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ABSTRACT

Person re-identification is a standard and established problem in the computer vision community. In
recent years, vehicle re-identification is also getting more attention. In this paper, we focus on both
these tasks and propose a method for aggregation of features in temporal domain as it is common to
have multiple observations of the same object. The aggregation is based on weighting different ele-
ments of the feature vectors by different weights and it is trained in an end-to-end manner by a Siamese
network. The experimental results show that our method outperforms other existing methods for fea-
ture aggregation in temporal domain on both vehicle and person re-identification tasks. Furthermore,
to push research in vehicle re-identification further, we introduce a novel dataset CarsReld74k. The
dataset is not limited to frontal/rear viewpoints. It contains 17,681 unique vehicles, 73,976 observed
tracks, and 277,236 positive pairs. The dataset was captured by 66 cameras from various angles.

(© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the problem of re-identification of individuals
observed by different cameras at different locations and times.
Our work applies to the fairly standard person re-identification
(Wang et al., 2014; Hirzer et al., 2011; Xu et al., 2017; Zhang
et al., 2017b; Chen et al., 2017b; Zhou et al., 2017b), and to the
rather emerging vehicle re-id (Liu et al., 2016a,c; Shen et al.,
2017; Wang et al., 2017b; Yan et al., 2017; Zhang et al., 2017c),
but it can be used for other similar tasks as well.

The re-id system is given a query track of images and
a database of pre-stored tracks, one of which is assumed to
share the same identity with the query. The system is supposed
to output a small subset of the best matching database samples
along with their similarity scores. Some solutions process the
images in the tracks directly (comparing images in the query
track versus images in the database — e.g. Zapletal and Herout
(2016)). However, fast and real-time processing requires the
system to extract a short feature vector for each of the database
tracks and to match them to the feature vector extracted from
the query track by computing a cheap pairwise metric. Our
work is targeted on the second, generally more efficient, mode
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Fig. 1. We propose a new method LFTD for aggregation of features in tem-
poral domain. The method generates one feature vector per track of ob-
served objects (e.g. vehicles, persons). See Section 3.2 for details.

of processing, that is extraction of a single fixed-size feature
vector for a track of variable length by aggregating the feature
vectors extracted from individual observations (images).

We propose a new method for feature aggregation in tem-
poral domain LFTD (Learning Features in Temporal Domain)
which takes feature vectors extracted from the individual ob-
servations (images) as its input, and it results in a single rel-
atively low-dimensional time-pooled feature vector usable by
the re-id system. Unlike other methods which use either RNN
(McLaughlin et al., 2016; Zhang et al., 2017b; Yan et al., 2016;
Chen et al., 2017b; Xu et al., 2017; Zhou et al., 2017b; Zhang
et al., 2017a) or produce weights for feature vectors as a whole



(Yang et al., 2017; Zhou et al., 2017b; Xu et al., 2017), our
method produces a different weight for every element of the
feature vectors which leads to an improved performance as dif-
ferent parts of feature vectors are weighted differently. The
weights are generated by a neural network for each set (track)
of feature vectors. The final feature vector for the track is ob-
tained by computing element-wise product between the track’s
features and the weight matrix, and then reducing the matrix
in temporal domain by summation. The results show that the
proposed method outperforms other methods (Yan et al., 2016;
McLaughlin et al., 2016; Gao et al., 2016; Xu et al., 2017;
Zhang et al., 2017b; Chen et al., 2017b; Zhou et al., 2017b;
Zhang et al., 2017a) in both vehicle and person re-identification
tasks. See Figure 1 for the full re-id pipeline.

Furthermore, we propose to use a different metric for com-
paring the feature vectors. Previous works (Kostinger et al.,
2012; Liao et al., 2015; Shi et al., 2016) showed that it is bene-
ficial to use Mahalanobis distance for feature comparison rather
than Euclidean (or cosine) distance. However, the Mahalanobis
distance has significant limitations, mainly its time complexity
which is quadratic with respect to feature vector dimensionality.
Therefore, we propose to use Weighted Euclidean distance,
constructed by constraining the Mahalanobis distance learning
to diagonal matrix. The experiments show that it outperforms
both Mahalanobis (Shi et al., 2016) and Euclidean distance,
while it keeps linear time and memory complexity.

To improve the availability of datasets for vehicle re-
identification, we collected and annotated a new vehicle re-
identification dataset called CarsReld74k. As it is common
in traffic surveillance to have whole tracks of vehicles and
not individual images, the dataset includes multiple observa-
tions for each vehicle as it is passing in front of the cameras
(left, center, right). We focus on appearance-based vehicle
re-identification: vehicles’ license plates were only used for
ground truth data acquisition (recorded by a zoomed-in cam-
era). The images of vehicles taken by the other cameras are
in most cases so small that it is not possible to recognize the
license plates. The dataset contains 17,681 unique vehicles,
73,976 observed tracks, and 277,236 positive pairs, taken by 66
cameras from various angles in multiple sessions. We make the
dataset publicly available® for future comparison and research.

2. Related Work

2.1. Image Feature Pooling in Temporal Domain

In this section, we provide an overview of existing methods
for feature pooling (aggregation) in temporal domain. Such
pooling is usually used in the context of person re-identification
(with the exception of Yang et al. (2017) who used it for video
face recognition). The methods are often trained by using a
Siamese network (McLaughlin et al., 2016; Zhang et al., 2017b;
Yan et al., 2016; Chen et al., 2017b; Xu et al., 2017; Yang et al.,
2017) with contrastive loss and optionally identification loss as
well.
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McLaughlin et al. (2016) propose an approach for temporal
domain pooling based on Recurrent Neural Networks (RNN).
The authors extract features using a CNN and use a recurrent
layer to compute the features for the whole track. The used
RNN has an output for each time step and these outputs are
averaged to obtain the final feature vector for re-identification.
The authors further propose to use optical flow as an additional
input to the network. A similar approach was proposed by
Zhang et al. (2017b) with the exception that their method uses
bi-directional RNN to get better re-id results. Also, the method
proposed by Yan et al. (2016) is similar with the exception that
the image level features are not trained and LBP and color fea-
tures are used instead.

