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ABSTRACT

For unsupervised data-dependent hashing, the two most important requirements are to preserve simi-
larity in the low-dimensional feature space and to minimize the binary quantization loss. A well-estab-
lished hashing approach is Iterative Quantization (ITQ), which addresses these two requirements in
separate steps. In this paper, we revisit the ITQ approach and propose novel formulations and algo-
rithms to the problem. Specifically, we propose a novel approach, named Simultaneous Compression
and Quantization (SCQ), to jointly learn to compress (reduce dimensionality) and binarize input data
in a single formulation under strict orthogonal constraint. With this approach, we introduce a loss
function and its relaxed version, termed Orthonormal Encoder (OnE) and Orthogonal Encoder (OgE)
respectively, which involve challenging binary and orthogonal constraints. We propose to attack the
optimization using novel algorithms based on recent advance in cyclic coordinate descent approach.
Comprehensive experiments on unsupervised image retrieval demonstrate that our proposed meth-
ods consistently outperform other state-of-the-art hashing methods. Notably, our proposed methods
outperform recent deep neural networks and GAN based hashing in accuracy, while being very com-
putationally-efficient.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

For decades, image hashing has been an active research field
in vision community (Andoni and Indyk (2008); Gong and
Lazebnik (2011); Weiss et al. (2009); Zhang et al. (2010)) due
to its advantages in storage and computation speed for similar-
ity search/retrieval under specific conditions (Gong and Lazeb-
nik (2011)). Firstly, the binary code should be short so as to
the whole hash table can fit in the memory. Secondly, the bi-
nary code should preserve the similarity, i.e., (dis)similar im-
ages have (dis)similar hashing codes in the Hamming distance
space. Finally, the algorithm to learn parameters should be fast
and for unseen samples, the hashing method should produce the
hash codes efficiently. It is very challenging to simultaneously
satisfy all three requirements, especially, under the binary con-
straint which leads to an NP-hard mixed-integer optimization
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problem. In this paper, we aim to tackle all these challenging
conditions and constraints.

The proposed hashing methods in literature can be catego-
rized into data-independence (Gionis et al. (1999); Kulis and
Grauman (2009); Raginsky and Lazebnik (2009)) and data-
dependence; in which, the latter recently receives more atten-
tion in both (semi-)supervised (Do et al. (2016b); Kulis and
Darrell (2009); Lin et al. (2014); Liu et al. (2012); Norouzi
et al. (2012); Shen et al. (2015); Chen et al. (2018); Cao et al.
(2018); Jain et al. (2017); Liu et al. (2016); Lin et al. (2015);
Lai et al. (2015); Lin et al. (2016)) and unsupervised (Carreira-
Perpiñán and Raziperchikolaei (2015); Do et al. (2016a, 2017,
2019); Gong and Lazebnik (2011); He et al. (2013); Heo et al.
(2012); Shen et al. (2018); Hu et al. (2018); Huang and Lin
(2018); y. Duan et al. (2018); Wang et al. (2018); Duan et al.
(2017); En et al. (2017); Do et al. (2019)) manners. Supervised
hashing have shown superior performance over unsupervised
hashing. However, in practice, labeled datasets are limited and
costly; hence, in this work, we focus only on the unsupervised
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setting. We refer readers to recent surveys (Grauman and Fer-
gus (2013); Wang et al. (2015, 2014, 2017)) for more detailed
reviews of data-independent/dependent hashing methods.

1.1. Related works

The most relevant work to our proposal is Iterative Quanti-
zation (ITQ) (Gong and Lazebnik (2011)), which is a very fast
and competitive hashing method. The fundamental of ITQ is
two folds. Firstly, to achieve low-dimensional features, it uses
the well-known Principle Component Analysis (PCA) method.
PCA maximizes the variance of projected data and keeps di-
mensions pairwise uncorrelated. Hence, the low-dimension
data, projected using the top PCA component vectors, can pre-
serve data similarity well. Secondly, minimizing the binary
quantization loss using an orthogonal rotation matrix strictly
maintains the data pairwise distance. As a result, ITQ learns bi-
nary codes that can highly preserve the local structure of the
data. However, optimizing these two steps separately, espe-
cially when no binary constraint is enforced in the first step,
i.e., PCA, leads to suboptimal solutions. In contrast, we pro-
pose to jointly optimize the projection variance and the quanti-
zation loss.

Other works that are highly relevant to our proposed method
are Binary Autoencoder (BA) (Carreira-Perpiñán and Raziper-
chikolaei (2015)), UH-BDNN (Do et al. (2016a)), DBD-MQ
(Duan et al. (2017)), and Stacked convolutional AutoEncoders
(SAE) (En et al. (2017)). In these methods, the authors pro-
posed to combine the data dimension reduction and binary
quantization into a single step by using encoder of autoen-
coder, while the decoder encourages (dis)similar inputs map
to (dis)similar binary codes. However, the reconstruction cri-
terion is not a direct way for preserving the similarity (Do et al.
(2016a)). Additionally, although achieving very competitive
performances, UH-BDNN and DBD-MQ are based on the deep
neural network (DNN); hence, it is difficult to produce the bi-
nary code computationally-efficiently. Particularly, given an ex-
tracted CNN feature, these methods require a forward propaga-
tion through multiple fully-connected and activation layers to
produce the binary code. While our proposed method only re-
quires a single linear transformation, i.e., one BLAS operation
(gemv or gemm), and a comparison operation.

Recently, many works (Liny et al. (2016); Duan et al. (2017);
Song (2018)) leverage the powerful capability of Convolution
Neuron Network (CNN) to jointly learn the image representa-
tions and binary codes. However, due to the non-smooth prop-
erty of the binary constraint causing the ill-gradient in back-
propagation, these methods resort to relaxation or approxima-
tion. As a result, even thought achieving high-discriminative
image representations, these methods can only produce sub-
optimal binary codes. In the paper, we show that by directly
considering the binary constraint, our methods can obtain much
better binary codes. Hence, higher retrieval performances can
be achieved. This emphasizes the necessity of having an ef-
fective method to preserve the discrimination power of high-
dimensional CNN features in very compact binary representa-
tions, i.e., effectively handling the challenging binary and or-
thogonal constraints.

Besides, several works has been proposed to handle the dif-
ficulty of training deep models with the binary constraint. Cao
et al. (2017) proposed to handles the non-smooth problem of
the sign function by continuation, i.e., starting the training with
a smoothed approximation and gradually reducing the smooth-
ness as the training proceeds, i.e., limβ→∞ tanh(βx) = sign(x).
Chen et al. (2018) transformed the original binary optimiza-
tion into differentiable optimization problem over hash func-
tions through Taylor series expansion. Cao et al. (2018) in-
troduced a pairwise cross-entropy loss based on the Cauchy
distribution, which penalizes significantly similar image pairs
with Hamming distance larger than the given Hamming radius
threshold, e.g., greater than 2. Nevertheless, these methods re-
quires class labels for the training process (i.e., supervised hash-
ing). This is not the focus of our methods which aim to learn
optimal binary codes from given image representations in the
unsupervised manner.

