ages that should be recognized at test time, taken in stores
by cheap cameras, and those available for training, usu-
ally just one or a few studio-quality images per product. We
propose an end-to-end architecture comprising a GAN to
address the domain shift at training time and a deep CNN
trained on the samples generated by the GAN to learn an
embedding of product images that enforces a hierarchy be-
tween product categories. At test time, we perform recogni-
tion by means of K-NN search against a database consist-
ing of just one reference image per product. Experiments
addressing recognition of products present in the training
datasets as well as different ones unseen at training time
show that our approach compares favourably to state-of-
the-art methods on the grocery recognition task and gener-
alize fairly well to similar ones.

1. Introduction

Automatic recognition of grocery products is receiving
increasing attention as it may lead to improved shopping
experience (e.g., shopping apps, interaction via augmented
reality, checkout-free stores, support to visually impaired
customers) as well as to a more efficient store management
(e.g., by automated inventory and on-line shelf monitoring).

As pointed out by [16] in their seminal work, recog-
nizing grocery products can be thought of as an object
recognition problem featuring peculiar challenges. Firstly,
the number of different items to be recognized is huge, in
the order of several thousands for small to medium shops,
well beyond the usual target for current state-of-the-art im-
age classifiers. Furthermore, product recognition is better
cast as an hard instance recognition rather than a classi-
fication problem, as it mandates telling apart many items
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looking identical but for a few details, such as the differ-
ent flavours of the same cereal brand depicted in [Fig. T[b-
c-d). Any practical methodology should rely only on the
model images available within existing commercial product
databases, i.e. a single high-quality image for each side of
the package either acquired in studio settings or rendered
using computer graphics tools (e.g., [Fig. T(c-d)). Con-
versely, products must be recognized from images captured
in the store by cheap sensors, e.g., smartphone cameras,
under far less than ideal conditions (e.g., [Fig. T}a). Thus,
product recognition implies tackling a domain adaptation
problem between the images available to build the infer-
ence engine and those deployed at test time to pursue recog-
nition. Another peculiarity deals with the items on sale
in a store as well as their appearance changing frequently
overtime, which would render unfeasible to continuously
re-train or fine-tune an inference engine in order to keep-
up with all such changes. Differently, a practical approach
should be conducive to recognition of both seen products
(i.e., products whose reference images were deployed at
training time) as well as unseen products (i.e., products
present in the store but not used to train the inference en-
gine).

Given these premises, we rely on a global image descrip-
tor learned to disentangle grocery products and to pursue
recognition through K-NN search within a database featur-
ing one reference image per sought product. This approach
allows for learning an image embedding based on the avail-
able training data and then perform recognition of both seen
and unseen products seamlessly. For example, should a new
product be put on sale in the store, our system would just
require to add one image of the new product into the refer-
ence database without the need of performing a new costly
retraining. K-NN search is quite amenable to product recog-
nition from a computational standpoint alike. Indeed, com-
pared to typical image retrieval settings, the database is very
small (i.e., in the order of several thousands images rather
than millions of images). Thus, a global image descriptor
of about a few hundreds entries turns out viable in terms of
time and memory efficiency.

We propose to learn the embedding through a deep CNN
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Figure 1: Exemplar images for the grocery recognition task: reference images (c-d) carefully acquired in studio (available
at training time), query images: (a) captured in the store (query at test time) and (b) synthetic query generated by our GAN

(used at training time).

trained by a loss function that forces both similar looking
items as well as items belonging to the same high level cat-
egory to map close one to another in the descriptor space.
Moreover, to tackle the domain shift issue and increase the
training set size we propose to deploy an image-to-image
translation GAN together with the embedding CNN and to
optimize the whole architecture end-to-end. In particular,
some of the training samples for the embedding network
are generated by a GAN that learns unsupervisedly to trans-
form images taken in studio settings into in-store type of
images without introducing excessive modification of prod-
uct appearance (Fig. 1] (b) shows an exemplar image syn-
thesized by the GAN). These training samples force the em-
bedding CNN to learn robustness to domain shift; moreover,
the GAN can be trained to produce samples that are partic-
ularly hard to embed, thereby allowing the CNN to learn
a stronger embedding function thanks to these adversarial
samples. Despite the use of multiple networks, the overall
architecture can be trained end-to-end effortlessly via sim-
ple gradient descent.

Thus, the main original contributions of this paper can
be summarized as follows.

e The introduction of an image-to-image translation
GAN trained jointly together with an embedding net-
work in order to produce a domain-shift resilient and
stronger embedding function. To the best of our
knowledge, this is the first work that tries to integrate
a GAN with adversarial behaviour within the training
process of an embedding network.

e A novel formulation of the classic triplet ranking loss
that can be used to learn a better embedding whenever
in the domain of interest there exist a taxonomy be-
tween classes (e.g., ImageNet class taxonomy). Our
loss helps preserving in the descriptor space the simi-
larity information implied by the taxonomy (i.e., items
belonging to the same macro class should be embed-

ded closer than those belonging to unrelated classes).

e A novel formulation of the grocery product recogni-
tion task as an instance-level recognition problem with
thousands of classes and only one sample per class. In
we will show how in this real-world scenario,
far more challenging than the standard datasets cur-
rently used to benchmark methods aimed at learning
from few shots, our proposed architecture can obtain
impressive performance.