Chen et al. (2017b) also follow the work of McLaughlin et al.
(2016). However, they propose to merge the features extracted
by RNN together with CNN spatial features averaged over the
time steps. The authors use three such networks for different
body parts and fuse their output features (by a weighted sum).

Another approach based on the work by McLaughlin et al.
(2016) is proposed by Xu et al. (2017), who introduce signif-
icant modifications to the method. First, image level features
are extracted by spatial pyramid pooling; thus, spatial informa-
tion is preserved in the feature vector. These features are then
fed into a recurrent layer (similar to McLaughlin et al. (2016)).
Finally, the recurrent features are pooled by an Attentive Tem-
poral Pooling layer proposed by the authors. However, a signif-
icant drawback of the proposed method is that it requires both
the query and the gallery raw feature vector sequences during
distance computation, leading to more complex processing dur-
ing the search in the database.

Zhang et al. (2017a) adds a feature pooling layer into the
CNN architecture before the first fully connected layer. This
layer aggregates key information from different views of the
person’s trajectory (different time steps) in a single feature vec-
tor. They also incorporate two different learning distance met-
rics — minimum distance and average of minimum distance for
comparing the query track with tracks in the database.

Unlike the other authors, Yang et al. (2017) focus on video
face recognition. The authors propose an approach to temporal
pooling based on weighting of feature vectors from different
time steps. The weight for a feature vector is obtained as a
dot product with a template, which is computed by a fully con-
nected layer. The weights are then normalized to a probability
distribution by softmax function. The weights for different time
steps scale the contributions of images in the sequence accord-
ing to their discriminative value.

Similarly, Zhou et al. (2017b) propose to use a temporal at-
tention model and generate weights for feature vectors in the
track. However, in contrast to Yang et al. (2017), the weights
are generated at each time step for all the feature vectors in the
sequence. Then, at all time steps, all feature vectors (from the
given sequence) are weighted by a set of (different) weights;
thus, at each time step, differently weighted input feature vec-
tors are produced. The weights at each time step are obtained
by a RNN layer. Furthermore, similarly to McLaughlin et al.
(2016), the weighted feature vectors are fed into another RNN
layer with output at each time step and then averaged to ob-
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tain the final track representation. The authors also use spatial
RNNSs to further improve the re-identification results.
Generally, for temporal pooling, the authors use either re-
current neural networks (McLaughlin et al., 2016; Zhang et al.,
2017b; Yan et al., 2016; Chen et al., 2017b; Xu et al., 2017),
learned weighting of feature vectors (Yang et al., 2017), or a
combination of these approaches (Zhou et al., 2017b). In con-
trast to the described methods, the proposed method produces a
different weight for every element of the feature vectors.

2.2. Person Re-Identification

Besides standard deep features learned by a Siamese network
(McLaughlin et al., 2016; Zhang et al., 2017b; Yan et al., 2016;
Chen et al., 2017b; Zhou et al., 2017b), other approaches to
person re-identification have been proposed.

Several papers proposed to use body parts (Cheng et al.,
2016; Khan and Bremond, 2017; Li et al., 2017; Zhao et al.,
2017). Other papers went beyond Siamese networks and
proposed triplet loss (Cheng et al., 2016; Hermans et al.,
2017) or quadruplet loss (Chen et al., 2017c). There were
also attempts to learn a metric for the re-identification like
KISSME (Kostinger et al., 2012), XQDA (Liao et al., 2015),
You et al. (2016) learn Mahalanobis distance on LBP and
HOGS3D features, and finally Shi et al. (2016) learn Maha-
lanobis distance in an end-to-end manner. Sun et al. (2017)
proposed to use SVD for weight matrix orthogonalization to
de-correlate feature vectors for person re-id.

Other authors exploit different types of features. For exam-
ple, Wu et al. (2016) propose to use deep features learned by a
CNN together with hand-crafted features. The final represen-
tation for an image is obtained by fusing these features. Mat-
sukawa et al. (2016) use a novel descriptor based on hierarchical
gaussians computed for patches in image. Chen et al. (2017a)
propose to use compact binary hash codes as features for fast
person re-identification. There were also attempts (Liu et al.,
2015; Gao et al., 2016) to recognize the walking cycle in image
sequence and use the walking cycle to improve the accuracy of
re-identification.

A group of works also propose to replace different parts of
the re-identification pipeline by alternative solutions. Zhong
etal. (2017) use re-ranking based on k-reciprocal nearest neigh-
bors to improve the performance. Zhou et al. (2017a) propose
to use point-to-set distance instead of standard point-to-point.
Lin et al. (2017) take inter-camera consistencies of id assign-
ment into account during training and inference to boost the
results of re-identification. Xiao et al. (2016) propose to use do-
main guided dropout to improve re-identification performance
when trained on multiple datasets. Wang et al. (2016) propose
to add a network computing a cross-image representation for
pairs of images. Cho and Yoon (2016) estimate persons’ poses
and compare images with each person in an as similar as pos-
sible pose. Su et al. (2016) use attributes (e.g “long sleeve”)
for person re-id. The attributes are first learned on a different
dataset with attributes present and then fine-tuned for the target
dataset. The attributes supervision for the target dataset comes
from the assumption that same person has the same (unknown)
attributes.

2.3. Vehicle Re-Identification

There are mainly two types of methods — methods based on
automatic license plate recognition (Du et al., 2013; Kluwak
et al., 2016; Wen et al., 2011), which are not anonymous and
require zoomed-in cameras. The other type of methods is based
on vehicles’ visual appearance (Arth et al., 2007; Feris et al.,
2012; Zapletal and Herout, 2016; Liu et al., 2016b) or on a com-
bination of both approaches (Liu et al., 2016c).

