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ABSTRACT

This paper presents a novel deep learning architecture for classifying structured objects in ultrafine–

grained datasets, where classes may not be clearly distinguishable by their appearance but rather by

their context. We model sequences of images as linear-chain CRFs, and jointly learn the parameters

from both local-visual features and neighboring class information. The visual features are learned

by convolutional layers, whereas class-structure information is reparametrized by factorizing the CRF

pairwise potential matrix. This forms a context-based semantic similarity space, learned alongside the

visual similarities, and dramatically increases the learning capacity of contextual information. This

new parametrization, however, forms a highly nonlinear objective function which is challenging to

optimize. To overcome this, we develop a novel surrogate likelihood which allows for a local likeli-

hood approximation of the original CRF with integrated batch-normalization. This model overcomes

the difficulties of existing CRF methods to learn the contextual relationships thoroughly when there

is a large number of classes and the data is sparse. The performance of the proposed method is illus-

trated on a huge dataset that contains images of retail-store product displays, and shows significantly

improved results compared to linear CRF parametrization, unnormalized likelihood optimization, and

RNN modeling. We also show improved results on a standard OCR dataset.

1. Introduction

Object recognition is one of the fundamental problems in

computer vision. It involves finding and identifying objects in

images, and plays an important role in many real-world applica-

tions such as advanced driver assistance systems, military target

detection, diagnosis with medical images, video surveillance,

and identity recognition. Over the past few years deep convolu-

tional neural networks (CNN) have led to remarkable progress

in image classification (He et al., 2016; Krizhevsky et al.,

2012), and resulted in reliable appearance-based detectors; e.g.,

(Lin et al., 2018; Liu et al., 2016; Redmon and Farhadi, 2017;

Ren et al., 2015; Goldman et al., 2019).

Fine-grained object recognition aims to identify subcate-

gory object classes, which includes finding subtle differences

among visually similar subcategories such as dog breeds, prod-

uct brands, car models, etc. The differences between classes

are often small but always visually measurable, making visual

e-mail: eg4000@gmail.com (Eran Goldman),
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Fig. 1: Spot the difference: Examples of classes with a similar appearance.

Each product in this image belongs to a different category.

recognition challenging but possible. Some of these datasets

(e.g. UT-Zap50K (Yu and Grauman, 2014)) provide each class

with an in-vitro image: a catalog or studio image isolated

and captured under ideal imaging conditions; other datasets

(e.g. Caltech-UCSD Birds (Wah et al., 2011), Stanford Dogs

(Khosla et al., 2011), FGVC-Aircraft (Maji et al., 2013)) pro-

vide each class with several in-situ images, captured in natu-

ral real-world environments. Nonetheless, the image quality is

mostly satisfactory for the task of visual classification. In fact,

recent studies achieved good performance on fine-grained tasks

(Lin et al., 2015; Peng et al., 2018; Zhang et al., 2014).

However, the problem remains extremely difficult when the

http://arxiv.org/abs/1705.07420v3
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dataset categories are nearly identical in terms of their visual

appearance. In this case, the object categories may be virtu-

ally indistinguishable, since the discriminant features are often

masked by inadequate observation or visual artifacts. Here we

present an ultrafine-grained structured classification dataset;

unlike other fine-grained classification datasets, our images are

in-situ low-resolution cropped patches whose classes are often

virtually indistinguishable by visual inspection alone. There-

fore, incorporating additional sources of information to the

classifier is imperative. Since the object-patches originate from

larger scenes, we can model contextual relations between the

objects based on their geometric layout. This study tackles the

challenge of fine-grained, large-scale structured classification,

and describes a novel, state-of-the-art technique for this task.

Fig. 2: Examples of input sequences x. The top sequence is from our store

display dataset, and the bottom one is the word “[U]nworkable” from the MIT

OCR Handwritten Words Dataset which is also used to validate our method.

We address the problem of classifying a sequence of objects

based on their visual appearance and their relative locations.

Our dataset contains photos of retail store product displays,

taken in varying settings and viewpoints. Our task is to iden-

tify the class of each product at the front of the shelves. The

dataset is exclusively characterized by having a distinct geo-

metric object structure made up of sequences of shelves, a large

number of classes, and very subtle visual differences between

groups of classes in that some classes only differ in size or mi-

nor design details. The unique challenges in this task involve

(a) large-scale classification: handling the large number of

possible classes, and (b) ultrafine-grained structured classi-

fication: the fact that the classes are not clearly distinguishable

by their appearance but rather by their context. For example,

products with an identical appearance but different container

volumes are considered different classes (see examples in Fig.

1).

Because an object’s local appearance may not suffice for ac-

curate categorization, additional information needs to be con-

sidered. In real world images, contextual data provides use-

ful information about the spatial and semantic relationships

between objects. Modeling a joint visual-contextual classi-

fier is nontrivial in that some contextual cues are very in-

formative, whereas others are irrelevant or even misleading

(Barnea and Ben-Shahar, 2019; Yu et al., 2016). Therefore,

most deep learning detectors classify each detected object indi-

vidually without taking the contextual information into account.

Moreover, the handful of existing context-aware methods do

not have the learning capacity for complex datasets such as

ours, and cannot properly apply large-scale fine-grained struc-

tured classification.