2. Related Work

Grocery Product Recognition The grocery products
recognition problem was firstly investigated in the seminal
paper by [16]. Together with a thoughtful analysis of the
problem, the authors propose a system based on local in-
variant features to help visually impaired costumers shop
in grocery stores. However, their experiments report per-
formance far from conducive to real-world deployment. A
number of more recent proposals are aimed at improving
product recognition by leveraging on: a) stronger features
followed by classification ([3]]), b) the statistical correlation
between nearby products on shelves ([T}, 2]]) ¢) information
on the expected product disposition ([33]) or d) a hierar-
chical multi-stage recognition pipeline ([4]]). Yet, all these
recent works focus on a relatively small-scale problem, i.e.
recognition of a few hundreds different items at most, whilst
several thousands products are on sale in a real shop. [3]]
address more realistic settings and propose a quite complex
multi-stage system capable of recognizing ~ 3400 different
products based on a single model image per product. The
authors contribution include releasing the dataset employed
in their experiments, which we will use in our evaluation.
Recently have shown how it is possible to improve de-
tection and recognition performance on the same dataset re-
lying on a probabilistic model based on local feature match-
ing and refinement by deep network. However, even in this



work, performance appear not as satisfactory as to pave the
way for practical exploitation.

Computer Vision for Retail The recognition of grocery
products shares commonalities with the exact street to shop
task addressed in [9} [38] 25], which consists in recogniz-
ing a real-world example of a garment item based on the
catalog of an online shop. Like our solution, these works
rely on matching and retrieval using deep features extracted
from CNN architectures. However, they leverage on la-
beled paired couple of samples depicting the same item in
the Street and Shop domain to learn a cross domain em-
bedding at training time while our proposal leverages only
on labeled images from one domain, thereby vastly relax-
ing the applicability constraint. Moreover, computer vision
has been successfully applied in the retail environments for
costumer profiling ([30]]), automatic shelf surveying ([17]]),
visual market basket analysis ([23]]) and automatic localiza-
tion inside the store ([37]).

Embedding Learning Using CNNs to obtain rich im-
age representations is nowadays an established approach to
pursue image retrieval, both as a strong off-the-shelf base-
line ([26]) and as a key component within more complex
pipelines ([8]]). [24] train a CNN using triplets of samples
to create an embedding for face recognition and clustering.
Since then, this approach has been used extensively to learn
representations for a variety of different tasks, with more
recent works advocating smart sampling strategies ([40])
or suitable regularizations ([41]]) to ameliorate performance.
Similarly to our proposal, [42] extend the idea of triplets by
a novel formulation amenable to embed label structure and
semantics at training time based on tuplets. Unlike [42} 24],
in this paper we propose to embed label structure within the
learning process using only standard triplets; moreover our
method uses only one exemplar image per class and aug-
ment the training set by a GAN trained jointly together with
the embedding network.

Few Shot Learning Few shot learning has been ad-
dressed successfully by [[11] through classifiers trained on
top of a fixed feature representation by artificially augment-
ing a small training set with transformations in the feature
space. Yet, in the grocery product recognition scenario the
items to be recognized at test time change quite frequently,
which would mandate frequent retraining of new classifiers.
Besides, as product packages exhibit very low intra-class
variability, the generalization ability of a classifier may not
be needed. Thus, we prefer to learn a strong image em-
bedding and rely on K-NN similarly to perform recogni-
tion. In this respect our approach shares commonalities with
[35] and [29], where the authors address few shot learning

by learning suitable embedding spaces and matching func-
tions.

GANs Starting from the pioneering works of [7] and
[20], GANs have received ever increasing attention in the
computer vision community as they enable to synthesize
realistic images with few supervision. Recently GAN
frameworks have been successfully deployed to accom-
plish image-to-image translation, with ([[13]]) and without
([43L 27]) direct supervision, as well as to tackle domain
shift issues by forcing a classifier to learn invariant features
[34]. We draw inspiration from these works and deploy a
GAN at training time to pursue domain adaptation as well
as to improve the effectiveness of the learned embedding.
A related idea is proposed in [19] though, unlike [19], (a)
we explicitly deploy the GAN while learning the embed-
ding to attain domain adaptation, (b) use only one sample
per class and (c) train the GAN to produce realistic though
hard to embed training samples, i.e. the generator of our
GAN not only plays an adversarial game against the dis-
criminator but also against the encoder network that learns
the embedding..

3. Domain invariant hierarchical embedding

An overview of our Domain invariant hierarchical em-
bedding (DIHE) is depicted in[Fig. 2] We use a deep CNN
(encoder) to learn an embedding function £ : 7 — D that
maps an input image ¢ € Z to a k-dimensional descriptor
d* € D amenable to pursue recognition through K-NN sim-
ilarity search. During training we exploit, if available in
the training dataset, a taxonomy of classes by means of a
novel loss function that forces descriptors of different items
to be closer if they share some portion of the taxonomy, dis-
tant otherwise. To learn a descriptor robust to the domain
shift between train and test data, we use an image-to-image
translation GAN, consisting of a generator and a discrimi-
nator, which augments the training set with samples similar
to those belonging to the test domain while simultaneously
producing hard examples for the embedding network. The
three networks can be trained jointly by standard gradient
descent in order to minimize the three loss functions de-
scribed in the following sections.