1.2. Contributions

In this work, to address the problem of learning to preserve
data affinity in low-dimension binary codes, (i) we first pro-
pose a novel loss function to learn a single linear transformation
under the column orthonormal constraint1 in the unsupervised
manner that compresses and binarizes the input data jointly.
The approach is named as Simultaneous Compression and
Quantization (SCQ). Noted that the idea of jointly compress-
ing and binarizing data has been explored in Carreira-Perpiñán
and Raziperchikolaei (2015); Do et al. (2016a). However, due
to the difficulty of the non-convex orthogonal constraint, these
works try to relax the orthogonal constraint and resort to the
reconstruction criterion as an indirect way to handle the simi-
larity perserving concern. Our work is the first one to tackle the
similarity concern by enforcing strict orthogonal constraints.

(ii) Under the strict orthogonal constraints, we conduct anal-
ysis and experiments to show that our formulation is able to
retain a high amount of the variance, i.e., preserve data simi-
larity, and achieve small quantization loss, which are important
requirements in hashing for image retrieval (Gong and Lazeb-
nik (2011); Carreira-Perpiñán and Raziperchikolaei (2015); Do
et al. (2016a)). As a result, this leads to improved accuracy as
demonstrated in our experiments.

(iii) We then propose to relax the column orthonormal con-
straint to column orthogonal constraint on the transformation
matrix. The relaxation not only helps to gain extra retrieval
performances but also significantly improves the training time.

(iv) Our proposed loss functions, with column orthonormal
and orthogonal constraints, are confronted with two main chal-
lenges. The first is the binary constraint, which is the traditional
and well-known difficulty of hashing problem (Andoni and In-
dyk (2008); Gong and Lazebnik (2011); Weiss et al. (2009)).
The second challenge is the non-convex nature of the orthonor-
mal/orthogonal constraint (Wen and Yin (2013)). To tackle the
binary constraint, we propose to apply an alternating optimiza-
tion with an auxiliary variable. Additionally, we resolve the

1Please refer to section 1.3 for our term definitions.
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orthonormal/orthogonal constraint by using the cyclic coordi-
nate descent approach to learn one column of the projection
matrix at a time while fixing the others. The proposed algo-
rithms are named as Orthonormal Encoder (OnE) and Orthog-
onal Encoder (OgE).

(v) Comprehensive experiments on common benchmark
datasets show considerable improvements on retrieval perfor-
mance of proposed methods over other state-of-the-art hash-
ing methods. Additionally, the computational complexity and
training / online-processing time are also discussed to show the
computational efficiency of our methods.

1.3. Notations and Term definitions

We first introduce the notations. Given a zero-centered
dataset X = {xi}

n
i=1 ∈ Rn×d which consists of n images and

each image is represented by a d-dimension feature descrip-
tor, our proposed hashing methods aim to learn a column or-
thonormal/orthogonal matrix V ∈ Rd×L(L � d) which simulta-
neously compresses input data X to L-dimensional space, while
retains a high amount of variance, and quantizes to binary codes
B ∈ {−1,+1}n×L.

It is important to note that, in this work, we abuse the terms:
column orthonormal/orthogonal matrix. Specifically, the term
column orthonormal matrix is used to indicate the matrix V
that V>V = IL×L, where IL×L is the L × L identity matrix.
While the term column orthogonal matrix indicates matrix V
that V>V = DL×L, where DL×L is an arbitrary L × L diagonal
matrix. Noted that the word “column” in these terms means that
columns of the matrix are pairwise independent.

We define Λ = [λ1, · · · , λd] as the eigenvalues of the covari-
ance matrix XT X sorted in descending order. Finally, let bk, vk

be the k-th (1 ≤ k ≤ L) columns of B,V respectively.

The remainder of the paper is organized as follow. Firstly,
Section 2 presents in details our proposed hashing method,
i.e., Orthonormal Encoder (OnE) and provide the analysis
to show that our method can retain a high amount of variance
and achieve small quantization loss. Section 3 presents a relax
version of OnE, i.e., Orthogonal Encoder (OgE). Section 4
presents experiment results to validate the effectiveness of our
proposed methods. We conclude the paper in Section 5.

2. Simultaneous Compression & Quantization: Orthonor-
mal Encoder

2.1. Problem Formulation

In order to jointly learn data dimension reduction and binary
quantization using a single linear transformation V, we propose
to solve the following constrained optimization:

arg min
B,V
Q(B,V) =

1
n
‖B − XV‖2F

s.t. V>V = IL×L; B ∈ {−1,+1}n×L,

(1)

where ‖ · ‖F denotes the Frobenius norm. Additionally, the
orthonormal constrained on the column of V is necessary to
make sure no redundant information is captured in binary codes

(Wang et al. (2012)) (i.e., the projected low-dimensional fea-
tures are strictly pairwise uncorrelated) and the projection vec-
tors do not scale up/down projected data.

It is noteworthy to highlight the differences between our
loss function Eq. (1) and the binary quantization loss func-
tion of ITQ (Gong and Lazebnik (2011)). Firstly, different from
ITQ, which works on the compressed low-dimensional feature
space after using PCA, i.e., X ∈ Rn×L; our approach, instead,
works directly on the original high-dimensional feature space
X ∈ Rn×d(d � L). This leads to the second main difference that
the non-square column orthonormal matrix V ∈ Rd×L simulta-
neously (i) compresses data to low-dimension and (ii) quantizes
to binary codes. However, it is important to note that solving for
a non-square projection matrix V is challenging. To handle this
difficulty, ITQ propose to solve the data compression and binary
quantization problems in two separated optimizations. Specifi-
cally, it applys PCA to compress data to L dimension, and then
uses the Orthogonal Procrustes approach (Schönemann (1966))
to learn a L× L square rotation matrix to optimize binary quan-
tization loss. However, there is a limitation in ITQ approach as
no consideration for the binary constraint in the data compres-
sion step, i.e., PCA. Consequently, the solution is suboptimal.
In this paper, by adopting recent advance in cyclic coordinate
descent approach (Shen et al. (2015); Do et al. (2016a); Gur-
buzbalaban et al. (2017); Yuan and Ghanem (2017)), we pro-
pose a novel and efficient algorithm to resolve the ITQ limita-
tion by simultaneously attacking both problems in a single opti-
mization problem under the strict orthogonal constraint. Hence,
our optimization can lead to a better optimal solution.