Formerly, different types of hand-crafted features were used.
For example authors used PCA-SIFT (Arth et al., 2007), HOG
descriptors and color histograms (Zapletal and Herout, 2016),
SIFT-BOW and Color Names model (Liu et al., 2016b) or just
information about date, time, color, speed and vehicles’ dimen-
sions (Feris et al., 2012). Recently, deep features learned by
CNNs (Liu et al., 2016a; Shen et al., 2017; Wang et al., 2017b;
Yan et al., 2017; Zhang et al., 2017c) were used for this task.
Liu et al. (2016c) combine the hand-crafted and deep features.

Improvements were also made by exploiting spatio-temporal
(Liuet al., 2016c; Wang et al., 2017b) or visual-spatio-temporal
(Shen et al., 2017) properties. Some of them benefit from
Siamese CNNss for license plate verification (Liu et al., 2016c¢)
or vehicle image similarities (Shen et al., 2017). Moreover, in-
troduction of triplet loss (Zhang et al., 2017¢c) or Coupled Clus-
ter Loss (CCL) (Liu et al., 2016a) led to accuracy improvements
and faster convergence. Recently, Yan et al. (2017) propose to
use Generalized Pairwise Ranking or Multi-Grain based List
Ranking for retrieval of similar vehicles, which performs even
better than CCL.

2.4. Vehicle Re-Identification Datasets

There are datasets of vehicles (Krause et al., 2013; Yang
et al., 2015; Sochor et al., 2017), which are created for fine-
grained recognition with annotations on several attributes such
as type, make and color. However, the identities of the vehi-
cles in the datasets are not known; thus, the datasets are not
directly applicable for vehicle re-identification, especially for
evaluation.

When it comes to genuine vehicle re-identification, Liu et al.
(2016¢) constructed a rather small VeRi-776 dataset contain-
ing 50,000 images of 776 vehicles. Liu et al. (2016a) collected
VehicleID dataset containing 26,267 vehicles in 220k images
taken from a frontal/rear viewpoint above road. Recently, Yan
et al. (2017) published two datasets VD1 and VD2 for vehicle
re-identification and fine-grained classification with over 220k
of vehicles in total, with make, model, and year annotation.
However, both datasets are limited to frontal viewpoints only.

3. Proposed Method for Learning Feature Aggregation in
Temporal Domain

The standard baseline to aggregating features from multiple
observations of the same object in temporal domain is to use
averaging over time. However, existing literature (Yan et al.,
2016; McLaughlin et al., 2016; Gao et al., 2016; Xu et al., 2017;
Zhang et al., 2017b; Chen et al., 2017b; Zhou et al., 2017b)
shows that the accuracy can be improved over the simple aver-
aging by feature vector weighting or by using RNN. We pro-
pose a novel method for the aggregation in temporal domain,
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Fig. 2. Schematic network design representing the proposed method for
feature aggregation in temporal domain. See Section 3.2 for explanation of
the symbols.

which is based on weighting different elements of the features
vectors by different weights.

The proposed LFTD method aggregates arbitrary features
from a sequence of images (of an arbitrary length), extracted
by any feature extractor (it can be even some of newly pre-
sented spatial attention networks (Wang et al., 2017a; Su et al.,
2017)) into a single fixed-sized feature vector. It allows to cre-
ate a database of previously seen objects (with multiple obser-
vations) with such fixed-sized feature vectors and then quickly
search the database for objects similar to query objects. LFTD
expands the feature dimensions by concatenating the average
feature vector to features extracted in every time step. It allows
the network to propagate global information form the track to
each individual observation. Feature vectors are weighted by
column-wise softmax (i.e. along time axis) which forces the
network to pick important observation for every feature in the
vector instead of weighting observations as a whole. This net-
work design performed the best during our preliminary exper-
iments, compared with user-based vector normalization (sub-
tracting or dividing features by average feature vector), or dif-
ferent types of feature expansion (e.g. by max-pooled feature
vector, etc.).

The method is detailed in the following sections.

3.1. Image Feature Extraction

We are processing the whole tracks of objects of interest with
labels corresponding to identities {(77,/;)}, where 77 is a se-
quence of images (I, I, ..., Ir,), i.e. observations of an object
[; in the track.

For each track (image sequence), features are extracted for
each image independently by a feature extractor (a CNN-based
or another one, the method is not limited by design to a par-
ticular type). The feature extractor yields a feature matrix
X; € RT*N for each track 7;. T; is number of time samples
(images) for each track 7; and N is the length of an individ-
ual feature vector. In our experiments N = 2048, in case of
ResNet50, and N = 1536 for Inception-ResNet-v2.

To make the notation uncluttered, we will omit the lower in-
dex i from now on. Therefore, we will refer to a individual
track as 77, the number of time samples of the track as 7', and
its features as X € RTV,

3.2. Processing of Features in Temporal Domain

The schematic design of the feature aggregation network is
illustrated in Figure 2 and the description follows. Aggregation
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of features X € RV in temporal domain is essentially a map-
ping ¢ : RN i RM, where M is the dimensionality of feature
vector f representing track 7.

First, the feature vector of each observation in the track is
compressed from N to M dimensions (M < N) by

yr =tanh (Wix; +b;), 1<7<T, @))

where W; € RM*N are the parameters of the first fully con-
nected layer (Figure 2), forming a compressed feature matrix
Y € RTM,

In order to allow “communication” between the features
across the track, we form a new feature matrix Y’ € RT*<ZM
where each row contains the original feature vector in that row
and an average feature vector for the whole track. Therefore

-
Y = [y’l,yé,...,y’r] , Where

’ Y-

Ve [ T 2 Yi } @
From these feature vectors concatenated with the average fea-
ture vector, we generate activations by another fully connected
layer a, = W,y~, forming matrix A € R™M_ These activations
are then normalized by softmax; however, the normalization is
not done by rows (as usually), but by columns to normalize the
activation for each component of the feature vector. Therefore,

the normalization yields matrix E € R™M where
exp(a‘r )
erj= ———. 3)
Zi:1 eXp(aij)

The weight matrix E is then merged with the compressed fea-
ture matrix Y by Hadamard (element-wise) product into matrix
Z = YoE. The final feature vector f is then obtained as a sum of
feature vectors in rows of matrix Z, normalized to a unit vector.