3.1. Hierarchical Embedding

An established approach to learn an effective image em-
bedding consists in training a deep CNN according to the
triplet ranking loss ([36])). In the original formulation, each
training sample consists of three different images, referred
to as anchor (i), positive (i) and negative (i,,). In a typical
classification scenario these images would be chosen such
that i, and 4, depict the same class while 4,, belongs to a
different one. Given a distance function in the descriptor
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Figure 2: Overview of DIHE at training time. Each training sample consists of three images, two from domain .4 (enclosed in
green) and one from domain B (enclosed in yellow). The generator and discriminator implement a classic GAN for domain
translation from A to B. The encoder network uses two images from domain .4 alongside with the generated one to learn an
image embedding by a modified triplet ranking loss. iaB is generated to be both indistinguishable from images sampled from

domain B as well as hard to encode.

space, d(X,Y), with X, Y € D, and denoted as F(i) the
descriptor computed by the encoder network for image ¢,
the loss to be minimized is defined as

Lene = max(0,d(E(iy), E(ip)) — d(E(iy), E(in)) + @)

ey
with « a fixed margin to be enforced between the pair of
distances.

We modity this formulation for domains that feature a hi-
erarchical structure between classes (e.g., ImageNet classes
taxonomy), so as to mimic this structure within the learned
descriptor space. This is a quite common scenario for prob-
lems where a multi level classification is available. For in-
stance, existing commercial databases of grocery products
feature labels both at instance as well as at multiple category
levels (e.g., for the product depicted in [Fig. T|(c) we would
have three different classification labels with increasing
generality: Kellog’s Special K Classic —Cereal—Food).
Our aim is to force the network to embed images nearby
in the descriptor space not only based on their appearance
but also on higher level semantic cues, like those shared be-
tween items belonging to the same macro-class. We argue
that doing so will help producing a stronger image descrip-
tor and may provide better generalization to products whose
reference images are unseen at training time.

Assuming a taxonomy of classes encoded in a tree like

structure, we propose to impose a hierarchy in D by ren-
dering o inversely proportional to the amount of hierarchy
shared between the classes of i,,%, and i,. Considering
an image sample ¢ in the training set, we denote with c its
fine class (foil level in the taxonomy) and with (i) a set
of higher level classes (all the parent nodes in the class tree
excluding the common root). Using this notation and defin-
ing the minimum and maximum margin, i, and ez
respectively, our hierarchical margin, @ € [Qmin, ¥maz)s
can be computed as:

[H(ia) N H(in)l)
o = amin+ (1 T A7 N '(amam*amin) (2)
[H(ia)]
where | - | is the cardinality operator for sets. Thus, if i,

and 7, share all the parent nodes o = vy, Whilst the mar-
gin is proportionally increased until completely disjoint fine
classes will produce @ = a4,

3.2. Domain Invariance

A common trait across many computer vision tasks is
that easily available labelled training data (e.g., tagged im-
ages published on-line) are usually sampled from a differ-
ent distribution than the actual test images. Thus, machine
learning models directly trained on such samples, such as
embedding networks, will typically perform poorly at test



time due to domain shift issues. However, annotating sam-
ples from the test distribution, even if possible, is usually
very expensive and time consuming. We propose to address
this problem by dynamically transforming the appearance
of the available labelled training images to make them look
similar to samples from the unlabeled test images. This
transformation is carried out by two CNNs, refereed to in
as generator and discriminator, realizing an image-
to-image translation GAN which is trained end-to-end to-
gether with the embedding network (encoder).

Given two image domains A, B C 7 consisting of i €
A and i8 € B, the standard image-to-image GAN frame-
work can be summarized as a generator network that tries
to learns a generative function G : A — B by playing a
two player min-max game against a discriminator network
D : 7 — R that tries to classify examples either as real im-
ages from B or fake ones produced by G. In the following
we will denote with G(i*) € Z the output of the generator
network given the input image i and with D(i) € R the
output of the discriminator network for image ¢. To gener-
ate samples similar to the images from domain B without
drastically changing the appearance of the input image i,
we introduce an additional term in the generator loss func-
tion (L,4) that, similarly to the self regularization term de-
ployed in [27], forces G (i) to be visually consistent with
i, In our architecture, A is the training set while B is a
small set of unlabeled images from the test data distribu-
tion.

Following the notation introduced in during
each training iteration of the whole architecture we sam-
ple one image i® € B to train the discriminator and two
from the other domain i;‘, iA € A to train the encoder and
generator. As mentioned in the encoder needs
triplets of samples to compute its loss, so we synthesize the
missing image using the generator i = G (i;;t). With this
architecture the triplet used to calculate [Eq. 1| consists of
two images from domain .4 and one from the simulated do-
main 3, thereby mimicking the test conditions where the
query images to be recognized will came from B and the
reference images to perform K-NN similarity from .A.

The encoder is trained to minimize [Eq. 1| with the mar-
gin defined in[Eq. 2} The discriminator tries to minimize a
standard cross entropy loss:

Laise = log(D(i%)) +log(1 — D(G(ip))) ()
while the generator minimizes a loss consisting of three
terms:

Egen = Ladv + )\reg . Lreg + )\emb . Lemb
Lagy = —lOg(D(G(Z;‘)))
chg = ¢(Z;)4 ZaB)

Lemb = _d(E(Z;JLl)’ E(G(l;‘)))
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Figure 3: Visualization of the hierarchy of categories of the
Grocery_Food dataset used as training set throughout our
experiments. Each outermost category contains several dif-
ferent fine classes (products) not depicted for clarity.

with ¢(z,y), ,y € Z a similarity measure between the
appearance of image x and y, either at pixel level (e.g.,
mean absolute difference...) or at image level (e.g., SAD,
ZNCC...), and Ayeg, Aemp two hyper parameters that weigh
the different terms of the loss function. We refer the reader
to for the actual d(z,y, ), Areg, Aemp and ¢(z,y)
used in the experiments. The contribution of the three terms
can be summarized as follows. Lg4, is the standard adver-
sarial loss for the generator network that forces the syn-
thesized images to be indistinguishable from those sam-
pled from domain B; L,., is aimed at synthesizing im-
ages that preserve the overall structure of the input ones
(avoiding thereby the mode collapse issue often occurring
in GAN generators); Le,,; forces an additional adversarial
behaviour against the encoder, so as to create hard to embed
samples.