2.2. Optimization
In this section, we discuss the key details of the algorithm

(Algorithm 1) for solving the optimization problem Eq. (1). In
order to handle the binary constraint in Eq. (1), we propose to
use alternating optimization over V and B.

2.2.1. Fix V and update B
When V is fixed, the problem becomes exactly the same as

when fixing rotation matrix in ITQ. To make the paper self-
contained, we repeat the explaination of Gong and Lazebnik
(2011). By expanding the objective function in Eq. (1), we
have

Q(B,V) =
1
n

(
‖B‖2F + ‖U‖2F − 2tr(BU)

)
=

1
n

(
nL + ‖U‖2F − 2tr(BU)

)
,

(2)

where U = XV. Because V is fixed, so U is fixed, minimizing
(2) is equivalent to maximizing

tr(BU) =

n∑
i=1

L∑
j=1

Bi jUi j (3)

where Bi j and Ui j denotes elements of B and U respectively. To
maximize this expression with respect to B, we need to have
Bi j = 1 whenever Ui j ≥ 0 and Bi j = −1 otherwise. Hence, the
optimal value of B can be simply achieved by

B = sign(XV). (4)
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Algorithm 1 Orthonormal Encoder

Input:
X = {x}ni=1 ∈ R

n×d: training data;
L: code length;
max iter: maximum iteration number;
{ε, εb, εu}: convergence error-tolerances;

Output
Column Orthonormal matrix V.

1: Randomly initialize V such that V>V = I.
2: for t = 1→ max iter do
3: procedure Fix V, update B.
4: Compute B (Eq. (4)).
5: procedure Fix B, update V.
6: Find ν1 using binary search (BS) (Eq. (8)).
7: Compute v1 (Eq. (7)).
8: for k = 2→ L do
9: procedure Solve vk

10: Initialize Φk = [0, · · · , 0].
11: while true do
12: Fix Φk, solve for νk using BS.
13: Fix νk, compute Φk = A−1

k ck.
14: Compute vk (Eq. (12)).
15: if (v>k vk − 1) < εu then
16: return vk

17: if t > 1 and (Qt−1 − Qt)/Qt < ε then break
18: return V

2.2.2. Fix B and update V
When fixing B, the optimization is no longer a mix-integer

problem. However, the problem is still non-convex and diffi-
cult to solve due to the orthonormal constraint (Wen and Yin
(2013)). It is important to note that V is not a square matrix. It
means that the objective function is not the classic Orthogonal
Procrustes problem (Schönemann (1966)). Hence, we cannot
achieve the closed-form solution for V as proposed in Gong
and Lazebnik (2011). To the best of our knowledge, there is no
easy way for achieving the closed-form solution of non-square
V. Hence, in order to overcome this challenge, inspired by PCA
and recent methods in cyclic coordinate descent (Shen et al.
(2015); Do et al. (2016a); Gurbuzbalaban et al. (2017); Yuan
and Ghanem (2017)), we iteratively learn one vector, i.e., one
column of V, at a time. We now consider two cases for k = 1
and 2 ≤ k ≤ L.

• 1-st vector

arg min
v1
Q1 =

1
n
‖b1 − Xv1‖

2 s.t. v>1 v1 = 1, (5)

where ‖ · ‖ is the l2-norm.
Let ν1 ∈ R be the Lagrange multiplier, we formulate the La-

grangian L1:

L1(v1, ν1) =
1
n
‖b1 − Xv1‖

2 + ν1(v>1 v1 − 1). (6)

By minimizing L1 over v1, we can achieve:

v1 = (X>X + nν1I)−1X>b1, (7)

given ν1 that maximizes the dual function G1(ν1) 2 ofL1(v1, ν1)
(Boyd and Vandenberghe (2004)). Equivalently, ν1 should sat-
isfy the following conditions:

ν1 > −λd/n
∂G1

∂ν1
= [(X>X + nν1I)−1X>b1]>

[(X>X + nν1I)−1X>b1] − 1 = 0

(8)

where λd is the smallest eigenvalue of X>X. The detail deriva-
tion is provided in Appendix section A.

In Eq. (8), the first condition is to ensure that (X>X + nν1I)
is non-singular and the second condition is achieved by setting
the derivative of G1(ν1) with regard to ν1 equal to 0.

The second equation in Eq. (8) can be recognized as a d-
order polynomial equation of ν1 which has no explicit closed-
form solution for ν1 when d > 4. Fortunately, since G(ν1) is a
concave function of ν1, ∂G1/∂ν1 is monotonically decreasing.
Hence, we can simply solve for ν1 using binary search with a
small error-tolerance εb. Note that:

lim
ν1→(−λd/n)+

∂G1
∂ν1

= +∞

lim
ν1→+∞

∂G1
∂ν1

= −1
, (9)

thus ∂G1/∂ν1 = 0 always has a solution.

• k-th vector (2 ≤ k ≤ L)

For the second vector onward, besides the unit-norm constraint,
we also need to ensure that the current vector is independent
with its (k − 1) previous vectors.

arg min
vk
Qk =

1
n
‖bk − Xvk‖

2

s.t. v>k vk = 1; v>k vi = 0,∀i ∈ [1, k − 1].
(10)

Let νk ∈ R and Φk = [φk1, ..., φk(k−1)]> ∈ R(k−1) be the La-
grange multipliers, we also formulate the Lagrangian Lk:

Lk(vk, νk,Φk) =
1
n
‖bk − Xvk‖

2

+ νk(v>k vk − 1) +

k−1∑
i=1

φkiv>k vi.

(11)

Minimizing Lk over vk, similar to Eq. (7), we can achieve:

vk = (X>X + nνkI)−1

X>bk −
n
2

k−1∑
i=1

φkivi

 , (12)

given {νk,Φk} that satisfy the following conditions which make
the corresponding dual function Gk(νk,Φk) maximum:

νk > −λd/n
v>k vk = 1
AkΦk = ck

(13)

2The dual functionG1(ν1) can be simply constructed by substituting v1 from
Eq. (7) into Eq. (6).
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Fig. 1: Quantization error for learning the projection matrix V with L = 32 on
the CIFAR-10 dataset (section 4.1).

where 
Ak = n

2


v>1 Zkv1 · · · v>1 Zkv(k−1)

...
. . .

...

v>(k−1)Zkv1 · · · v>(k−1)Zkv(k−1)


ck =

[
v>1 ZkX>bk · · · v>(k−1)ZkX>bk

]> (14)

in which Zk = (X>X+nνkI)−1. The detail derivation is provided
in Appendix section B.