Related Work: Context has been used to improve performance

for image understanding tasks in various ways (Divvala et al.,

2009; Felzenszwalb et al., 2010; Torralba, 2003). Graph-

ical models have been widely applied to visual and au-

ditory analysis tasks, by jointly modeling local features,

and contextual relations. The tasks addressed by these

models include image segmentation and object recognition

(Chandra et al., 2017; Chen et al., 2018; Gould et al., 2009;

Rabinovich et al., 2007; Wang et al., 2015; Yao et al., 2012;

Zheng et al., 2015), as well as speech (Wang and Wang, 2012),

music (Korzeniowski and Widmer, 2016), text (Chen et al.,

2016) and video analysis (Hu et al., 2014).

Few studies have applied deep learning features or detection

results to context models: Chen et al. (2015) explored several

techniques to learn structured models jointly with deep features

that form MRF potentials. Chu and Cai (2018) evaluated the

performance of a joint CRF model on Faster R-CNN (Ren et al.,

2015) detection results using an a-priori statistical summary for

the pairwise potentials. Korzeniowski and Widmer (2016) in-

troduced a two-stage learning model for musical chord recog-

nition: one network learns a single-frame representation, and

the other learns the potentials of a linear-chain CRF model us-

ing the frame-representations as the CRF input. These models

use the vanilla CRF parametrization, which includes pairwise

potentials to represent object-pair interactions. They allocate

a different parameter to each class pair. This approach, which

ignores class similarities, is only sufficient for small sets of dis-

tinct classes. In effect, they have solely been tested on OCR

datasets, which contain 26 classes (Chen et al., 2015), a chord-

recognition dataset with 25 classes (Korzeniowski and Widmer,

2016) and PASCAL VOC 2007 with 20 classes (Chu and Cai,

2018). However, this formulation is not sufficient for a large

class-set that contains visually similar classes. Our dataset,

which includes many visually similar categories, nearly a thou-

sand classes and a million possible pairwise transitions overall,

requires a more advanced learning mechanism. Furthermore,

whereas in most previous object recognition studies the visual

information was dominant, in our task, context information also

makes a significant contribution.

In this study we present a Conditional Random Field (CRF)

based method that explicitly learns the embedding of classes

with respect to their neighbor’s class and appearance. This is

achieved by factorizing the CRF pairwise potential matrix to

impose the structure of class embedding in a low-dimensional

space. Our model learns the factorized parameters, and yields

a joint contextual-visual embedding of the classes. The fac-

torization drastically increases the learning capacity of contex-

tual information, but also forms a multi-modal likelihood func-

tion which is more challenging to optimize. To overcome this,

we develop a local surrogate likelihood and apply the proper

regularization required for convergence. To train the network,

we introduce a pairwise softmax architecture that optimizes a

local approximation of the likelihood. Since the global fac-

torized loss function is not convex, we favor optimizing the
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approximate surrogate likelihood, which allows us to include

batch-norm related regularization for the object samples, and

achieve dramatic improvement not only in training time and

model simplicity but also in terms of the overall performance

of the trained model. At test time, dynamic programming tech-

niques are used for efficient exact inference of the classes. The

contribution of this work is twofold:

1. Combining deep class embedding into a CRF formula-

tion that enables handling datasets with a huge number of

classes.

2. An approximated-likelihood training procedure that is

both computational efficient and, unlike exact CRF like-

lihood, enables us to incorporate batch-normalization into

the training procedure.

We validate our method on a large image dataset and on an

OCR dataset. Direct comparison of our method to most rel-

evant previous work show superior performance. The rest of

the paper is organized as follows. In section 2 we describe a

CRF model with a class embedding formulation and present the

learning and inference algorithms. Section 3 contains a detailed

data description and comparative experimental results. Object

embedding analysis is described in Section 4 and the conclu-

sions are given in Section 5.

2. CRF With Normalized Class Embedding

2.1. Model Formulation

We are given a sequence of observations x = (x1, ..., xn).
The data can be a sequence of image patches which correspond

to an horizontal layout of objects (see example in Fig. 2). The

goal is to classify each object in the sequence to one of a pre-

defined k categories where k is a large number. A standard

CNN can classify the object in each image patch individually,

implicitly assuming independence between elements in the se-

quence. In order to include context in the classification process,

we model the sequence as a CRF.

We first use a local CNN to obtain a non-linear represen-

tation of the input image. Similar to the concept of transfer-

learning, we can discard the CNN softmax layer, and use the

convolutional layers to compute the feature-vectors of the input

images. For each image-patch xt we define the feature vector

ht = h(xt) as the activations of the last hidden fully-connected

or global-average-pooling (GAP) layer (Bengio et al., 2013;

Lin et al., 2013), and use it as the CRF input observation feature

vector.

Linear-chain Conditional Random Field (LC-CRF)

(Lafferty et al., 2001) is a type of discriminative undi-

rected probabilistic graphical model, whose conditional

distribution p(y|x) obeys a conditional Markov property. The

joint probability distribution of a linear-chain CRF is:

p(y|x) =
1

Z

n
∏

t=1

ϕ(yt, xt, yt−1) (1)

where x = (x1, ..., xn) is the input sequence, y = (y1, ..., yn)
is the corresponding sequence of the target labels, ϕ is the

model’s potential function and Z is the partition function de-

fined as the global probability normalization over all possible

sequence label-assignments of length n. We further assume that

the potential function is defined as a simple log-linear function

of the model parameters:

ϕ(yt, xt, yt−1) = exp(y⊤

t−1Pyt + h(xt)
⊤Uyt + b⊤yt). (2)

The CRF model parameters are P , U and b where P is a k ×
k pairwise potential matrix that models the relation between

consecutive labels, U is a unary potential matrix and the vector

b is the label bias. Note that we use a one-hot encoding for the

labels.