At training time, given a minibatch of M different
triplets of samples (i;;‘,iﬁ,iB ), the three networks are
trained jointly to minimize their average loss on the M sam-
ples.

4. Experimental Results
4.1. Implementation Details

Datasets To evaluate the effectiveness of DIHE in recog-
nizing grocery products we rely on two products datasets
comprising thousands of items: the publicly available Gro-
cery Products dataset ([3]) and a standard commercial
database, referred to here as Product8600. Both datasets in-
clude more than 8500 grocery products, each described by
exactly one studio-quality (reference) image of the frontal



face of the package, and feature a multi level class hierar-
chy in the categorization of products. As already discussed,
at test time we pursue recognition from a different set of
images (query). To create this set, for Grocery Products we
automatically cropped individual items from the available
shelf images according to the annotation released in [33]],
thereby obtaining a total of 938 query images. As for Prod-
uct8600, we cropped and annotated individual items from
shelf videos that we acquired in a grocery store by a tablet
camera, for a total number of 273 query images. As the
shelf images available in Grocery Products concern only
items belonging to the Food macro class, which accounts
for 3288 products, we consider also this smaller subset of
products, which will be referred to as Grocery_Food, whilst
Grocery_Full will denote all the products of the Grocery
Product dataset. We depict in[Fig. 3|the taxonomy of macro
categories that compose the Grocery_Food dataset which
we are going to use as training set, each categories fea-
tures several fine grained classes (one for product) not de-
picted in figure. As for the samples from domain B needed
to train the discriminator and generator of our architecture
(see[Sec. 3.2), we have used 547 additional images cropped
from the shelf images available in Grocery Products, picked
as to have no overlap with the previously mentioned 938
query images used at test time. We wish to point out how
our formulation requires images from domain 3 only for
the discriminator of the GAN system. Therefore, few sam-
ples without any kind of annotation are sufficient to learn
the appearance of products on the shelf. Moreover we can
use images from domain B that depict any kind of product,
even items not in A.

Network architectures For the implementation of DIHE
we have used tensorflow] | as our deep learning framework.
For all our test we used as generator U-Net ([21]) and
as discriminator PatchGAN ([[13]]), the latter producing a
dense grid of predictions for each input image. For the
encoder we tested different available CNN model with or
without pretrained weight on the ImageNet-1000 classifi-
cation task. For the initialization of the encoder network
on the fine tuning tests we have used the weights publicly
available in the tensorflow/models repositoryﬂ The three
network that compose DIHE can easily fit in a single GPU,
so training our system, once implemented, in a deep learn-
ing framework is straightforward.

Descriptor Computation We will show how for the gro-
cery product recognition scenario, the best performance can
be obtained using as embedding the maximum activation of

Ihttps://www.tensorflow.org/
Zhttps://github.com/tensorflow/models/tree/
master/research/slim

convolution features (MAC [32]]). We extract these descrip-
tors from different layers, concatenate them and finally per-
form L2-normalization to get a final representation laying
on the unit hyper-sphere. For all our tests, we used as dis-
tance function d(X,Y) =1 - X - Y with X, Y € D (i.e.,
one minus the cosine similarity between the two descrip-
tors).

Training Details As for ¢ in L,.4, we tried the pixel-wise
L1 or L2 norms, the Structured Similarity Index (SSIM)
([39) and the Zero Mean Normalized Cross Correlation
(ZNCC) and found out the last to work best in all our tests,
in the following ¢(z,y) = ZNCC(z,y). The weights
of each network are trained to minimize their specific loss
functions as introduced in We use Adam ([15]]) as
optimizer with different learning rates for the different tests.
Concerning data preprocessing, we use as input colour im-
ages with fixed size of 256 x 256 and intensities rescaled
between [—1, 1]. To obtain the input dimension the original
images are rescaled to the target resolution preserving the
aspect ratio and filling the extra pixels with Os. The only
additional data augmentation is a preliminary random crop
with size at least 80% of the original image to attain the
input of the generator network.

Evaluation Protocol To test our embedding network we
encode all the reference images of the considered dataset to
create a reference database, then compute the same encod-
ing for the query images. For each query vector we perform
similarity search against all the reference vectors and retain
the K most similar database entries; if the reference image
for the product depicted in the query does belong to this
set of nearest neighbours we consider recognition to be suc-
cessful. As a measure of effectiveness of the embedding,
we report the accuracy (number of successful recognitions
over number of queries) for different K values.

Based on these premises, we train once and for all our
architecture using only the reference images belonging to
Grocery_Food, (i.e., one reference image for each of 3288
different products organized in a multi level hierarchy of
products categories). We then use the trained embedding
model to address three different test scenarios:

(a) Grocery_Food: we recognize the 938 query images
from Grocery Products based on the 3288 reference
images from Grocery_Food. Thus, all the reference im-
ages were deployed at training time.

(b) Grocery_Full: we recognize the 938 query images
from Grocery Products based on the 8403 reference
images from Grocery_Full. Thus, only 40% of the ref-
erence images were deployed at training time.
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(c) Product8600: we recognize the 273 query images
cropped from our videos based on the 8597 reference
images from Product8600. Thus, none of the reference
images was deployed at training time.