There is also no straight-forward solution for {νk,Φk}. In or-
der to resolve this difficulty, we propose to use alternative opti-
mization to solve for νk and Φk. In particular, (i) given a fixed
Φk (initialized as [0, · · · , 0]>), we find νk using binary search as
discussed above. Additionally, similar to ν1, there is always a
solution for νk. Then, (ii) with fixed νk, we can get the closed-
form solution for Φk as Φk = A−1

k ck. Note that since the dual
function Gk is a concave function of {νk,Φk}, alternative opti-
mizing between νk and Φk still guarantees the solution to ap-
proach the global optimal one.

Additionally, we note that solving for {νk,Φk} requires a ma-
trix inversion Z−1

k (for each νk), which is very computationally
expensive. However, by utilizing the Singular Value Decompo-
sition (SVD), we can efficiently compute the inversion as fol-
lows:

(X>X + nνkI)−1 = ÛΣ̂Û>, (15)

where Û ∈ Rd×d is the matrix of eigenvectors corresponding
to Λ̂ in columns (Λ̂ = [λd, · · · , λ1] is the eigenvalues of X>X
sorted in ascending order) and

Σ̂ = diag
([

1
λd + nνk

, · · · ,
1

λ1 + nνk

])
(16)

with “diag(·)” is the operation to convert vectors to square di-
agonal matrices. Note that, given X, Û and Λ̂ are fixed and can
be computed in advance.

Figure 1 shows an error convergence curve of the optimiza-
tion problem Eq. (1). We stop the optimization when the
relative reduction of the quantization loss is less than ε, i.e.,
(Qt−1 − Qt)/Qt < ε.

2.3. Retained variance and quantization loss
In the hashing problem for image retrieval, both retained

variance and quantization loss are important. In this section,

Fig. 2: An illustration of the relationship between the minimizing quantization
loss and maximizing retained variance problems.

we provide analysis to show that, when solving Eq. (1), it is
possible to retain a high amount of the variance and achieve
small quantization loss. As will be discussed in more details,
this can be accomplished by applying an appropriate scale S on
the input dataset. Noticeably, by applying any positive scale
s > 0 3 on the dataset, the local structure of data is strictly pre-
served, i.e., the ranking nearest neighbor set of every data point
is always the same. Therefore, in the hashing problem for re-
trieval task, it is equivalent to work on a scaled version of the
dataset, i.e., Xs = sX. We can re-write the loss function of Eq.
(1) as following:

Q(s,V) = ‖1 − s|XV|‖2F s.t. V>V = IL×L; s > 0, (17)

where | · | is the element-wise operation to find the absolute
values and 1 is the all-1 (n × L) matrix. In what follows, we
discuss how s can affect the retained variance and quantization
loss.

2.3.1. Maximizing retained variance
We recognize that by scaling to the dataset X by an ap-

propriate scale s, such that all projected data points are in-
side the hyper-cube of 1, i.e., max(s|XV|) ≤ 1, the max-
imizing retained variance problem (PCA) can achieve simi-
lar results to the minimizing quantization loss problem, i.e.,
arg max

V
‖sXV‖2F ≈ arg min

V
‖1 − s|XV|‖2F . Intuitively, we can

interpret the former problem, i.e., PCA, as to find the projec-
tion that maximizes the distances of projected data points from
the coordinate origin. While the latter problem, i.e., minimiz-
ing binary quantization loss, tries to find the projection matrix
that minimizes the distances of projected data points from −1
or +1 correspondingly. A simple 1-D illustration to explain the
relationship between two problems is given in Figure 2.

Since each vector of V is constrained to have the unit norm,
the condition max(s|XV|) ≤ 1 actually can be satisfied by scal-
ing the dataset by smax var to have all data points in the original
space inside the hyper-ball with unit radius, in which 1/smax var
is equal to the largest l2-distance between data points and the
coordinate origin.

2.3.2. Minimizing quantization loss
Regarding the quantization loss Q(s,V) (Eq. 17), which is a

convex function of s|XV|, by setting ∂Q(s,V)/∂s|XV| = 0, we
have the optimal solution for Q(s,V) as following:

∂Q(s,V)
∂s|XV|

= 2(s|XV| − 1) = 0⇔

mean(|XV|) = 1/s
var(|XV|) = 0

(18)

3For simplicity, we only discuss positive value s > 0. Negative value s < 0
should have similar effects.
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(a) s = smax var

-2.5 -1 0 1 2.5
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-1

0
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2.5

Data points
1st PCA component - 61 = 1:14 - Qb = 0.46
2nd PCA component - 62 = 0:12 - Qb = 0.57
Min. Q proj. V - var = 0.59 - Qb = 0.37

(b) s = 4smax var
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2nd PCA component - 62 = 1:04 - Qb = 0.39
Min. Q proj. V - var = 1.04 - Qb = 0.39

(c) s = 12smax var

Fig. 3: A toy example for n = 200, d = 2 and L = 1 to illustrate how the quantization loss and the minimizing quantization loss vector (green dash line) vary when
s increases. The values in legends present the variances and the quantization losses per bit, Qb, of the data which is projected in corresponding vectors (rounding to
two decimal places).

where 0 is the all-0 (n × L) matrix.
Considering s ≥ smax var, there are two important findings.

Firstly, there is obviously no scaling value s that can concur-
rently achieve s max(|XV|) ≤ 1 and s mean(|XV|) = 1, except
the case s|XV| = 1 which is unreal in practice. Secondly, from
Eq. (18), we can recognize that as s gets larger, i.e., 1/s gets
smaller, minimizing the loss Q will produce V that focuses on
lower-variance directions so as to achieve smaller mean(|XV|)
as well as smaller var(|XV|). It means that s|XV| gets closer to
the global minimum of Q(s,V). Consequently, the quantization
loss becomes smaller. In Figure 3, we show a toy example to il-
lustrate that as s increases, minimizing quantization loss diverts
the projection vector from top-PCA component (Figure 3a) to
smaller variance directions (Figure 3b→ 3c), while the quanti-
zation loss (per bit) gets smaller (Figure 3a→ 3c). In summary,
as var(|XV|) gets smaller, the quantization loss is smaller and
vice versa. However, note that keeping increasing s when V al-
ready focuses on least-variance directions will make the quan-
tization loss larger.

Note that the scale s is a hyper-parameter in our system. In
the experiment section (Section 4.2), we will additionally con-
duct experiments to quantitatively analyse the effect of the scale
hyper-parameter s and determine proper values using validation
dataset.