_ ZL] Z;
|25 2]

Therefore, if matrix A contained a single constant value, the
aggregation would be reduced to one fully connected layer fol-
lowed by average pooling. Instead, the weights W, W,, b, are
trained by back-propagation and the network is thus able to pro-
duce better features.

f “4)

3.3. Metrics for Distance Computation

The re-identification task is defined by a query sample (track)
and a gallery of samples (tracks), where one sample from the
gallery is supposed to have the same identity as the query sam-
ple. It is common to use Euclidean (or cosine for unit feature
vectors) distance dg(u,v) = /> (u; — v;)? to rank the gallery
samples by their distance from the query feature vector.

Previous works have shown that other distance metrics can
outperform the Euclidean one, and the Mahalanobis distance
seems to be powerful (Kostinger et al., 2012; Liao et al., 2015).
Mahalanobis distance between vectors u and v is computed as
v(u = v)TM(u — v), requiring that matrix M is symmetric and
positive semi-definite (Shi et al., 2016). They claim that such
a constraint is hard to enforce and propose to decompose the



Trained on identification task Trained as Siamese network

| Feature | | Feature ]
| extraction | 7> Xu B aggreguation - u
H ! ' 1xM l
TXxWxHx3 ' T ' TxN ' T '
' : ] Distance|
' ] <>
! VVf [ Wy duwyv) | : 15‘1
: Feat : : Feat  — :
- ex:'aa:tli'zn - Xv - ”ea’urg => v ]
IH ] p 1xM
TXWXHX3 1o .. ' TXN e

Fig. 3. Schematic design representing the full training and inference
pipeline. In our approach, we train the image feature extractor NN on
the identification task on the given dataset; however, the proposed method
for feature aggregation can work with an arbitrary image feature extrac-
tor. Wy and Wy refer to the shared weights of feature extractor part and
feature aggregation part, respectively.

matrix M = WWT and learn W instead. Then, the Mahalanobis
distance is computed by the following equation:

dv(u,v) = \/(u -V)TWWT(u —v). 5

Using Mahalanobis distance as proposed by Shi et al. (2016)
improves the re-identification accuracy, paying a high price in
terms of its time complexity. Both time and memory asymp-
totic complexities are O(D?) where D is the dimensionality of
the feature vectors. This can cause significant problems in re-
identification as the computational cost for quadratic time com-
plexity is significantly larger even for D = 128. Therefore, we
propose to learn suitable weights for Weighted Euclidean dis-
tance (equivalent to Mahalanobis distance when matrix M is di-
agonal), instead. We express the Weighted Euclidean distance
by

(6)

dwg(u,v) =

where w = [wy,w,,...,wp] are learned weights. It should be
noted that if all the weights w; are equal to 1, the metric is re-
duced to standard Euclidean distance. Before learning, we ini-
tialize the weights by randomly sampling from normal distribu-
tion with 4y = 1 and o = 0.1.

As the Weighted Euclidean distance can be interpreted as
Mahalanobis distance with diagonal matrix M, the same condi-
tions must be kept. The symmetricity is satisfied trivially as it is
a diagonal matrix. However, to ensure the positive semi-definite
property, we ensure that all the weights w; are non-negative by
clipping values bellow zero after each update of the weights
during learning.

The Weighted Euclidean distance has benefits when com-
pared to both standard Euclidean and Mahalanobis distances.
Compared to the Euclidean distance, it has a higher expressive
power thanks to learned weights w. On the other hand, com-
pared to full Mahalanobis distance, it is much faster as both
time and memory complexity of the Weighted Euclidean dis-
tance is O(D). At the same time, as the results in Section 5.1
show, our proposed Weighted Euclidean distance also outper-
forms both Euclidean and full Mahalanobis distance in terms of
re-identification accuracy.

Low weights

High weights

1
L 0.04 0.05 0.06 0.07 0.08 0.09
I n Weight

Fig. 4. Middle: Distribution of mean weights for test images in iLIDS-VID
dataset (Wang et al., 2014). The dashed grey line denotes image weight
for average pooling with 7 = 16. Sides: Images with the lowest and high-
est weights which show that low weight is usually assigned to images with
occluding pedestrians.

3.4. Full Training and Inference Network

Both the feature aggregation network (Section 3.2) and the
Weighted Euclidean metric (Section 3.3) are trained by a
Siamese network (Hadsell et al., 2006), see Figure 3. For
speeding up the training, we pre-train the feature extractor
(Inception-ResNet-v1 (Szegedy et al., 2017) for vehicle re-id
and ResNet50 (He et al., 2016) for person in our case) for the
identification task using the dataset training data and then we
cache all features for the tracks and train the feature aggrega-
tion and distance metric with the cached features. Training the
network end-to-end did not improve the results further. We use
a standard contrastive loss (Hadsell et al., 2006)

Lw,v,y) =y -dw,v)* + (1 —y) - [m-du,v)]2, (7)

where u and v are feature vectors, m is the margin between
negative samples, [...], denotes maximum value with zero, and
y = 1if [, = [, or 0 otherwise (I, and [, are sample identities).
Distance d is one of dg, dy;, or dwg from the previous section.

3.5. Design Choices

We analyzed several design choices we made. During pre-
liminary experiments we used ReLU nonlinearity in Equa-
tion (1) and found out that the results are significantly better
with tanh nonlinearity.