Among the three, (b) is the most likely to happen in
practical settings as product appearance changes frequently
overtime and it is infeasible to constantly retrain the embed-
ding network, although perhaps a portion of the reference
images dealing with the items actually on sale in the store
had been used at training time

At test time the encoder network is used as a stand alone
global image descriptor. Our implementation is quite effi-
cient and can easily encode, on GPU, more than 200 image
per second taking into account also the time needed to load
the images from disk and rescale them to the 256 x 256 in-
put size. Finally, given that usually our reference database
only provides a single image per product and the descriptor
dimension is relatively low (between 256 and 1024 floats
across different tests), we perform the K-NN similarity
search extensively without any kind of approximation. The
biggest descriptor database considered in our tests is the one
obtained from Product8600 using a 1024 float dimensional
embedding vector (i.e., the reference database is a matrix of
float with 8600 row and 1024 column). Even on this kind
of database given a query descriptor the whole similarity
search can be solved in a tenth of second using brute force
search, nevertheless the search could be speeded up using
KD-Tree or approximate search technique.

4.2. Ablation Study

To understand the impact on performance of the dif-
ferent novel components proposed in our architecture, we
carry out a model ablation study using as encoder Patch-
GAN ([13]]) with MAC features ([32]) extracted from the
last convolutional layer before the output. We use this ran-
domly initialized small network to better highlight the gains
provided by the different kind of proposed losses. We will
show how to obtain the best performance we rely on a larger
pre-initialized network. We train this architecture on the
reference images of Grocery_Food according to six differ-
ent training losses and report the accuracy dealing with the
three test scenarios presented in in In par-
ticular, with reference to the first column, triplet denotes
training by triplet loss with fixed margin (o« = 0.3 ob-
tained by cross validation); hierarchy denotes training by
our triplet loss with variable margin introduced in
(min = 0.1, aunaz = 0.5); entries with +GAN denote
deploying the image translation GAN to generate the an-
chor image 5 (Eq. 4} \rey = 1, Aemp = 0); finally, en-
tries with + GAN+adv concerns introducing also the ad-
versarial term in the loss of the GAN generator (Eq. 4
Areg = 1, Aemp = 0.1). For all the models that do not use
GANSs, we rely on standard data augmentation techniques

(e.g., crop, gaussian blur, color transformation. . .) to obtain
the anchor image given the positive one. In all the tests the
networks are randomly initialized and trained for the same
number of steps and identical learning rates.

The results reported in show how each individual
novel component proposed in our DIHE architecture pro-
vides a significant performance improvement with respect
to the standard triplet ranking loss. Indeed, by comparing
rows (2),(4) and (6) to (1),(3) and (5), respectively, it can
be observed that modifying the fixed margin of the standard
triplet loss into our proposed hierarchically adaptive margin
can improve accuracy with all models and in all scenarios,
with a much larger gain in (c)(i.e., completely unseen refer-
ence images). This proves that embedding a hierarchy into
the descriptor space is an effective strategy to help learning
an embedding amenable to generalize to unseen data. The
main improvements are clearly achieved by methods fea-
turing a GAN network to pursue domain adaptation by gen-
erating training samples similar to the images coming from
the test domain. Indeed, comparison of (3) and (4) to (1) and
(2), respectively, highlights how performance nearly double
across all models and scenarios, testifying that the domain
shift between test and train data and the lack of multiple
training samples are indeed the key issues in this task that
the proposed image-to-image translation GAN can help to
address very effectively. Finally, comparing (5) and (6) to
(3) and (4), respectively, vouches that training the generator
to produce anchor images not only realistic but also hard to
embed turns out always beneficial to performance. Indeed,
the adversarial game played by the generator and encoder
may be thought of as an on-line and adaptive hard-mining
capable of dynamically synthesize hard to embed samples
that help training a more robust embedding. Performance
of our overall DIHE architecture are reported in row (6) and
show a dramatic improvement with respect to the standard
triplet loss, row (1).

4.3. Product Recognition

Model and Descriptor Selection To ameliorate product
recognition performance we can rely on larger networks
pre-trained on the ImageNet classification benchmark. To
chose the best CNN model as our encoder network we
downloaded the public available weights of different mod-
els trained on ImageNet-1000 classification and test them
as general purpose off-the-shelf feature extractors on our
datasets without any kind of fine tuning. We consid-
ered three different popular CNN models (VGG_16 [28],
resnet_[50/101/152] [12] and inception_v4 [31]]) and com-
pute three kind of different descriptors from activations ex-
tracted at various layers:

e Direct: directly use the vectorized activation of a given
layer. The dimension of the descriptor is the number
of elements in the feature maps for that layer.



Table 1:
scenarios. Best results highlighted in bold.

Ablation study for DIHE. Recognition accuracy for 1-NN and 5-NN similarity search in the three considered

(a) Grocery_Food (b)) Grocery_Full (c) Product8600
Training loss K=1 K=5 K=1 K=5 K=1 K=5
(1) triplet 0.301 0.430 0.277 0.390  0.351 0.490
(2) hierarchy 0.325 0.491 0.302  0.433 0.355 0.553
(3) triplet+GAN 0.454 0.626 0.418 0.586 0.512  0.706
(4) hierarchy+GAN 0.479 0.660 0.455 0.621 0.538  0.699
(5) triplet+GAN+adv 0.470 0.648 0.431 0.595 0.548  0.717
(6) hierarchy+GAN+adv (DIHE) 0.481 0.688 0.463  0.642 0.553 0.732

e AVG: perform average pooling on the feature map with
a kernel with width and height equals those of the map.
Therefore, we use as descriptor the average activation
of each convolutional filter for a given layer. The di-
mension of the descriptor is the number of convolu-
tional filters in the selected layer.

e MAC [[32]]: perform max pooling on the feature map
with a kernel with width and height equals those of the
map. Therefore, we use as descriptor the maximum
activation of each convolutional filter for a given layer.
The dimension of the descriptor is the number of con-
volutional filters in the selected layer.