3. Simultaneous Compression & Quantization: Orthogonal
Encoder

3.1. Problem Re-formulation: Orthonormal to Orthogonal

In Orthonormal Encoder (OnE), we work with the column or-
thonormal constraint on V. However, we recognize that relax-
ing this constraint to column orthogonal constraint, i.e., relax-
ing the unit norm constraint on each column of V, by converting
it into a penalty term, provides three important advantages. We
now achieve the new loss function as following:

arg min
B,V
Q(B,V) =

1
n
‖B − XV‖2F + µ

L∑
i=1

v>i vi

s.t. B ∈ {−1,+1}n×L; v>i v j = 0,∀i , j,

(19)

where µ is a fixed positive hyper-parameter to penalize large
norms of vi. It is important to note that, in Eq. (19), we still
enforce the strict pairwise independent constraint of projection
vectors to ensure no redundant information is captured.

Firstly, with an appropriately large µ, the optimization
prefers to choose large variance components of X since this
helps to achieve the projection vectors that have smaller norms.
In other words, without penalizing large norms of vi, the op-
timization has no incentive to focus on high variance compo-
nents of X since it can produce projection vectors with arbi-
trary large norms that can scale any components appropriately
to achieve minimum binary quantization loss. Secondly, this
provides more flexibility of having different scale values for
different directions. Consequently, relaxing the unit-norm con-
straint of each column of V helps to mitigate the difficulty of
choosing the scale value s. However, it is important to note that
a too large µ, on the other hand, may distract the optimization
from minimizing the binary quantization term. Finally, from
OnE Optimization (Section 2.2), we observed that the unit norm
constraint on each column of V makes the OnE optimization
difficult to be solved efficiently since there is no closed-form
solution for {v}Lk=1. By relaxing this unit norm constraint, we
now can achieve the closed-form solutions for {v}Lk=1; hence, it
is very computationally beneficial. We will discuss more about
the computational aspect in section 3.3.

3.2. Optimization
Similar to the Algorithm 1 for solving Orthonormal Encoder,

we apply alternative optimize V and B with the B step is exactly
the same as Eq. (4). For V step, we also utilize the cyclic coor-
dinate descent approach to iteratively solve V, i.e., column by
column. The loss functions are rewritten and their correspond-
ing closed-form solutions for {v}Lk=1 can be efficiently achieved
as following:

• 1-st vector

arg min
v1
Q1 =

1
n
‖b1 − Xv1‖

2 + µv>1 v1. (20)

We can see that Eq. (20) is the regularized least squares prob-
lem, whose closed-form solution is given as:

v1 = (X>X + nµI)−1X>b1. (21)
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Algorithm 2 Orthogonal Encoder

Input:
X = {x}ni=1 ∈ R

n×d: training data;
L: code length;

max iter: maximum iteration number;
ε: convergence error-tolerance;

Output
Column Orthogonal matrix V.

1: Randomly initialize V such that V>V = I.
2: for t = 1→ max iter do
3: Fix V, update B: Compute B (Eq. (4)).
4: Fix B, update V: Compute {vi}

L
i=1 (Eq. (21), (23)).

5: if t > 1 and (Qt−1 − Qt)/Qt < ε then break
6: return V

• k-th vector (2 ≤ k ≤ L)

arg min
vk
Qk =

1
n
‖bk − Xvk‖

2 + µv>k vk

s.t. v>k vi = 0,∀i ∈ [1, k − 1].
(22)

Given the Lagrange multiplier Φk = [φk1, · · · , φk(k−1)]> ∈
R(k−1), similar to Eq. (7) and Eq. (11), we can obtain vk as
following:

vk = (X>X + nµI)−1

X>bk −
n
2

k−1∑
i=1

φkivi

 , (23)

where Φk = A−1
k ck, in which

Ak = n
2


v>1 Zv1 · · · v>1 Zv(k−1)
...

. . .
...

v>(k−1)Zv1 · v>(k−1)Zv(k−1)


ck =

[
v>1 ZX>bk · · · v>(k−1)ZX>bk

]> (24)

and Z = (X>X + nµI)−1.
Note that, given a fixed µ, Z is a constant matrix, the (k −

1) × (k − 1) matrix Ak contains (k − 2) × (k − 2) matrix A(k−1)
in the top-left corner. It means that only the (k − 1)-th row and
column of matrix Ak are needed to be computed. Thus, Φk can
be solved even more effectively.

Finally, similar to OnE (Fig. 1), we also empirically observe
the convergence of the optimization problem Eq. 19. We sum-
marize the Orthogonal Encoder method in Algorithm 2.

3.3. Complexity analysis
The complexity of the two algorithms, OnE and OgE, are

shown in Table 1. In our empirical experiments, t is usually
around 50, t1 is at most 10 iterations, and d2 � n (for CNN
fully-connected features (Section 4.1)). Firstly, we can observe
that OgE is very efficient as its complexity is only linearly de-
pended on the number of training samples n, feature dimension
d, and code length L. In addition, OgE is also faster than OnE.
Furthermore, as our methods aim to learn the projection matri-
ces that preserve high-variance components, it is unnecessary

Table 1: Computational complexity of algorithm OnE and OgE. where n is
the number of training samples, d is the feature dimension, t is the number of
iteration to alternative update B and V, and t1 is the number of iterations for
solving vk in Algorithm 1.

Computational complexity
OnE O(tt1dL(max(n, d2)))
OgE O(tdLn)

to work on very high dimensional features. As there are many
low-variance/noisy components, which will be discarded even-
tually. More importantly, we observe no retrieval performance
drop when applying PCA to compress features to a much lower
dimension, e.g., 512-D, in comparison with using the original
4096-D features. While this helps to achieve significant speed-
up in training time for both algorithms, especially for the OnE,
as its time complexity is depended on d3 for large d. In addition,
we conduct experiments to measure the actual running time of
the algorithms and compare with other methods in section 4.4.

4. Experiments

4.1. Datasets, Evaluation protocols, and Implementation notes

The CIFAR-10 dataset (Krizhevsky and Hinton (2009)) con-
tains 60, 000 fully-annotated color images of 32 × 32 from 10
object classes (6, 000 images for each class). The provided test
set (1, 000 images for each class) is used as the query set. The
remaining 50,000 images are used as the training set and the
database.

The LabelMe-12-50k dataset (Uetz and Behnke (2009))
consists of 50, 000 fully annotated color images of 256×256 of
12 object classes, which is a subset of LabelMe dataset (Rus-
sell et al. (2008)). In this dataset, for any image having multi-
ple label values in the range of [0.0, 1.0], the object class of the
largest label value is chosen as the image label. We also use the
provided test set as the query set and the remaining images as
the training set and the database.

The SUN397 dataset (Xiao et al. (2016)) contains approxi-
mately 108, 000 fully annotated color images from 397 scene
categories. We select a subset of 42 categories which contain
more than 500 images per category to construct a dataset of ap-
proximately 35, 000 images in total. We then randomly sample
100 images per class to form the query set. The remaining im-
ages are used as the training set and the database.