The rationale for using a deep representation h(xt) for the in-

put images is clear: as introduced by Krizhevsky et al. (2012),

the immense complexity of the visual object recognition task

requires a model with a very large learning capacity. Convolu-

tional layers provide the structure required for learning visual

features of the unary input. We aim to craft a suitable structure

to learn the pairwise contextual relations as well.

CRF was originally applied to language processing tasks

such as Part of Speech (POS) tagging and Named Entity Recog-

nition (NER) (Lafferty et al., 2001). In most applications of

CRF to either language or image understanding, there are no

more than a few dozen different classes. Our dataset contains

nearly a thousand classes and the pairwise potential matrix P

has therefore nearly a million parameters. In order to prop-

erly learn and generalize the massive variety of possible neigh-

boring patterns, we enforce a structure on the pairwise poten-

tial matrix: the goal is to learn neighboring-class embedding

in a feature vector space. For this purpose, we define a low-

dimensional decomposition of the pairwise potential matrix P

as the product of the left-side neighbor embedding matrix R

and the class embedding matrix Q:

P = R⊤Q. (3)

The columns of Q are low-dimensional embeddings of the tar-

get classes, and the columns of R are embeddings of the classes

of the left-side object. Assigning the matrix factorization (3) to

the CRF potential function (2) we get:

ϕ(yt, ht, yt−1) = exp((Ryt−1)
⊤Qyt + h⊤

t Uyt + b⊤yt). (4)

Given the values of the model parameters, dynamic program-

ming algorithms can be used for efficient and exact inference.

The Viterbi algorithm finds the most probable sequence label

assignment, and the Forward-Backward algorithm extracts the

marginal probability of each item by summation over all pos-

sible assignments (Sutton and McCallum, 2006). The compu-

tational complexity of the forward-backward and Viterbi algo-

rithms is quadratic in the number of classes. In the next section

we show that the matrix factorization improves classification

performance. Note that the matrix factorization also improves

the computation complexity of the dynamic programming algo-

rithms used for the classification procedure. The factorization

brings the complexity down to the number of classes multiplied

by the factorization dimensionality.
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2.2. Learning the Model’s Parameters

In the training phase we assume the availability of s labeled

sequences (x1,y1), ..., (xs,ys). The likelihood function of the

factorized CRF model defined above is:

L(R,Q,U, b) =

s
∑

i=1

log p(yi|h(xi)) (5)

where h(xi) is the feature vectors of the sequence xi and

i goes over the sequences in the training data. The likeli-

hood function can be maximized by applying standard Stochas-

tic Gradient (SG) based methods. Since the CRF underly-

ing graph is loop-free, it is tractable to compute the likeli-

hood function and its gradient using the forward-backward

algorithm (Sutton and McCallum, 2006). In case there is

no low-dimensionality constraint on P , the likelihood is

a concave function of the model parameters P , U and b

(Sutton and McCallum, 2006) and the optimal parameter can

be easily found. The factorization of the pairwise potential ma-

trix P = R⊤Q causes the likelihood (5) to be a non-concave

function of the model parameters and therefore there is no guar-

antee that gradient methods will converge to the global max-

imum likelihood. Hence, there no theoretical reason to favor

optimizing the exact likelihood over approximate local variants

that have better generalization capabilities.

We next propose a novel learning approach that is based on

optimizing an approximated CRF objective function, that can

be used as a surrogate likelihood. It also allows incorporating

batch-normalization into the training procedure. In the next sec-

tion we show that this method, which learns to balance the CRF

features, significantly improves the classification performance.

Our approximated objective is inspired by the MEMM for-

mulation (McCallum et al., 2000). Linear-chain CRFs were

originally introduced as an improvement on the Maximum En-

tropy Markov model (MEMM), which is essentially a Markov

model in which the transition distributions are given by a logis-

tic regression model. CRF and MEMM can be written with the

same set of parameters. The main difference between CRFs and

MEMMs is that a MEMM uses per-state exponential models for

the conditional probabilities of next-states given the current-

state, whereas the CRF has a single exponential model for

the joint probability of the entire sequence of labels given the

observation-sequence. The MEMM directed graphical model-

ing in our case is:

p(y|h(x)) =
n
∏

t=1

p(yt|ht, yt−1) (6)

where

p(yt|ht, yt−1) =
1

Z(t)
exp(y⊤

t−1R
⊤Qyt + h⊤

t Uyt + b⊤yt).

(7)

When applying MEMM for inference it suffers from the label

bias problem (Kakade et al., 2002; Lafferty et al., 2001) which

may lead to a drop in performance in some applications. Here,

however, we propose applying the MEMM objective only as

a local approximation to learn the parameter set of the linear-

chain CRF model whereas the test time inference still uses a

global normalization of CRF modeling and thus avoids the label

bias problem. In the appendix we review standard likelihood

approximation strategies for efficient CRF training and show

that the training method we use in this study can be viewed as

a simplified version of the piecewise-pseudolikelihood approx-

imation (Sutton and McCallum, 2007).

Our objective function is, therefore, defined as the condi-

tional probability of the current-object class, given the class of

the left-side neighbor object:

LMEMM =

s
∑

i=1

n
∑

t=1

log p(yi,t|hi,t, yi,t−1) (8)

where i goes over the sequences and t goes over the objects

in the sequence, hi,t is the object CNN-based representation,

yi,t is the true class label and p() is as defined at (7). Fig. 3

illustrates the difference between the exact CRF objective and

the MEMM objective we use as a CRF approximation.

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Fig. 3: Graphical models of the CRF (top) and the MEMM (bottom) objective

functions.