We applied the three different descriptors above at dif-
ferent layers of the three networks and report in
the 1-NN accuracy using the test protocol described in
For all our tests the descriptors were L2 normal-
ized to unit norm and the similarity search is performed
using cosine similarity. In we report only some of
the best performing layers for each network and additional
tests where the descriptors are obtained by concatenation
of representations extracted at different depths in the CNN
(e.g., conv4_3+conv5_3 is the concatenation of representa-
tions extracted at layers conv4_3 and conv5_3) with L2 nor-
malization performed after concatenation.

Looking at the results in we can observe how, in
our settings, newer and more powerful CNN, like incep-
tion_v4 or resnet_152, fail to achieve the same instance-level
distinctiveness of VGG_16. We conjecture that deeper ar-
chitectures, trained on Imagenet, tend to create more ab-
stract representations that may not provide out-of-the-box
features distinctive enough to tell apart many items look-
ing almost identical as required by our problem. Some ev-
idence to support this conjecture may be found in
due to deeper layers providing tipically inferior performace
when compared to shallower ones (e.g., VGG_16: conv5_3
vs conv4_3, resnet_50,resnet_101,resnet_152: Block4 vs
Block3) Concerning the type of descriptor to use, from
it seems quite clear that MAC descriptor is the best

choice for grocery recognition with respect to AVG or direct
activations of fully connected layers.

Given these results, we selected for our fine tuning tests
the VGG_16 network with MAC descriptor computed on
the concatenation of conv4_3 and conv5_3 layers, and train
the overall architecture according to our losses. As the en-
coder is already pre-trained, we perform 5000 iterations
of pre-training for the generator and discriminator (Eq. 4
Areg = 1,Aemp = 0) before training jointly the whole
DIHE architecture. The chosen hyper-parameters obtained
by cross validation for the training process are as follows.
Learning rates 10~°,10~° and 10~ for generator, discrim-
inator and encoder, respectively; Ay = 0.1, Apeg = 1,
Qpin, = 0.05 and oy, = 0.5.

Before comparing our proposal to other embedding
losses, it is interesting to verify whether the improvements
provided by the different components are valid
even when relying on the VGG-16 network pretrained on
Imagenet. Purposely, we carry out the same ablation study
as in[Tab. T|and report the results in[Tab. 3] Indeed, the rank-
ing of performances among the different training modali-
ties turns out coherent, although, as expected, the margins
are smaller due to the higher performance provided by the
baseline.

Comparison with other embedding losses We compare
our architecture to the already mentioned concatenation
of MAC descriptors without fine tuning (MAC) and to
our implementation of different embedding learning meth-
ods: [36] fine tuning using the classic triplet ranking loss
(Triplet); [10] fine tuning using Siamese networks and the
contrastive loss (Siamese); Matching networks [35]] without
the full context embedding which does not scale to thou-
sands of classes (MatchNet); [42] tuplet loss to embed label
structure (Structured); and [41] triplet loss regularized by a
spread out term (Spread). Similarly to DIHE, all methods
are trained on the reference images of Grocery_Food start-
ing from the very same VGG16 pre-trained on ImageNet-
1000 and using the same concatenation of MAC descriptors



Table 2: 1-NN accuracy for different general purpose descriptors obtained from layers of network pre-trained on the
ImageNet-1000 classification dataset without any kind of additional fine-tuning. Best results are higlighted in bold.

Network Layer Descriptor \ Grocery_Food Grocery_Full Product8600
comvd 3 MAC 0.789 0.785 0717
V- AVG 0.515 0.510 0.538
comes.3 MAC 0.724 0.720 0.611
VGG 16 - AVG 0.406 0.398 0.395
- 4 3rconys.a MAC 0.792 0.787 0.725
CONVE-IFCONVI - AVG 0.501 0.493 0.523
fc6 Direct 0.560 0.549 0.549
fc7 Direct 0.444 0.433 0.432
Mixed 7a MAC 0.610 0.603 0.509
- AVG 0.673 0.670 0.560
o . MAC 0.652 0.641 0.512
inception v4 Mixed.7b AVG 0.675 0.668 0.5091
. . MAC 0.655 0.646 0.534
Mixed.7a+Mixed 7b AVG 0.690 0.685 0.542
Block MAC 0.731 0.729 0.703
AVG 0.441 0.433 0.432
MAC 0.654 0.646 0.509
resnet 30 Block4 AVG 0.571 0.558 0.465
MAC 0.723 0.720 0.644
Block3+Block4 AVG 0.547 0.538 0.545
Block MAC 0.737 0.735 0.695
AVG 0.389 0.388 0.432
MAC 0.636 0.662 0.490
resnet 101 Block4 AVG 0.570 0.556 0.417
MAC 0.714 0.708 0.626
Block3+Block4 AVG 0.535 0.524 0.520
Blocka MAC 0.708 0.703 0.655
AVG 0.345 0.337 0.446
MAC 0.571 0.561 0.435
resnet 152 Block4 AVG 0.571 0.561 0.435
MAC 0.678 0.671 0.542
Block3+Block4 AVG 0.506 0.500 0.504

Table 3: Ablation study for DIHE on a VGG-16 network pretrained on ImageNet-1000. Recognition accuracy for 1-NN and
5-NN similarity search in the three considered scenarios. Best results highlighted in bold.