Furthermore, on iLIDS-VID dataset (Wang et al., 2014), we
tested how important different parts of the network are. In
these experiments, 128 dimensional features were used (except
the average pooling, where the features had 2048 dimensions).
When only average pooling was used, we got Hit@1 46.3 %
and with the full network Hit@1 is 61.4 %. However, if we
use only the weighting mechanism (omit feature projection by
(1)), the Hit@1 is 51.6 %. And finally, if we use average pool-
ing (omit the weighting mechanism) with the feature projection
(1), we receive Hit@1 56.7 %. This shows that both parts of the
network contribute to the accuracy and the contributions can be
merged to obtain better results. A graphical comparison of de-
sign choices evaluation can be found in Figure 5. Full results of
design choices evaluation for different Hit@Rank can be found
in Table 1.

Finally, we analyzed the mean weights for different images
and the distribution of mean weights together with images with
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posed network.

Table 1. Evaluation of individual parts of the proposed network on the
iLIDS dataset.

Method Hit@R (iLIDS)

1 5 10 20
IDE + avg 463 714 802  87.6
IDE + Project (128 feat.) 567 798 86.6 93.1
IDE + Attention (128 feat.)  51.6  77.6  86.5 91.7
IDE + LFTD (128 feat.) 614 799 878 935

lowest and highest weights can be found in Figure 4. The re-
sults show that the weights are centered around 1/7 (i.e. av-
erage pooling weight) which was expected. Also, low weights
are usually assigned to images with occluding objects or pedes-
trians.

Furthermore, we analyzed the homogeneity of the weights
for individual observations (i.e. how much the weights differ
within one observation). The mean relative standard deviation
is 0.34; the weights therefore differ significantly.

4. Novel Vehicle Re-Identification Dataset CarsReld74k

We focus on vehicle re-identification and we want to differ-
entiate even vehicles with the same fine-grained type but dif-
ferent identities (different license plates). Therefore, we can-
not use fine-grained vehicle recognition datasets (Sochor et al.,
2016, 2017; Yang et al., 2015; Krause et al., 2013) for the
task. As other existing vehicle re-identification datasets VeRi-
776 (Liu et al., 2016¢), VehicleID (Liu et al., 2016a) and PKU-
VDs (Yan et al., 2017) are either small (VeRi-776) or limited to
frontal/rear viewpoints (VehicleID, PKU-VDs). We collected
a novel dataset CarsReld74k which does not have these lim-
itations. The data were collected by 66 cameras from var-
ious angles and the dataset contains almost 74k of vehicle
tracks with precise identity annotation (acquired from license
plates). More detailed comparison of different available vehi-
cle re-identification datasets can be found in Table 2.

4.1. Dataset Acquisition
The dataset was collected in multiple sessions. In each ses-

sion, we placed four cameras on a bridge overlooking a free-
way and four cameras on another bridge in vehicles’ traveling

Table 2. The comparison of various vehicle re-id datasets.

* — Tracks are not guaranteed for each unique vehicle.

+ — Unique vehicles from each dataset part can overlap. The total number
of unique vehicles is probably lower.

CarsReld74k ~ VehicleID ~ VeRi-776 ~ PKU-VDs
# unique vehicles 17,681 26,267 776 221,519
# tracks 73,976 — 6,822 N/A
# images 3,242,713 221,763 51,035 1,354,876
viewpoints various front/rear various front
multiple images in track yes no *yes yes

direction. Figure 6 illustrates the recording setup and Figure 7
shows example frames from one such session. The videos were
recorded for ~ 1 hour and synchronized. One of the cameras
was zoomed in enough to be able to read the license plates of
all the passing vehicles (Figure 7 left). The other three cameras
were placed so that they observed the road from left, center, and
right position.

We used the zoomed-in videos to identify the passing ve-
hicles. We detected the license plates by an ACF detec-
tor (Dollar et al., 2014), tracked them, recognized by a re-
cent method (gpaﬁhel et al.,, 2017) and manually verified in
order to eliminate any recognition errors. We also assigned
a lane to each license plate track for easier matching. On all
the other videos (left, center, right), we detected and tracked
the vehicles. We also constructed 3D bounding boxes (Dubska
et al., 2014) around the vehicles as Sochor et al. (2016) showed
that the 3D bounding boxes were beneficial for fine-grained
recognition. We also assigned the lane for each of these ve-
hicles (Dubska et al., 2014). Finally, we matched the vehicles
from the zoomed-in cameras (with known identities) to vehicles
from the other cameras. We omitted all the vehicles which were
not matched. It should be noted that the vehicles in the dataset
from non-zoomed-in cameras have almost unreadable license
plates; therefore, the dataset is suitable for appearance-based
vehicle re-identification, preserving the anonymity of the vehi-
cles.

4.2. Dataset Statistics

The dataset was recorded in 11 sessions at different loca-
tions. We divided the dataset into the training, the testing and
the validation part by sessions (five sessions for training, five
sessions for testing and one validation). The total dataset statis-
tics can be found in Table 3. The table shows that our dataset
is significantly larger than VeRi-776 (Liu et al., 2016¢) dataset
with only 776 unique vehicles. And compared to VehiclelD,
VD1 and VD2 datasets (Liu et al., 2016a; Yan et al., 2017), our
dataset is not limited to frontal/rear viewpoints. Compared to
VehicleID dataset, CarsReld74k dataset has fewer unique vehi-
cles (17,681 vs. 26,267), however far more image (3,242,713
vs. 221,763) as vehicles are seen from more viewpoints.

4.3. Proposed Evaluation Protocol

For each part (training, testing and validation), we collected
all the pairs of tracks with the same vehicle identity (marked
as query, positive). The query and positive tracks are always
from different videos; however, they can come from the same



Fig. 6. Recording setup for acquisition of novel CarsReld74k dataset. We simultaneously recorded data on two bridges by multiple cameras. One camera
on each bridge was zoomed in so that it is possible to automatically recognize license plates and use them for the construction of the ground truth labeling
(left image). For part of dataset vehicles were captured from single bridge on both sides, which yields to capture observed vehicles from frontal and rear

viewpoints (right image).

Fig. 7. Frames from all cameras in one session. The license plates acquired
from the zoom camera (left) were used for ground truth re-identification
(silver car). Each row shows frames from one location within the session.