The proposed objective (8) does not necessarily eliminate

significant contextual information. Rather, when learning the

factorized CRF, it may enrich the training dataset, improve the

stochastic nature of the SG optimization process and help to

prevent overfitting since there are many more object samples

than sequence samples, and the mini-batches are composed

of adjacent pairs of objects taken from random training sam-

ples. In contrast, restricting the mini-batches to contain full se-

quences, would decrease the model’s freedom to discover better

solutions for the objective of pairwise transition parameters. In

fact, as we empirically show in the next section, optimizing (8)

yields better results than optimizing the exact likelihood (5).

Note that the computational complexity of the approximated

likelihood (8) is linear in the number of classes and therefore

the training process is much faster.

2.3. Feature Scaling with Batch Normalization

In optimization, feature standardization or whitening is a

common procedure that has been shown to reduce the conver-

gence rates (Orr and Müller, 2003). In deep neural networks,

whitening the inputs to each layer may also prevent converg-

ing into poor local optima. However, training a deep neu-

ral network is complicated by the fact that the inputs to each
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Fig. 4: The approximate MEMM Likelihood training architecture. An input

sample is composed of an object and its left neighbor’s label. The object image

xt is converted to its deep visual representation ht by the CNN, whereas the

label yt−1 is converted to its deep second-order class representation by the

embedding layer. The concatenated representation is the MEMM input.

layer are affected by the parameters of all preceding layers, and

need to continuously adapt to the new distribution. The batch-

normalization (BN) (Ioffe and Szegedy, 2015) method draws

its strength from making normalization part of the model ar-

chitecture and performing the normalization for each training

mini-batch.

Our MEMM based training objective function (8) models the

current state class conditional distribution by a logistic regres-

sion (LR) model. Therefore, Eq. (7) can be written as:

log p(yt|ht, yt−1) =
(

1 h⊤

t (Ryt−1)
⊤
)





b⊤

U

Q



 yt−logZ(t).

(9)

The first term is the input features to the LR and the second

term is the LR parameters Q, U and b. The input features are

composed of the visual features of the CNN ht and the learned

neighbor embeddings Ryt−1. Since yt−1 is a one-hot vector,

the columns of R are dense representations of the classes. The

standardization of the input feature vector (Ryt−1, ht) is im-

portant in order to avoid inherent bias between the local-visual

and contextual class information. The goal is to encourage each

input feature to have normalized mean and variance. Since the

CNN is pre-trained we can compute the mean and variance vec-

tors of the visual features as a pre-processing stage, and use

standardized CNN feature vectors h for CRF training and in-

ference. In contrast, the context class embeddings Ryt−1 are

jointly learned with the LR layer and thus are changed during

the training process. Hence, we use the batch-normalization

(Ioffe and Szegedy, 2015) method to learn their mini-batch nor-

malization during the training process.

The input layer and the LR layer of the MEMM training pro-

cedure are illustrated in Fig. 4.

Formally, by applying batch normalization to the context rep-

resentation Ryt−1, Eq. (7) is replaced by:

p(yt|ht, yt−1) =
1

Z(t)
exp(BN(Ryt−1)

⊤Qyt + h⊤

t Uyt + b⊤yt)

(10)

where BN(xi) =
xi − µB
√

σ2
B
+ ǫ

with mini-batch mean and vari-

ance:

µB =
1

m

m
∑

i=1

xi σ2
B =

1

m

m
∑

i=1

(xi − µB)
2.

This way, the batch-normalization encourages the activations

to have standard distributions during training, and tracks the

moving averages of normalization parameters for the inference

stage. The training method is summarized in Table 1.

In the CRF exact likelihood, the weights in each sequence-

level sample are shared across multiple locations in varying

numbers of appearances, and the potential factors R,Q are

jointly used. Hence, batch normalization cannot be applied di-

rectly to learn mini-batch statistics, and, as a matter of fact,

previous CRF studies (e.g. (Chandra et al., 2017; Wang et al.,

2015; Durrett and Klein, 2015)) did not use it. A major advan-

tage of the approximate MEMM likelihood we use is that the

potential factors P = R⊤Q are used in a sequential order: We

first apply the matrix R on the context label and then the ma-

trix Q on the current label (see Eq. 9). This is a natural setup

for BN, which allows a very simple and effective way to apply

batch-normalization to each neighboring-label sample.

After convergence of the training stage, we apply the batch-

normalization inference procedure: Each column in matrix R

is standardized by the training population statistics µP and σP ,

estimated from the moving averages of mini-batch statistics

tracked during training (Ioffe and Szegedy, 2015):

BNtest(Ryi) =
Ryi − µP
√

σ2
P
+ ǫ

At test time, we compute the standardized CNN represen-

tation vector h for each object in the sequence, and classify

the objects using the forward-backward algorithm as described

above. The inference procedure is summarized in Table 1.

3. Experiments

3.1. The Dataset

Our dataset contains sequences of fixed-size image patches,

originated from in-situ photos of retail store displays taken in

supermarkets and grocery stores. The objects are the inventory

items positioned at the front of the displays, and the classes are

their stock-keeping-unit (SKU) unique identifiers. Each object

was originally annotated by its class label and bounding-box co-

ordinates. The image patches were cropped and reshaped into

single-object images of size 150× 450 pixels, and grouped into

shelves; i.e., sequences of horizontal layouts, arranged from left

to right. The benchmark contains 76,081 sequences of 460,121

single-object images, originated from 24,024 photos of store

displays. Each object is labeled as one of 972 different classes.

Sequence lengths can vary from 2 to 32, and are typically be-

tween 4-12. The average sequence length is 6 and the length

standard deviation is 2.4. To perform k-fold cross-validation,

we split the dataset into 5 mixes of 80% training and 20% test-

ing.