For these above image datasets, each image is represented
by a 4096-D feature vector extracted from the fully-connected
layer 7 of pre-trained VGG (Simonyan and Zisserman (2014)).

Evaluation protocols. As datasets are fully annotated,
we use semantic labels to define the ground truths of image
queries. We apply three standard evaluation metrics, which
are widely used in literature (Carreira-Perpiñán and Raziper-
chikolaei (2015); Erin Liong et al. (2015); Gong and Lazebnik
(2011)), to measure the retrieval performance of all methods:
1) mean Average Precision (mAP(%)); 2) precision at Ham-
ming radius of 2 (prec@r2 (%)) which measures precision on
retrieved images having Hamming distance to query ≤ 2 (we
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Fig. 4: Analyzing the effects of the scale value s on (i) the quantization loss per bit (blue dash line with blue right Y-axis), (ii) the percentage of total retained
variance by the minimizing quantization loss projection matrix (using Algorithm 1) in comparison with the total retained variance of top-L PCA components (red
line with red right Y-axis), and (iii) the retrieval performance in mAP (green line with green left Y-axis). Note that x-axis is in descending order.

Table 2: Performance comparison with the state-of-the-art unsupervised hashing methods. The Bold and Underline values indicate the best and second best
performances respectively.

Dataset CIFAR-10 LabelMe-12-50k SUN397
L 8 16 24 32 8 16 24 32 8 16 24 32

m
A

P

SpH 17.09 18.77 20.19 20.96 11.68 13.24 14.39 14.97 9.13 13.53 16.63 19.07
KMH 22.22 24.17 24.71 24.99 16.09 16.18 16.99 17.24 21.91 26.42 28.99 31.87
BA 23.24 24.02 24.77 25.92 17.48 17.10 17.91 18.07 20.73 31.18 35.36 36.40
ITQ 24.75 26.47 26.86 27.19 17.56 17.73 18.52 19.09 20.16 30.95 35.92 37.84
SCQ - OnE 27.08 29.64 30.57 30.82 19.76 21.96 23.61 24.25 23.37 34.09 38.13 40.54
SCQ - OgE 26.98 29.33 30.65 31.15 20.63 23.07 23.54 24.68 23.44 34.73 39.47 41.82

pr
ec

@
r2

SpH 18.04 30.58 37.28 21.40 11.72 19.38 25.14 13.66 6.88 23.68 37.21 27.39
KMH 21.97 36.64 42.33 27.46 15.20 26.17 32.09 18.62 9.50 36.14 51.27 39.29
BA 23.67 38.05 42.95 23.49 16.22 25.75 31.35 13.14 10.50 37.75 50.38 41.11
ITQ 24.38 38.41 42.96 28.63 15.86 25.46 31.43 17.66 9.78 35.15 49.85 46.34
SCQ - OnE 24.48 36.49 41.53 43.90 16.69 27.30 34.63 33.04 8.68 30.12 43.54 50.41
SCQ - OgE 24.35 38.30 43.01 44.01 16.57 27.80 34.77 34.64 8.76 29.31 45.03 51.88

pr
ec

@
1k

SpH 22.93 26.99 29.50 31.98 14.07 16.78 18.52 19.27 10.79 15.36 18.21 20.07
KMH 32.30 33.65 35.52 37.77 21.07 20.97 21.41 21.98 18.94 24.93 25.74 28.26
BA 31.73 34.16 35.67 37.01 21.14 21.71 22.64 22.83 19.22 28.68 31.31 31.80
ITQ 32.40 36.35 37.25 37.96 21.01 22.00 22.98 23.63 18.86 28.62 31.56 32.74
SCQ - OnE 33.38 37.82 39.13 40.40 22.91 25.39 26.55 27.16 19.26 29.95 32.72 34.08
SCQ - OgE 33.41 38.33 39.54 40.70 23.94 25.94 26.99 27.46 20.10 29.95 33.43 35.00

report zero precision for queries that return no image); 3) preci-
sion at top 1000 return images (prec@1k (%)) which measures
the precision on the top 1000 retrieved images.

Implementation notes. As discussed in section 3.3, for
computational efficiency, we apply PCA to reduce the feature
dimension to 512-D for our proposed methods. The hyper-
parameter µ of OgE algorithm is empirically set as 0.02 for all
experiments. Finally, for both OnE and OgE, we set all error-
tolerance values, ε, εb, εn, as 10−4 and the maximum number of
iteration is set as 100. The implementation of our methods is
available at https://github.com/hnanhtuan/SCQ.git.

For all compared methods, e.g., Spherical Hashing (SpH)
(Heo et al. (2012)), K-means Hashing (KMH)4 (He et al.
(2013)), Binary Autoencoder (BA) (Carreira-Perpiñán and

4Due to very long training time at high-dimension of KMH (He et al.

Raziperchikolaei (2015)), and Iterative Quantization (ITQ)
(Gong and Lazebnik (2011)); we use the implementation with
suggested parameters provided by the authors. Besides, to im-
prove the statistical stability of the results, we report the average
values of 5 executions.

4.2. Effects of parameters
As discussed in section 2.3, when s decreases, the projec-

tion matrix V can be learned to retain a very high amount of
variance, as much as PCA can. However, it causes undesirable
large binary quantization loss and vice versa. In this section,
we additionally provide quantitative analysis of the effects of

(2013)), we apply PCA to reduce dimension from 4096-D to 512-D. Addi-
tionally, we execute experiments for KMH with b = {2, 4, 8} and report the best
results.

https://github.com/hnanhtuan/SCQ.git
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the scale parameter on these two factors (i.e., the amount of re-
tained variance and the quantization loss) and, moreover, on the
retrieval performance.

In this experiment, for all datasets, e.g., CIFAR-10,
LabelMe-12-50k, and SUN397, we random select 20 images
for each class in the training set (as discussed in section 4.1) for
validation set. The remaining images are used for training. To
obtain each data point, we solve the problem Eq. (1) at various
scale values s and use OnE algorithm (Algorithm 1 - Section
2.2) to tackle the optimization.

Figure 4 presents (i) the quantization loss per bit, (ii) the
percentage of total retained variance by the minimizing quan-
tization loss projection matrix in comparison with the total re-
tained variance of top-L PCA components as s varies, and (iii)
the retrieval performance (mAP) of the validation sets. Firstly,
we can observe that there is no scale s that can simultane-
ously maximizes the retained variance and minimizes the op-
timal quantization loss. On the one hand, as the scale value s
decreases, minimizing the loss function Eq. (17) produces a
projection matrix that focuses on high-variance directions, i.e.,
retains more variance in comparison with PCA (red line). On
the other hand, at smaller s, the quantization loss is much larger
(blue dash line). The empirical results are consistent with our
discussion in section 2.3.