Fig. 8. Examples of queries, positive, and negative samples. The negatives
are sorted by difficulty from left to right (hard to easy) based on distances
obtained from our re-identification feature vectors. It should be noted that
the hardest negative sample has usually subtle differences (e.g. missing a
small spoiler in the first row).

session and location (e.g. left — right), from the same session
and different location, or (in rare cases) also from different ses-
sions within the training (or testing) set. This yields a signifi-
cant number of positive pairs (277,236 in total). As the negative
pairs, we use all other vehicle tracks in the same video as the
positive track with the exception of vehicle tracks with the same
identity as the positive track (a vehicle could be observed mul-
tiple times in one video). This yields a mean number of 1283
negative vehicle tracks per positive pair. See Figure 8 for ex-
amples of positive and negative pairs.

Following other papers (Liu et al., 2016a; Yan et al., 2017;
Liu et al., 2016¢; Hirzer et al., 2011; Wang et al., 2014) on
re-identification, we use mAP and hit at rank as the metrics
for evaluation on the dataset. We encourage others to report

hit rates at ranks 1, 5, 10, and 20 together with Cumulative
Matching Curve for ranks 1 to 20.

5. Experimental Results

We evaluate our method on the vehicle and person re-
identification tasks on multiple public datasets to show that the
aggregation performs well on various classes of data. Datasets
for evaluation were chosen considering the availability of tracks
(multiple observations) of each object’s identity in the dataset
because this work proposes a method for aggregation of fea-
tures in the time domain and variable camera viewpoints.

5.1. Vehicle Re-Identification

Currently available datasets does not fit conditions described
before at least in one condition (see Sec. 4), thus vehicle re-
identification task was evaluated on our novel CarsReld74k
only.

For feature extraction from images we use Inception-
ResNet-v2 (Szegedy et al., 2017) with images resized to 331 x
331 yielding feature vectors with length 1536 for each input
image. Sochor et al. (2016, 2017) showed that unpacking the
input vehicle by 3D bounding box and alternating the input im-
age colors is beneficial for fine-grained recognition of vehicles;
we use these modifications for re-identification of vehicles as
well.

The feature extractor was fine-tuned on the identification task
using the training part of the CarsReld74k dataset. The fine-
tuning was done with Adam optimizer, learning rate 0.0001,
batch size 4 for 300 epochs with standard augmentation tech-
niques (random flip and shift of the bounding box).

When it comes to feature aggregation in temporal domain,
we compare several methods with the following naming con-
ventions:

e avg — standard average pooling of feature vectors,

e RNN - method proposed by McLaughlin et al. (2016)
based on recurrent neural network,

e NAN - Neural Aggregation Network proposed by Yang
et al. (2017),

e LFTD - our method (short for Learning Features in
Temporal Domain).



Table 3. CarsReld74k dataset statistics. *The total number of unique ve-
hicles is lower than the sum of unique vehicles from training, test and val-
idation set because a small number of vehicles appear in all sets (same car
present at two or more recording sessions by accident). "Number of nega-
tive pairs = mean number of negative pairs per positive pair.

training test  validation total
# cameras 30 30 6 66
# unique vehicles* 7,658 9,678 1,100 17,681
# tracks 32,163 36,535 5,278 73,976
# images 1,469,494 1,467,680 305,539 3,242,713
# positive pairs 125,086 129,774 22,376 277,236
# negative pairs’ 1,149 1,459 881 1283

Table 4. Results for different methods for vehicle re-identification on
CarsReld74k dataset. The methods use 128 dimensional feature vectors
with the exception of avg which uses 1536 dimensional feature vectors.
The methods use Euclidean distance with the exception of LFTD — M (full
Mahalanobis (Shi et al., 2016)) and LFTD — WE (Weighted Euclidean as
proposed in Section 3.3). Input modifiers — UNP, UNP+IM (Sochor et al.,
2017). Aggregation methods — RNN (McLaughlin et al., 2016), NAN (Yang
et al., 2017).

Hit@Rank
Input Modif.  Aggregation mAP 1 5 10 20
None avg 0.608 553 664 713 765
UNP avg 0.652 584 728 780 83.1
UNP+IM avg 0672 612 738 787 835
UNP+IM RNN 0678 59.0 782 845 89.7
UNP+IM NAN 0700 633 775 827 875
UNP+IM LFTD 0.746 685 81.6 858 89.6
UNP+IM LFTD-M 0757 695 832 873  90.7
UNP+IM LFTD-WE 0.779 713 858 899 93.1

To make the comparison fair, we always compare the meth-
ods with features of the same length (128 dimensional features
by default). The only exception is average pooling where the
final features are always 1536 dimensional. As NAN (Yang
et al., 2017) does not reduce the number of features, we added
a trainable fully connected layer between the feature extrac-
tor and the aggregation network. As both RNN (McLaughlin
et al., 2016) and NAN (Yan et al., 2017) use Euclidean distance
in the original design, we evaluate the networks with the Eu-
clidean distance. Following other previous works (McLaughlin
et al., 2016; Zhang et al., 2017b; Chen et al., 2017b; Xu et al.,
2017; Zhou et al., 2017b), we fix the number of time samples
toT = 16.

We also compare different metrics for comparison of the fea-
ture vectors. The standard Euclidean distance is used as the
baseline. We also use the full Mahalanobis distance (as pro-
posed by Shi et al. (2016)) — shortened as M; and our Weighted
Euclidean distance — shortened as WE. The full Mahalanobis
distance was trained with regularization term 0.5||WWT — I||12E
as proposed by the authors (Shi et al., 2016) with 4 = 0.01.