Many groups of classes belong to the same archetype, and

only differ in terms of minor details such as volume, flavor,
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Table 1: CRF with normalized deep class embedding algorithm

Training Algorithm:

Training data: Image sequences x1, ...,xs with correspond-

ing label sequences y1, ...,ys.

• Train a CNN to maximize the likelihood:

Lcnn =

s
∑

i=1

n
∑

t=1

log p(yi,t|xi,t)

• Apply SG to optimize the approximate likelihood:

LMEMM(R,Q,U, b) =

s
∑

i=1

n
∑

t=1

log p(yi,t|hi,t, yi,t−1)

s.t. p(yi,t|hi,t, yi,t−1) ∝

exp(BN(Ryi,t−1)
⊤Qyi,t + h⊤

i,tUyi,t + b⊤yi,t)

and hi,t is the CNN-based representation of xi,t.

Inference Algorithm:

Input data: an image sequence x = (x1, ..., xn).

• Apply CNN to obtain a representation ht = h(xt).

• Apply the forward-backward (or Viterbi) algorithm on

the following CRF:

p(y|x) ∝ exp(

n
∑

t=1

BNtest(Ryt−1)
⊤Qyt+h⊤

t Uyt+ b⊤yt)

to find the labels y = (y1, ..., yn) of the object se-

quence.

nutrient content etc. They often share similar visual features,

which makes appearance-based classification very difficult. On

the other hand, the object layout behavior is very coherent: it

is dictated by the supplier planograms (specified product lay-

outs) and extracted from the image realograms (observed prod-

uct layouts). Although realograms are non-deterministic by na-

ture, consistent semantic patterns are frequently spotted. Class

transition behavior may be discovered, revealing tendencies of

pairs to appear as left-to-right neighbors, and individual classes

to appear multiple times successively. The unique challenges

we faced in our task are derived from the large number of vi-

sually similar classes, which co-occur in distinct structures in

large-scale images.

3.2. Implementation Details

We first train a ResNet50 CNN (He et al., 2016) from scratch

to compute the hidden representation vector hs×1 for each

image-patch. In our implementation the hidden layer size (after

global average pooling) was s = 2048. Then, as a preprocess-

ing step for the CRF model, we calculate the mean and standard

deviation of each feature of the hidden representation vector

from the training dataset: µs×1, σs×1.

The number of classes in our dataset is m = 972, and the

class embedding dimensionality we use is d = 32. We learn

a class embedding matrix Qd×m, a neighbor embedding ma-

trix Rd×m, a unary potential matrix Us×m and a bias vector

bm×1. We initialize the bias parameter to 0 and the weight pa-

rameters with random Gaussian samples N (0, 0.01) for sym-

metry breaking. We train the network as described in Section

2, using SG with mini-batches of size 128, and maximizing

the log-likelihood function (8) with and l2 regularization factor

λ = 5 · 10−4 for all network parameters. The training samples

in each mini-batch are object-pairs selected randomly from the

benchmark.

Runtimes were measured on the same machine using an In-

tel(R) Core(TM) i7-5930K CPU @3.50GHz GeForce and a

GTX Titan X GPU. A single batch epoch of the baseline unary

system took 46 sec, a global optimization algorithm took 780

sec and our local optimization took 47 sec. The local training

procedure is more efficient than computing the global maxi-

mum likelihood, because its time complexity is linear in the

number of classes, whereas the global training procedure is

quadratic in the number of classes. When using the factor-

ized pairwise matrix, the global training time complexity can

be reduced to the number of classes times the embedding di-

mensionality. The most important contribution of the approxi-

mate likelihood is hence in performance due to its ability to add

batch-normalization to the nonlinear objective. At test time it

took less than 0.1 seconds to classify all the objects in a single

image.

3.3. Comparative experimental results

In order to validate the performance of our method we im-

plemented several alternatives. They are all based on the same

contextless CNN local information and only differ in the way

they learn the object contextual information from the training

dataset and integrate the context model with the local CNN.

Below is a list of the baseline models we implemented.

Unary The baseline comparison model is the original CNN

we trained without any contextual information.

Pairwise Statistics Based on the work of Chu and Cai

(2018), we created a CRF model with unary potentials taken

from the CNN classifier prediction results, and the pairwise po-

tentials are pairwise statistic Pij = p(j|i) = p(yt = j|yt−1 =
i) that are estimated from the training dataset. In other words,

the context information is modeled by a stationary first-order

Markov chain. No additional NN training is applied. The only

single parameter we need to set is the relative weight of the

unary and pairwise potentials. This weight, which adjusts the

tradeoff between the local appearance and the contextual infor-

mation, was selected via cross-validation.

Recurrent Neural Network Another modeling option

for a sequence estimation is the Bi-Directional Recurrent

Neural Network (Schuster and Paliwal, 1997) with LSTM

(Hochreiter and Schmidhuber, 1997) as memory block (BiL-

STM). In this approach we compute the posterior distribution of
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the current object label based on all the visual information pro-

vided by the CNN: p(yt|x) = p(yt|x1, ..., xn). The BiLSTM

architecture learns a context vector ct for each object, which en-

capsulates the bidirectional information in the sequence input

observations transferred from the CNN output h1, ..., hn, and

learns a softmax prediction p(yt|ct) for each object label. This

approach, however, did not outperform the original contextless

CNN. The most important information, in addition to the object

local appearance, is the label relations between neighboring ob-

jects which are not captured here; the BiLSTM network uses

a softmax output layer that provides a separate prediction for

each class and thus ignores class similarities. Although there

is some structural similarity between RNN techniques and our

local likelihood approach for CRF, the underlying probabilis-

tic model is very different. Hence, CRFs are preferable for the

element-wise classification of observed sequences because (a)

they can explicitly learn second-order class similarity which is

often the dominant source of contextual information, and (b)

the Markovity assumption provides an optimal solver over the

entire sequence.