Secondly, regarding the retrieval performance, unsurpris-
ingly, the performance drops as the scale s gets too small, i.e., a
high amount of variance is retained but the quantization loss is
too large, or s gets too large, i.e., the quantization loss is small
but only low variance components are retained. Hence, it is
necessary to balance these two factors. As data variance varies
from dataset to dataset, the scale value should be determined
from the dataset. In particular, we leverage the eigenvalues Λ,
which are the variances of PCA components, to determine this
hyper-parameter. From experimental results in Figure 4, we
propose to formulate the scale parameter as:

s =

√
L∑L

i=1 λi
, (25)

One advantage of this setting is that it can generally achieve
the best performances across multiple datasets, feature types,
and hash lengths, without resort to conducting multiple train-
ings and cross-validations. The proposed working points of the
scale are shown in Figure 4. We apply this scale parameter to
the datasets for both OnE and OgE algorithms in all later exper-
iments.

Note that the numerator of the fraction in Eq. 25, i.e., L is
the hash code length, which is also the total variance of binary
codes B. In addition, the denominator is the total variance of top
L-th PCA components, i.e., the maximum amount of variance
that can be retained in an L-dimension feature space. Hence,
we can interpret the scale as a factor that make the amounts
of variance, i.e., energy, of the input X and output (i.e. binary
codes B) are comparable. This property is important as when
the variance of input is much larger than the variance of output,
obviously there is some information loss. On the other hand,
when the variance of output is larger than it of input, the output
contains undesirable additional information.

Table 3: Summary of the percentage of retained variance (%), quantization loss
per bit, and retrieval performance (mAP) on validation sets for ITQ and our
SCQ-OnE methods (at the proposed scale of Eq. (25)).

Method CIFAR-10 LabelMe SUN397
% Retained ITQ 100% 100% 100%

variance SCQ-OnE 59.6% 63.0% 69.4%
Quantization ITQ 0.75 0.71 0.65

error SCQ-OnE 0.29 0.29 0.24

mAP ITQ 27.01 18.24 37.79
SCQ-OnE 30.68 23.74 41.12

Table 4: Performance comparison in mAP and prec@r2 with Deep Hashing
(DH) (Erin Liong et al. (2015)) and Unsupervised Hashing with Binary Deep
Neural Network (UH-BDNN) (Do et al. (2016a)) on CIFAR-10 dataset for L =

16 and 32. The Bold values indicate the best performances.

Methods
mAP prec@r2

16 32 16 32

C
IF

A
R

-1
0 DH 16.17 16.62 23.33 15.77

UH-BDNN 17.83 18.52 24.97 18.85
SCQ - OnE 17.97 18.63 24.57 23.72
SCQ - OgE 18.00 18.78 24.15 25.69

Additionally, in Table 3, we summarize the percentage of re-
tained variance (%), quantization loss per bit, and retrieval per-
formance (mAP) on validation sets for ITQ and our SCQ-OnE
methods. Even though, the projection matrix, learned by our
Algorithm 1, can retain less variance in comparison to the op-
timal PCA projection matrix (i.e., the ITQ first step), this helps
to achieve a much smaller quantization error. Hence, balanc-
ing the variance loss and quantization error is desirable and can
result in higher retrieval performance.

4.3. Comparison with state-of-the-art

In this section, we evaluate our proposed hashing methods,
SCQ - OnE and OgE, and compare to the state-of-the-art unsu-
pervised hashing methods including SpH, KMH, BA, and ITQ.
The experimental results in mAP, prec@r2 and prec@1k are
reported in Table 2. Our proposed methods clearly achieve sig-
nificant improvement over all datasets at the majority of evalu-
ation metrics. The improvement gaps are clearer at higher code
lengths, i.e., L = 32. Additionally, OgE generally achieves
slightly higher performance than OnE. Moreover, it is notice-
able that, for prec@r2, all compared methods suffer perfor-
mance downgrade at long hash code, e.g., L = 32. However,
our proposed methods still achieve good prec@r2 at L = 32.
This shows that binary codes producing by our methods highly
preserve data similarity.

Comparison with Deep Hashing (DH) (Erin Liong et al.
(2015)) and Unsupervised Hashing with Binary Deep Neu-
ral Network (UH-BDNN) (Do et al. (2016a)). Recently, there
are several methods (Erin Liong et al. (2015); Do et al. (2016a))
applying DNN to learn binary hash codes. These method can
achieve very competitive performances. Hence, in order to
have a complete evaluation, following the experiment settings
of Erin Liong et al. (2015); Do et al. (2016a), we conduct ex-
periments on the CIFAR-10 dataset. In this experiment, 100
images are randomly sampled for each class as a query set; the
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Table 5: Performance comparison in mAP with BGAN (Song (2018)) on CIFAR-10 and NUS-WIDE datasets.

Methods
CIFAR-10 NUS-WIDE

12 24 32 48 12 24 32 48

m
A

P BGAN 40.1 51.2 53.1 55.8 67.5 69.0 71.4 72.8
SCQ - OnE 53.59 55.77 57.62 58.14 69.82 70.53 72.78 73.25
SCQ - OgE 53.83 55.65 57.74 58.44 70.17 71.31 72.49 72.95

remaining images are for training and database. Each image
is presented by a GIST 512-D descriptor (Oliva and Torralba
(2001)). In addition, to avoid bias results due to test samples,
we repeat the experiment 5 times with 5 different random train-
ing/query sets. The comparative results in term of mAP and
prec@r2 are presented in Table 4. Our proposed methods are
very competitive with DH and UH-BDNN, specifically achiev-
ing higher mAP and prec@r2 at L = 32 than DH and UH-
BDNN.

Comparison with Binary Generative Adversarial Net-
works for Image Retrieval (BGAN) (Song (2018)). Recently,
BGAN applies a continuous approximation of sign function
to learn the binary codes which can help to generate images
plausibly similar to the original images. The method has been
proven to achieve outstanding performances in unsupervised
image hashing task. It is important to note that BGAN is dif-
ferent from our method and compared methods in the aspect
that BGAN jointly learns image feature representations and
binary codes, in which the binary codes are achieved by us-
ing an approximate smooth function of sign. While ours and
compared methods learn the optimal binary codes given im-
age representations. Hence, to further validate the effective-
ness of our methods and to compare with BGAN, we apply our
method on the FC7 features extracted from the feature extrac-
tion component in the pre-trained BGAN model5 on CIFAR-
10 and NUS-WIDE (Chua et al.) datasets. In this experi-
ment, we aim to show that by applying our hashing methods
on the pretrained features from feature extraction component of
BGAN, our methods can produce better hash codes than the
hash codes which are obtained from the jointly learning ap-
proach of BGAN.