To increase the training speed, all the aggregation networks
were trained on cached features extracted by the Inception-
ResNet-v2 feature extractor. The networks were trained in
Siamese settings for 30 epochs with batch size 32 on train and
validation set. We employed hard negative mining during the
training and all positive pairs and one hardest negative pair per
positive pair were presented to the network in one epoch dur-
ing the training. For the RNN (McLaughlin et al., 2016), we
used original hyperparameters as proposed in the paper (SGD,
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Fig. 9. Cumulative Matching Curve for different methods for vehicle re-
identification on CarsReld74k dataset. The methods use 128 dimensional
feature vectors with the exception of avg which uses 1536 dimensional fea-
ture vectors. The methods use Euclidean distance with the exception of
LFTD - M (full Mahalanobis (Shi et al., 2016)) and LFTD — WE (Weighted
Euclidean as proposed in Section 3.3).

Ir: 0.001, margin: 2); changing them did not improve the accu-
racy further. We were forced to change the hyperparemters for
NAN (Yang et al., 2017) to different values than used in the pa-
per as the network did not converge with the original ones. We
used RMSprop optimizer with learning rate 1e-6, and margin 1;
different hyperparameters did not improve the accuracy further.
Our method LFTD was trained by Adam optimizer with learn-
ing rate le-5 (le-4.4 in the case of Mahalanobis and Weighted
Euclidean distance) and margin 2.

The vehicle re-identification results can be found in Table 4
and Cumulative Matching Curve (CMC) is shown in Figure 9.
The results show several things. First, both the Unpack (UNP)
(Sochor et al., 2016) modification and image modifications
(IM) (Sochor et al., 2017) improve the accuracy of vehicle re-
identification. Second, all feature aggregation methods in the
temporal domain (RNN (McLaughlin et al., 2016), NAN (Yang
et al., 2017), LFTD) improve the accuracy when compared
with the average pooling in the task of vehicle re-identification.
Third, our method (LFTD) outperforms other methods for tem-
poral aggregation (RNN (McLaughlin et al., 2016), NAN (Yang
et al., 2017)). Finally, using other metrics than Euclidean also
improves the accuracy. Our proposed Weighted Euclidean dis-
tance significantly outperforms the full Mahalanobis distance
(as proposed by Shi et al. (2016)); and at the same time, our
method has significantly lower time demands. It has time and
memory complexity O(D) instead of O(D?) for the full Maha-
lanobis distance, where D is the dimensionality of the feature
vectors.

Our explanation of better performance of Weighted Eu-
clidean distance instead of Mahalanobis distance is that there
is not enough training data to train the full matrix M. This hy-
pothesis is supported by Fig. 10 where the performance with
Mahalanobis distance does not increase and by the fact that
tr(IM))

2 M|
on its diagonal.
We were also curious how the accuracy changes with increas-

= 0.997 , i.e. almost all the information in the matrix is
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Fig. 10. Performance analysis of different methods for feature vector
aggregation in temporal domain with changing number of features on
CarsReld74k dataset. The avg pooling is shown only for visual comparison
and uses 1536 dimensional feature vectors. We omitted LFTD - M with
1024 features from evaluation because of long evaluation time (months)
and performance drop of version with 512 features. All the methods use
Euclidean distance with the exception of LFTD — M (full Mahalanobis (Shi
et al., 2016)) and LFTD — WE (Weighted Euclidean as proposed in Sec-
tion 3.3).

ing the dimensionality of the feature vectors. As Figure 10
shows, all methods improve with increasing dimensionality;
however, the results are still similar. Our method LFTD with
our proposed Weighted Euclidean distance is outperforming all
other methods for all of the tested feature vector dimensionali-
ties.

5.2. Person Re-Identification

To show that our method is applicable also outside the scope
of vehicle re-identification, we evaluated it on the person re-
identification task. We use two common datasets: iLIDS-VID
(Wang et al., 2014) and PRID-2011 (Hirzer et al., 2011) as they
are usually used by other methods for feature aggregation in
temporal domain (Yan et al., 2016; McLaughlin et al., 2016;
Gao et al., 2016; Xu et al., 2017; Zhang et al., 2017b; Chen
et al., 2017b; Zhou et al., 2017b). Futrhermore, for fair com-
parison of proposed method, our work was also evaluated on
the MARS dataset by Zheng et al. (2016).

It should be noted that the subject of our study is the ag-
gregation of features extracted on images by an existing fea-
ture extractor. That is why we include in the comparison those
methods that do the same, not methods which use a significantly
different method of image feature extraction.

For the above reasons, we are not comparing our method
with some of the currently published methods such as QAN
(Liu et al., 2017) or SpaAtn (DRSTA) (Li et al., 2018) as they
are focusing on spatiotemporal attention pooling, and because
of that, they provide enhanced feature extraction. In our work,
we target fusion of existing feature extractors. Besides that,
their evaluation is not following the standard evaluation proto-
col used in the previous works and with the used datasets, as
they are pre-training the networks on different types of image-
based person re-identification tasks, thus their results are hardly
comparable.

Table 5. Person re-identification results on PRID-2011 and iLIDS-VID
dataset. The top-3 results are highlighted in the following way: first, sec-
ond, and third. KISSME - Kaostinger et al. (2012), XQDA - Liao et al.
(2015). LFTD metric used for this experiment is the standard Euclidean
distance because of insufficient amount of training data for the Weighted
Euclidean.