Log-linear CRF This method learns the log-linear parame-

ters of the linear-chain CRF (2). We implemented both the exact

and approximate likelihood training methods and tried both l1
and l2 regularizations for the pairwise potential matrix. We also

tried whitening the one-hot input vectors. The results provided

minor improvement over the baseline contextless classifier.

Factorized CRF This method learns the factorized parame-

ters of the pairwise weight matrix as defined in Eq. (4).

Approximate Factorized CRF + BN This is the model pro-

posed in this study: The CRF pairwise weight matrix is factor-

ized as defined in Eq. (4), the network is trained as described

in subsection 2.2, using the surrogate likelihood (8), with l2
weight regularization, and batch-normalization for the embed-

ding features.

Table 2: Comparison of the object-level error rate between the different meth-

ods and our full approach: Approximate Factorized CRF with BN. The table

shows the means and standard deviations of the error percentage over the 5

dataset splits.

Method Training %µerror %σerror

Unary (no context) CNN 15.61 0.21

BiLSTM RNN 15.54 0.45

Pairwise Statistics CRF CV 15.60 0.59

Log-linear CRF CRF 15.39 0.20

Log-linear CRF MEMM 14.30 0.09

Factorized CRF CRF 14.62 0.19

Factorized CRF MEMM 14.93 0.52

Factorized CRF + BN MEMM 12.85 0.31

Quantitative Results: Table 2 lists the results in terms of

model error rate, indicates the incremental improvement in ac-

curacy over model variations, and shows that the non-linear

method based on batched-normalized class embedding yields

significantly better results than the other alternatives. Figure

5 depicts the Precision-Recall curve measured for the different

methods by applying different confidence thresholds. It is par-
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Fig. 5: Precision-Recall curves for the different training methods, obtained by

sampling 20 different confidence thresholds between 0 and 1.

ticularly useful for our original objective, which aimed to max-

imize recall while preserving high (90%+) precision. It shows

that the MEMM based training method with batch normaliza-

tion achieved significantly higher recall than the alternatives.

Our method achieved a recall of 85.75%, whereas the unary

baseline recall was 79.97%, and the second best alternative was

82.46% - all preserving the same 90% precision. It is worth

pointing out that our test set is considerably large which means

that we correctly identified around 3,000 more objects than the

unary model, and 2,000 more objects than the second best al-

ternative.

3.4. Ablation Study

We performed an ablation analysis aimed at isolating the ef-

fect of the various innovations suggested. Each experiment uses

the same configuration as in our method with only one alter-

ation.

Feature Scaling We tested the following variants: removing

the batch-normalization layer entirely, removing the whitening

of the CNN activations and Whitening the one-hot vectors at

the input of the embedding layer instead of batch-normalizing

its output. In each case the results became much worse and

were comparable to the contextless unary network. On the other

hand, when adding or removing the scale and shift from the BN

parameters, the results remained comparable to our state-of-the-

art results. This suggests that the BN layer has enormous im-

pact since it whitens the embedding activations during training,

similar to the whitening applied for the CNN activations.

Regularization We tested l1, l2 or no regularization for the

embedding weights. The results were significantly better with

l2 regularization, which encourages all the weights for each

class in the embedding space to be used in training.

Pairwise Matrix Factorization We considered other vari-

ants of the class embedding concept in which the embedding

parameters of the target and neighboring labels are tied. For

that purpose, we impose the structure of the embedding matrix

R on the current class as well as the neighboring class. The

pairwise potential in this case is factorized as P = R⊤DR to

get the same embedding for the class and its neighbor. We may

also apply the class embedding on the unary potentials matrix

by factorizing U = V ⊤R. In these parametrizations, applying

the embedding-batch-norm requires parameter tying between
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the softmax inputs and the softmax weights, and thus compro-

mises the effectiveness of the batch normalization process.

Surrogate Likelihood Variances Global optimization of

LC-CRF is not only much more time-consuming, but also lacks

the ability to apply a straightforward batch normalization strat-

egy, since the activations are shared in multiple locations in

each sample in the mini-batch. The same problem appears in

other known methods of local likelihood approximation such as

piecewise, pseudolikelihood and Piecewise-Pseudolikelihood

(PWPL) which are close variants of our local training model

(See details in appendix 6.1). Applying an embedding-batch-

norm to the pseudolikelihood or PWPL methods would once

again require parameter tying between the softmax inputs and

the softmax weights. However, the PWPL in our case can be

reduced to the form of a forward term which is equivalent to

the MEMM-like objective (7) and an additive backwards term

which is independent of the CRF input. Hence, the MEMM-

like objective function is theoretically highly related to PWPL.

In the appendix we explain how our surrogate likelihood can be

viewed as a simplified form of the PWPL objective.

Different CNNs We tested our model with various CNN

architectures: ResNet50 showed minor improvement in unary

CNN performance over Alexnet (Krizhevsky et al., 2012) and

VGG (Simonyan and Zisserman, 2014), and comparable im-

provement when incorporating our context-aware methods.

Note that local visual information is often insufficient in our

data, hence adding context is very helpful even with very strong

CNNs.