(a) Grocery_Food (b)) Grocery_Full (c) Product8600

Training loss K=1 K=5 K=1 K=5 K=1 K=5
(1) triplet 0.799 0.922 0.775 0.894 0.765 00915
(2) hierarchy 0.812 0.933 0.816 0926  0.805 0.952
(3) triplet+GAN 0.829 0.941 0.821 0937 0.816  0.945
(4) hierarchy+GAN 0.832 0.943 0.826 0933  0.819 0.952
(5) triplet+GAN+adv 0.833 0.948 0.821 0937 0.816  0.945

(6) hierarchy+GAN+adv (DIHE) 0.853 0948  0.842 0942  0.827  0.959




as embedding function.

We use the same test scenarios presented in and
report the result in As already shown in our model
study, MAC activations have strong absolute performance
without any need of fine tuning with accuracy at K=1 rang-
ing from 0.72 in the worst case to 0.79 in the best. Starting
from such a strong baseline the standard 7riplet loss is able
to only slightly increase performance in scenario (a) and (c)
while being slightly penalized in (b), which testifies how in
the cross domain and low shot regime is quite hard to prop-
erly fine tune an embedding network. The additional regu-
larization term introduced by Spread does not seems to help
with a slightly decrease in performance across all scenario
compared with the standard Triplet. Structured is the first
method to consistently improve performance across all sce-
nario, vouching the importance of deploying label structure
in the embedding space for this type of recognition task.
Siamese based on a simple contrastive loss is able to ob-
tain performance comparable to Structured on scenario (a)
and (b) while performing slightly worse on the generaliza-
tion to dataset (c). MatchNet is definitely the best compet-
ing method for embedding learning in a few shot regime as
testified by the good improvement obtained with respect to
the initial MAC descriptors. Nevertheless, DIHE thanks to
the combined use of GAN and hierarchical information is
still able to improve the performance, obtaining recognition
accuracies for K=1 consistently over 82% across all test.
It is worth pointing out that the largest improvement, with
respect to the inital MAC results, is obtained on the com-
pletely unseen products of the Product8600, which vouches
for mixing GAN-based domain adaptation and hierarchical
embedding to learn an embedding that can generalize very
well to unseen items.

In we report the accuracy of the methods while
increasing K. In [Fig. 4a-b) almost all methods converge
to more than 95% accuracy for K > 30. However, DIHE
can provide substantially better results for lower values of
K. In[Fig. 4(c) DIHE still outperforms the competitors with
performance almost equal to those achieved by Matching
Networks but showing higher margin against the competitor
trained with variant of triplet ranking loss.

4.4. Beyond product recognition

To investigate on the generality of our proposal as an
improvement over established embedding learning meth-
ods, we perform additional tests on the Office31 benchmark
dataset for domain adaptation ([22]). This dataset consists
of 4652 images dealing with 31 classes of office objects
acquired in three different domains, namely Amazon, con-
cerning ideal images downloaded from the web, Webcam,
consisting of real images acquired by cheap cameras, and
DSLR, featuring real images acquired by an high quality
camera. Akin to the setup of Grocery Recognition experi-
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ments, we use Amazon as the reference set, thus deploying
these images to train the encoder, while images from We-
bcam and DSLR are used both as training samples for the
GAN discriminator in DIHE and as two separate query sets
for the tests. This scenario is compliant to the full protocol
setting described by [6]: train on the entire labeled source
and unlabeled target data and test on annotated target sam-
ples. Unfortunately, as the Office31 dataset does not pro-
vide a taxonomy of classes, in these additional experiments
DIHE can not leverage on the hierarchical loss to improve
the learned representation. However, unlike the Grocery
Recognition scenario, all methods can be trained here by
more than one sample per class.

Based on the above described experimental setup, we
train different encoders starting, once again, from a VGG16
network pre-trained on the ImageNet-1000 dataset. We re-
port the accuracy for 1-NN and 5-NN similarity search in
To asses the performance of DIHE we compare it
once again against the methods considered in[Sec. 4.3] with
the exception of Structured due to Office31 lacking a class
taxonomy. The first two rows of show that, differ-
ently from the the Grocery Recognition setup, between acti-
vations extracted from the pretrained VGG16 network, FC6
outperforms MAC descriptors (computed as in [Sec. 4.3).
Coherently with the findings of we believe this dif-
ference to be due to the office task concerning the recogni-
tion of category of objects rather than instances. Accord-
ingly, to obtain the encoder network for these tests we sub-
stitute the original FC6 layer with a smaller fully connected
layer consisting of 512 neurons with randomly initialized
weights and then perform fine tuning on the Amazon im-
ages.

In this different experimental settings wherein more
training samples per class are available, both Siamese,
Spread Out and Matchnet are outperformed by the plain
Triplet ranking loss of [36], which turns out the best per-
forming established method achieving a 1-NN accuracy of
59% and 62% for test datasets Webcam and DSLR, respec-
tively. Yet, thanks to the introduction of the Generator in
the training loop, DIHE can yield a significant performance
improvement reaching a 1-NN accuracy of 62% (+3%) and
66% (+4%) for Webcam and DSLR, respectively, with best
or comparable 5-NN accuracy when compared with com-
peting methods using descriptors with the same dimension.
Moreover, our proposal can outperform the descriptor ex-
tracted by FC6 that is twice larger on 3 experiments out of
4, obtaining comparable performance on the fourth.