Similar to the experiment setting in BGAN (Song (2018)),
for both CIFAR-10 and NUS-WIDE, we randomly select 100
images per class as the test query set; the remaining images are
used as database for retrieval. We then randomly sample from
the database set 1,000 images per class as the training set. The
Table 5 shows that by using the more discriminative features6

from the pre-trained feature extraction component of BGAN,
our methods can outperform BGAN, i.e., our methods can pro-
duce better binary codes in comparison to the sign approxi-
mate function in BGAN, and achieve the state-of-the-art perfor-
mances in the unsupervised image hashing task. Hence, the ex-
periment results emphasize the important of an effective method
to preserve the discrimination power of high-dimensional CNN

5The model is obtained after training BGAN method on CIFAR-10 and
NUS-WIDE datasets accordingly. The same model is also used to obtain
BGAN binary codes.

6In comparison with the image features which are obtained from the pre-
trained off-the-shelf VGG network (Simonyan and Zisserman (2014)).
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Fig. 5: The training time for learning 32-bit hash code embedding.

features in very compact binary representations, i.e., effectively
handling the challenging binary and orthogonal constraints.

4.4. Training time and Processing time

In this experiment, we empirically evaluate the training time
and online processing time of our methods. The experiments
are carried out on a workstation with a 4-core i7-6700 CPU
@ 3.40GHz. The experiments are conducted on the combina-
tion of CIFAR-10, Labelme-12-50k, and SUN397 datasets. For
OnE and OgE, the training time include time for applying zero-
mean, scaling, reducing dimension to D = 512. We use 50
iterations for all experiments. The Fig. 5 shows that our pro-
posed methods, OnE and OgE, are very efficient. OgE is just
slightly slower than ITQ. Even though OnE is slower than OgE
and ITQ, it takes just over a minute for 100.000 training sam-
ples which is still very fast and practical, in comparison with
several dozen minutes for KMH, BA, and UH-BDNN7.

Compared with training cost, the time to produce new hash
codes is more important since it is done in real time. Similar
to Semi-Supervised Hashing (SSH) (Wang et al. (2012)) and
ITQ (Gong and Lazebnik (2011)), by using only a single linear
transformation, our proposed methods require only one BLAS
operation (gemv or gemm) and a comparison operation; hence,
it takes negligible time to produce binary codes for new data
points.

5. Conclusion

In this paper, we successfully addressed the problem of
jointly learning to preserve data pairwise (dis)similarity in low-
dimension space and to minimize the binary quantization loss

7For training 50000 CIFAR-10 samples using author’s release code and
dataset (Do et al. (2016a)).
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with the strict diagonal constraint. Additionally, we show that
as more variance is retained, the quantization loss is undesirably
larger; and vice versa. Hence, by appropriately balancing these
two factors using a scale, our methods can produce better binary
codes. Extensive experiments on various datasets show that our
proposed methods, Simultaneous Compression and Quantiza-
tion (SCQ): Orthonormal Encoder (OnE) and Orthogonal En-
coder (OgE), outperform other state-of-the-art hashing meth-
ods by clear margins under various standard evaluation metrics
and benchmark datasets. Furthermore, OnE and OgE are very
computationally efficient in both training and testing steps.
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Appendices
A. Derivation for Eq. (8)

Firstly, the dual function G1(ν1) can be simply constructed
by substituting V1 from Eq. (7) into Eq. (6):

G(ν1) =
1
n

∥∥∥b1 − X(X>X + nν1I)−1X>b1
∥∥∥2

+ν1

(
b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1

) (26)

Firstly, we note that:

∂(X>X + nν1I)−1

∂ν1

= −(X>X + nν1I)−1 ∂(X>X + nν1I)
∂ν1

(X>X + nν1I)−1

= −n(X>X + nν1I)−1(X>X + nν1I)−1

(27)

Hence,

∂G(ν1)
∂ν1

= −
2
n

(
b1 − X(X>X + nν1I)−1X>b1

)>
X
∂(X>X + nν1I)−1

∂ν1
X>b1

+
(
b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1

)
+ 2ν1b>1 X(X>X + nν1I)−>

∂(X>X + nν1I)−1

∂ν1
X>b1

=2b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1

−2b>1 X(X>X + nν1I)−>X>X(X>X + nν1I)−1(X>X + nν1I)−1X>b1

+
(
b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1

)
−2nν1b>1 X(X>X + nν1I)−>(X>X + nν1I)−1(X>X + nν1I)−1X>b1

=2b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1

−2b>1 X(X>X + nν1I)−>(X>X + nν1I)(X>X + nν1I)−1(X>X + nν1I)−1X>b1

+2nν1b>1 X(X>X + nν1I)−>(X>X + nν1I)−1(X>X + nν1I)−1X>b1

+
(
b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1

)
−2nν1b>1 X(X>X + nν1I)−>(X>X + nν1I)−1(X>X + nν1I)−1X>b1

=b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1
(28)

⇔
∂G1

∂ν1
= b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1 (29)

Note that: (X>X + nν1I)−1 = (X>X + nν1I)−>.

A simpler way to achieve ∂G(ν1)
∂ν1

is to take the deravative of L
w.r.t ν1 first, then replace v1 by Eq. (7) later.

∂L

∂ν1
= v>1 v1 − 1 (30)

⇒
∂G

∂ν1
= b>1 X(X>X + nν1I)−>(X>X + nν1I)−1X>b1 − 1 (31)

By setting ∂G1
∂ν1

= 0 (Eq. (31)), we can obtain the second condi-
tion in Eq. (8).

B. Derivation for Eq. (13)

Following the similar derivation in Appendix section A, we
can obtain the second condition of Eq. (13). We now provide
the detail derivation for the third condition. Considering the i-th
value (φki) of the Lagrange multiplier Φk

∂Lk

∂φki
= v>k vi (32)

⇒
∂Gk

∂φki
=

X>bk −
n
2

k−1∑
j=1

φk jv j


>

(X>X + nνkI)−>vi

= −
n
2
φk1v>1 Zkvi − · · · −

n
2
φk(k−1)v>(k−1)Zkv1 + b>k XZkvi

(33)

where Zk = (X>X + nνkI)−1.
By setting the derivative of Gk w.r.t Φk = [φk1, ..., φk(k−1)]>

equal to [0, · · · , 0] and some simple manipulations, we can ob-
tain the third condition of Eq. (13) as follows:

AkΦk = ck, (34)

where 
Ak = n

2


v>1 Zkv1 · · · v>1 Zkv(k−1)

...
. . .

...

v>(k−1)Zkv1 · · · v>(k−1)Zkv(k−1)


ck =

[
v>1 ZkX>bk · · · v>(k−1)ZkX>bk

]> (35)
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