Different data We cross-validated our methods on 5 differ-

ent train-test splits and obtained comparable results and small

variances for the different mixes. We also verified our method

on an OCR dataset of handwritten words as we describe in 3.5.

Increased Learning Capacity We tried increasing the

model’s non-linearity by adding another fully connected layer

and nonlinear ReLU between the one-hot vector input and the

fully connected embedding layer. We also tried learning the em-

bedding in a higher dimensional space. These enhancements,

however, did not improve performance, and turned out to be

redundant.

Similarity Networks An additional noteworthy approach to

identifying visually similar classes involves using an architec-

ture which receives multiple samples as training input and com-

pares pairs of samples in order to better discriminate between

classes based on their visual features. These methods include

Siamese Network (Chopra et al., 2005; Bromley et al., 1994)

and other variants e.g. (Kim et al., 2019; Hoffer and Ailon,

2015; Zagoruyko and Komodakis, 2015).

In our case, however, such approaches were unhelpful due to

the limited priors and the ultrafine-grained nature of our dataset.

For example, object volume or flavor are often visually unmea-

surable. Furthermore, these approaches ignore class neighbor

information which is usually the dominant source of contex-

tual information in observed sequences. Fig. 6 exemplifies the

type of difficulties we faced when trying to learn pairwise visual

similarities in our data.

Fig. 6: Examples of fixed-size input images which illustrate the futility of sim-

ilarity based methods for our data.

Fig. 7: Class similarity examples. For each class we show five nearest neighbors

based on the cosine distance computed on the class embeddings.

3.5. MIT OCR Dataset of Handwritten Words

We tested our method on data from another benchmark, to

validate that our approach generalizes well to other domains

beyond store shelves and retail objects. Despite the absence of

other fine-grained structured classification datasets of a similar

scale, the MIT OCR Dataset of Handwritten Words (Kassel,

2017) can provide a close approximation. The dataset contains

6877 words, composed of 52152 samples of lowercase letters

collected from 150 human subjects. Each sample is a 16×8 bi-

nary pixel image. We split the dataset into 5512 training words

and 1365 testing words. The input features of the CRF are the

original 128 pixels. There are only 26 classes in the dataset -

the English alphabet letters. Therefore, we used a smaller em-

bedding dimension of 16. We performed the following experi-

ments: Unary- prediction of the samples directly from the input

without context, Log-linear CRF- learning the log-linear pa-

rameters of the linear-chain CRF, Factorized CRF- learning the

factorized parameters of the linear-chain CRF, and Factorized

CRF + BN- learning the factorized parameters while whitening

the high level representation of the input image and neighbor

embedding with BN. The CRF models were trained with the

approximate likelihood architecture presented in this work. For

each experiment, we report the accuracy (Acc), average pre-

cision (AP), and the recall values attained for precision of 0.7
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(RP=0.7) and 0.9 ( RP=0.9). The results are shown in Table

3. Despite the small scale of the data and the small number of

classes, our method yielded more accurate results than the alter-

natives. Especially, the batch normalization procedure applied

to the context letter representation, was found to be beneficial.

Table 3: Results on MIT OCR dataset of handwritten words.

Architecture Acc AP RP=0.7 RP=0.9

Unary 0.74 0.81 0.78 0.59

Log-linear CRF 0.81 0.88 0.87 0.73

Factorized CRF 0.82 0.90 0.89 0.76

Factorized CRF + BN 0.84 0.92 0.91 0.79

4. Class Embedding Analysis

As a byproduct of the classification model we also obtain a

low-dimensional embedding of the different classes. Each col-

umn of the neighbor embedding matrix R is a vector represen-

tation of the corresponding class. A common similarity metric

is the cosine of the angle between the vectors. We can measure

the distance between classes by the cosine of their vector rep-

resentation. Fig. 7 shows several examples of an object class

and its most similar classes. We can see that this similarity

does not reflect visual appearance similarity, e.g. in the second

example the similar classes have very different colors. This sit-

uation has been studied extensively for the linguistic problem

of word embedding. The goal of word embedding algorithms

is to represent similar words by similar vectors. It is often use-

ful to distinguish between two kinds of similarity or associa-

tion between words (Schütze and Pedersen, 1993). Two words

are said to have first-order co-occurrence if they are typically

nearby each other (e.g. wrote is a first-order associate of book

or poem). Two words have second-order co-occurrence if they

have similar neighbors (e.g. wrote is a second-order associate

of words like said or remarked). Second-order word similar-

ity is thus expected to capture a semantic meaning and measure

the extent to which the two classes are replaceable based on

their tendencies to appear in similar contexts. In Fig. 7 we

show that object class embedding captures second-order infor-

mation. Proximity here corresponds to the mutual tendency to

have similar neighbors. We can see in the figure that similar

classes, although looking visually different, represent products

of similar container-types, volumes and brands.

Visual similarity and second-order semantic similarity are

based on two profoundly different criteria, and may be uncor-

related or even have a negative correlation in some cases as we

demonstrate in Fig. 8: classes are visually close when it is easy

to confuse them based on their visual appearance, and are se-

mantically close when it is statistically reasonable to switch

one for the other on a shelf (i.e. “synonymous” classes). The

rows in Fig. 8 contain classes that are visually close but seman-

tically far; i.e., they look alike but tend to appear in different

contexts, whereas the columns contain classes which are se-

mantically close but visually far; i.e., they look different, but

tend to appear in similar contexts. The examples from the retail

world refer to classes of similar brands but with different form-

factors or volumes, which tend to appear in different displays

in stores. A speech analogy would be comparing homophones

(e.g. meet vs. meat, sale vs. sail) with synonyms (e.g big vs.

large, fast vs. quick).