Although performance on Office31 turns out well below
the state-of-the-art attainable by image recognition methods
based on classifiers, amenable to handle a fixed and possible
small number of classes, we argue that the experiments re-
ported in this Section further highlight the advantages pro-
vided by our proposed DIHE architecture with respect to



Table 4: Recognition accuracy for 1-NN and 5-NN similarity search in the three considered scenarios. Best results high-
lighted in bold, differences between DIHE and best performing competitor reported in the last line.

(a) Grocery_Food  (b) Grocery_Full (c) Product8600

Descriptor K=1 K=5 K=1 K=5 K=1 K=5
MAC 0.792 0.917 0.787  0.9093 0.725  0.908
Triplet [[36]] 0.799 0.922 0.775 0.894 0.765 0915
Spread [[41]] 0.784 0.916 0.764 0.893 0.758  0.923
Structured [[42]] 0.809 0.931 0.804 0.926 0.750 0912
Siamese [[10]]  0.810 0.931 0.805 0.928 0.733  0.926
MatchNet [[35]] 0.834 0.939 0.810  0.929 0.820  0.948
DIHE 0.853 0.948 0.842 0.942 0.827  0.959
+0.02 +0.01 +0.03  +0.02  +0.007 +0.01
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Figure 4: Accuracy with increasing K in the three scenarios.

Table 5: Recognition accuracy for 1-NN and 5-NN similar-
ity search on two subset of the Office31 using as reference
images the Amazon subset. Best resulted highlighted in
bold, differences between DIHE and best performing com-
petitor reported in the last line.

(a) Webcam (b) DSLR
Descriptor K=1 K=5 K=1 K=5
FC6 0470 0.698 0489 0.712
MAC 0382 0.640 0393 0.660
Triplet [[36]]  0.596 0.675 0.628 0.710
Spread [[41]]  0.591 0.660 0.590 0.670
Siamese [[10]] 0.469 0.547 0.576 0.630
MatchNet [[35]] 0.522 0.579 0.566 0.618
' 0.628 0.691 0.662 0.742
DIHE +0.03  -0.007 +0.03 +0.03

common feature learning approaches.
4.5. Qualitative Results

[Fig. 5]and[Fig. 6 report some successful recognitions ob-
tained by K-NN similarity search based on DIHE. The up-
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per portion of dealing with the Grocery_Food sce-
nario, shows query images for products quite hard to rec-
ognize due to both the reference database featuring several
items looking remarkably similar as well as nuisances like
shadows and partial occlusions (first query) or slightly de-
formed products (third query). The lower portion of
concerns the Product8600 scenario: as clearly highlighted
by the third and second query, despite differences between
items belonging to the same brand and category (e.g., the
pasta boxes in the last row) being often subtle, DIHE can
recognize products correctly. In we report some re-
sults dealing with the Office-31 dataset which vouch how
DIHE can correctly retrieve images depicting objects be-
longing to the same category as the query. In we
highlight some failure cases. In the first row DIHE wrongly
recognizes a stapler as a bookshelf, whilst in the second a
ring binder is mistaken as a trash bin. In the third row DIHE
seems to recognize the macro class and brand of the query
product though missing the correct instance level label (i.e.,
the correct NN, highlighted in green, is retrieved as the 3-
NN). A similar issue pertains the fourth query image: all
the first 5-NNs belong to the Tea macro class, but the cor-
rect item is not ranked among them.

Finally, in we show some training images gener-



ated by our GAN framework to pursue domain invariance
(Sec. 3.2). It is worth observing how the training samples
created by our GAN seem to preserve both the overall struc-
ture and details of the input images, which is very important
when addressing instance level recognition between many
similarly looking items, while modifying significantly the
brightness and colors and injecting some blur, thereby re-
alizing a domain translation between the input and output
images.

5. Conclusion

The experimental results demonstrate how our proposed
hierarchical modification to the triplet ranking loss is ef-
fective in learning embedding functions that generalize bet-
ter to unseen data. Moreover, the integration of a GAN at
training time, so as to obtain the whole DIHE architecture,
turns out a very effective approach in scenarios where only
few/one samples per class are available at training time. In-
deed, DIHE allows for learning a representation not only
robust to domain shift but also better all around due to the
Generator network effectively producing potentially infi-
nite hard training samples. DIHE was designed to solve
the task of Grocery Product recognition, in which it can
deliver remarkably good performance. Nonetheless, ex-
periments in different scenarios suggest that our architec-
ture may be effectively deployed in settings that features
challenges such as few training samples per class, differ-
ent domains between train and test data and a taxonomy
among classes to be recognized. The results of the ablation
study of show clearly how the main improvement
in performance is provided by the original introduction of
a GAN network trained end-to-end together with the em-
bedding network in order to augment the training set. In
the future we would like to further investigate on this novel
concept through different combination of embedding losses
and GAN architectures. For example, a possible variant of
DIHE may concern a GAN that would operate at the feature
embedding level rather than at image level, thereby halluci-
nating embedding vectors from the domain B given those
from domain .4, with these vectors amenable to compute
any kind of embedding loss.

Finally, in this paper we have proposed an architecture
to recognize a product item extracted from a shelf image,
though we did not address how to actually detect the indi-
vidual product items within such an image. Recent works
like [18] have shown how a region proposal CNN can be
successfully trained to extract bounding boxes surrounding
grocery products from an image featuring the whole shelf.
Thus, [18] and DIHE may be combined effortlessly in a
complete pipeline that given a single shelf image and one
reference image for each product can detect and recognize
the displayed items.
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