Method Hit@R (PRID) Hit@R (iLIDS)

1 5 10 20 1 5 10 20
Yan et al. (2016) 582 85.8 93.4 97.9 49.3 76.8 85.3 90.0
McLaughlin et al. (2016) 70.0 90.0 95.0 97.0 58.0 84.0 91.0 96.0
Gao et al. (2016) 68.6 94.6 97.4 98.9 55.0 87.5 93.8 97.2
Xu et al. (2017) 71.0 95.0 99.0 99.0 62.0 86.0 94.0 98.0
Zhang et al. (2017b) 72.8 92.0 95.1 97.6 553 85.0 91.7 95.1
Chen et al. (2017b) 71.0 93.0 95.0 98.0 61.0 85.0 94.0 97.0
Zhou et al. (2017b) 79.4 944 — 99.3 55.2 86.5 — 97.0
Zhang et al. (2017a) 60.2 85.1 — 94.2 83.3 93.3 — 96.7
avg 69.4 90.5 95.0 97.6 463 714 80.2 87.6
avg + KISSME 70.5 91.0 95.1 97.7 56.1 79.0 87.9 93.9
avg + XQDA 75.6 94.3 98.2 99.0 59.5 83.7 90.3 96.2
LFTD (128) 79.2 924 95.8 98.4 61.4 79.9 87.8 93.5
LFTD (256) 79.4 93.7 96.8 98.6 62.8 82.1 88.1 94.1
LFTD (512) 80.2 94.6 97.3 98.9 63.5 83.3 89.5 94.9
LFTD (1024) 80.0 93.9 97.4 99.2 63.7 829 90.0 94.7

iLIDS-VID and PRID-2011

We always used a half of the dataset for training and the other
half for testing. Therefore, the evaluation is done on 100 tracks
(150 tracks) with PRID-2011 (iLIDS-VID) dataset. We used 10
random splits in the case of the PRID-2011 dataset, and the 10
published splits in the case of iLIDS-VID.

We used ResNet50 (He et al., 2016) as the feature extrac-
tor from the images and trained it on the identification task
by Adam optimizer with learning rate 0.0001 for 60 epochs
with batch size 8, using standard augmentation techniques (ran-
dom flip, rotation, and shift). We trained our method (LFTD)
in a Siamese network by Adam optimizer with cross-validated
learning rate for 150 epochs with batch size 8. We always
used 16 time samples per track and contrastive loss margin 2.
We also evaluate the average pooling with KISSME (Kostinger
et al., 2012) and XQDA (Liao et al., 2015) with cross-validated
hyperparameters (regularization, and PCA reduction dimen-
sionality in the case of KISSME).

We used standard Euclidean distance as the metric for our al-
gorithm, because the number of training data in the datasets is
rather low and the accuracy did not improve further with other
distances. This is caused mainly by insufficient amount of train-
ing data because the network was able to re-identify the training
tracks without any error already with the standard Euclidean
distance.

The results can be found in Table 5 and as the table shows,
LFTD significantly increases the performance compared to av-
erage pooling or average pooling with other metric learning
(KISSME, XQDA). The results also show that our method out-
performs other methods for feature aggregation in temporal do-
main (Yan et al., 2016; McLaughlin et al., 2016; Gao et al.,
2016; Xu et al., 2017; Zhang et al., 2017b; Chen et al., 2017b;
Zhou et al., 2017b) in Hit@1.

Evaluation of KISSME or XQDA metrics together with the
features produced by the proposed LFTD method is not in-
cluded in the results because of lacking relevancy of such com-
parison. LFTD produces features dependent on the metric used



Table 6. Person re-identification results on MARS dataset. Baseline is the
variant (IDE, average pooling, Euclidean distance, single query) reported
by authors of the dataset (Zheng et al., 2016).

* - RNN-CNN (McLaughlin et al., 2016) trained by Xu et al. (2017). [R2: -
Experiments on Mars lack of recent baselines.]

Hit@Rank
Variant mAP 1 5 10 20
Baseline 0424 600 779 - 87.9
RNN-CNN* (Xu et al., 2017) - 400 640 700 770
ASTPN (Xu et al., 2017) - 440 700 740 81.0
Zhang et al. (2017a) - 555 70.2 - 80.2
LFTD - E (512) 0.481 65.5 80.3 85.5 89.4
LFTD - E (1024) 0.483 659  80.7 84.8 89.2
LFTD - WE (512) 0.488  66.1 81.0 854 89.8
LFTD - WE (1024) 0489 664 815 85.9 89.8

during training and it generates different feature vector repre-
sentations for different metrics involved (Euclidean, Weighted
Euclidean, Mahalanobis).

MARS dataset

Features published by the authors of the dataset were used in
our experiments. The network was trained on the training part
of the published features in the Siamese setting for 30 epochs
with batch size 32 with Contrastive Loss and Adam optimizer.
Hard negative mining was employed during the training, and
all positive pairs and 20 hardest negative pairs were presented
to the network in one epoch during the training. Values of learn-
ing rate and loss margin were fine-tuned for each variant indi-
vidually. All variants of our method evaluated on the dataset
can be found in Table 6. It should be noted that Baseline is
the variant (IDE, average pooling, Euclidean distance, single
query) reported by the authors Zheng et al. (2016).

6. Conclusions

We proposed a new scheme for extracting feature vectors for
the whole tracks of multiple observations of an object (vehi-
cle, person) of interest in the re-identification task. Our method
can work with arbitrary per-image features (e.g. feature vectors
from ResNet50 or Inception-ResNet-v2). Based on such feature
vectors we learn a considerably shorter (128 features) per-track
feature vector by using the newly proposed LFTD (Learning
Features in Temporal Domain). We also propose to use a dif-
ferent distance metric for comparing the feature vectors — WE
(Weighted Euclidean). It is based on the Mahalanobis distance,
whose learned matrix M is made diagonal. This proposed dis-
tance metric is much cheaper in terms of computational and
memory resources (O(D) instead of O(D?) in the case of the
full Mahalanobis metric), but at the same time, it is better at
solving the re-identification task.

The results show that the increase of HIT@1 by using
the LFTD was 7.3 percentage points for the vehicle re-
identification task compared to average pooling, and 17.4 per-
centage points for the person re-identification with the iLIDS-
VID dataset and up to 6.4 percentage points on the MARS
dataset. The Weighted Euclidean metric further increased
HIT@1 by other 2.8 percentage points in case of vehicle re-
identification.

10

We collected and annotated a vehicle re-identification dataset
CarsReld74k for development and evaluation of vehicle re-
identification systems and we make it public. It contains 17,681
unique vehicles, 73,976 observed tracks, and 277,236 positive
pairs, taken from various angles — not just from the front or
rear.
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