Fig. 8: Examples of the two different types of similarities.

It is hence clear why these two types of similarity contribute

two different types of information, and need to be used jointly

for the task of object classification. The visual similarity is rel-

evant for the visual image information whereas the class sim-

ilarity in the embedded space is relevant for the contextual in-

formation.

5. Conclusions

We introduced a novel technique to learn deep contextual

and visual features for fine-grained structured prediction of ob-

ject categories, and tested it on a dataset that contains spatial

sequences of objects, and a large number of visually similar

classes.

Our model clearly outperforms all the other tested mod-

els. This architecture appears to be the most straightforward

generalization of a context-less classifier to become context-

dependent when both the input and the context data require a

large learning capacity: the network learns deep feature vectors

for neighboring classes, analogously to the learned deep input

representations. The Markovity and stationarity assumptions

make it sufficient to train with individual objects as samples

to enrich the training data diversity, allow for simple embed-

ding batch normalization, and boost the non-convex optimiza-

tion process both in terms of time and performance.

6. Appendices

6.1. Local Likelihood Approximation

In this appendix we show how the objective function that

we used for optimization is related to previously suggested ap-

proaches. Pseudolikelihood (Besag, 1975) is a classical ap-

proximation of the CRF likelihood function that simultaneously
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classifies each node given its neighbors in the graph. The pseu-

dolikelihood objective function only depends on the object and

its Markov blanket. The pseudolikelihood of our model (1) is:

log p(y|x) =
∑

t

log p(yt|yt−1, yt+1,x) (11)

where p(yt|yt−1, yt+1,x) is

exp(y⊤

t−1Pyt + y⊤

t Pyt+1 + x⊤

t Uyt + y⊤

t b)∑
a
exp(y⊤

t−1Pa+ a⊤Pyt+1 + x⊤

t
Ua+ a⊤b)

. (12)

Piecewise training (Sutton and McCallum, 2005) is a heuris-

tic method to predict the graph factors from separate

“pieces” of the graph. The piecewise objective function is

equivalent to the likelihood function of a node-split graph

(Sutton and McCallum, 2007), which contains all the single-

factor components split from the original graph. Using the CRF

notation in Eq. (1), the piecewise likelihood approximation in

our case is:

log p(y|x) =
∑

t

log
ϕ(yt, xt, yt−1)
∑

a,b ϕ(a, xt, b)
. (13)

Note that due to the term in the denominator, computing the

piecewise likelihood is quadratic in the number of classes.

Piecewise Pseudolikelihood (PWPL) is the standard pseudo-

likelihood applied to the node-split graph. Its computation is

efficient because the objective function is simply the sum of

local conditional probabilities. In our case, applying the pseu-

dolikelihood approach on the piecewise objective (13) would

give us the following PWPL form:

log p(y|x) =
∑

t

log(
ϕ(yt, xt, yt−1)

∑

a ϕ(a, xt, yt−1)
·
ϕ(yt, xt, yt−1)
∑

a ϕ(yt, xt, a)
).

(14)

Sutton and McCallum (2007) showed that in many cases the

PWPL has better accuracy than standard pseudolikelihood, and

in some scenarios has nearly equivalent performance to piece-

wise approximation and even to global maximum likelihood.

The first term inside the log function is equivalent to the for-

ward MEMM objective function (7) that we used. The second

term can be written in the form:

p(yt−1|yt) =
exp(y⊤

t−1Pyt)
∑

a exp(a
⊤Pyt)

. (15)

This term is independent of the CRF visual input. The PWPL

approximation can be thus expressed as:

log p(y|x) =
∑

t

(log p(yt|yt−1, xt) + log p(yt−1|yt)). (16)

Hence the MEMM-like objective function we used (6)

can be viewed as a simplified version of the piecewise-

pseudolikelihood objective (14) that was found to be the pre-

ferred likelihood approximation for language processing tasks

(Sutton and McCallum, 2007).
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Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R., 1994. Signature

verification using a” siamese” time delay neural network, in: NIPS.

Chandra, S., Usunier, N., Kokkinos, I., 2017. Dense and low-rank gaussian

CRFs using deep embeddings, in: ICCV.

Chen, G., Li, Y., Srihari, S.N., 2016. Word recognition with deep conditional

random fields, in: ICIP.

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2018.

Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. IEEE transactions on pattern analysis

and machine intelligence .

Chen, L.C., Schwing, A., Yuille, A., Urtasun, R., 2015. Learning deep struc-

tured models, in: ICML.

Chopra, S., Hadsell, R., LeCun, Y., 2005. Learning a similarity metric discrim-

inatively, with application to face verification, in: CVPR.

Chu, W., Cai, D., 2018. Deep feature based contextual model for object detec-

tion. Neurocomputing .

Divvala, S.K., Hoiem, D., Hays, J.H., Efros, A.A., Hebert, M., 2009. An em-

pirical study of context in object detection, in: CVPR.

Durrett, G., Klein, D., 2015. Neural crf parsing, in: ACL.

Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D., 2010. Object

detection with discriminatively trained part-based models. IEEE Transac-

tions on pattern analysis and machine intelligence 32, 1627–1645.

Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T., 2019.

Precise detection in densely packed scenes, in: CVPR.

Gould, S., Fulton, R., Koller, D., 2009. Decomposing a scene into geometric

and semantically consistent regions, in: ICCV.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image

recognition, in: CVPR.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural com-

putation 9, 1735–1780.

Hoffer, E., Ailon, N., 2015. Deep metric learning using triplet network, in:

International Workshop on Similarity-Based Pattern Recognition.
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