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Facial Landmark Point Localization using
Coarse-to-Fine Deep Recurrent Neural Network

Shahar Mahpod, Rig Das, Emanuele Maiorana, Yosi Keller, and Patrizio Campisi,

Abstract—The accurate localization of facial landmarks is at the core of face analysis tasks, such as face recognition and facial
expression analysis, to name a few. In this work we propose a novel localization approach based on a Deep Learning architecture
that utilizes dual cascaded CNN subnetworks of the same length, where each subnetwork in a cascade refines the accuracy of
its predecessor. The first set of cascaded subnetworks estimates heatmaps that encode the landmarks’ locations, while the second
set of cascaded subnetworks refines the heatmaps-based localization using regression, and also receives as input the output of the
corresponding heatmap estimation subnetwork. The proposed scheme is experimentally shown to compare favorably with contemporary
state-of-the-art schemes.

Index Terms—Face Alignment, Facial Landmark Localization, Convolutional Neural Networks, Deep Cascaded Neural Networks.
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1 INTRODUCTION

The localization of facial landmark points, such as eye-
brows, eyes, nose, mouth and jawline, is one of the core
computational components in visual face analysis, and is
applied in a gamut of applications: face recognition [1], face
verification [2], and facial attribute inference [3], to name a
few. Robust and accurate localization entails difficulties due
to varying face poses, illumination, resolution variations,
and partial occlusions, as depicted in Fig. 1.

(a) (b)

Fig. 1: Facial landmark localization. Each image feature,
marked by a point is considered a particular landmark and
is localized individually. (a) A frontal face image from the
XM2VTS datasets [4]. (b) An image from the Helen dataset
[5] characterized by a non-frontal pose and expression vari-
ation, making the localization challenging.

Classical face localization schemes such as Active Ap-
pearance Models (AAM) [6] and Active shape models
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(ASM) [7] apply generative models aiming to learn a para-
metric statistical model of the face shape and its gray-level
appearance in a training phase. The model is applied in
test time to minimize the residual between the training
image and the synthesized model. Parametric shape mod-
els such as Constrained Local Models (CLM) [8], utilize
Bayesian formulations for shape constrained searches, to
estimate the landmarks iteratively. Nonparametric global
shape models [9] apply SVM classification to estimate the
landmarks under significant appearance changes and large
pose variations.

Regression based approaches [10], [11] learn high dimen-
sional regression models that iteratively estimate landmarks
positions using local image features, and showed improved
accuracy when applied to in-the-wild face images. Such
schemes are initiated using an initial estimate and are in
general limited to yaw, pitch and head roll angles of less
than 30◦.

Following advances in object detection, parts-based
models were applied to face localization [12], [13] where
the facial landmarks and their geometric relationships are
encoded by graphs. Computer vision was revolutionized by
Deep Learning-based approaches that were also applied to
face localization [14], [15], [16], yielding robust and accurate
estimates. Convolutional neural networks (CNNs) extract
high level features over the whole face region and are
trained to predict all of the keypoints simultaneously, while
avoiding local minima. In particular, heatmaps were used
in CNN-based landmark localization schemes following the
seminal work of Pfister et al. [17], extended by the iterative
formulation by Belagiannis and Zisserman [18].

In this work we propose a novel Deep Learning-based
framework for facial landmark localization that is formu-
lated as a Cascaded CNN (CCNN) consisting of dual cas-
caded heatmaps and regression subnetworks. A outline of
the architecture of the proposed CNN is depicted in Fig. 2,
where after computing the feature maps of the entire image,
each facial landmark is coarsely localized by a particular
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heatmap, and all localizations are refined by regression
subnetworks. In that we extend prior works [17], [18] where
iterative heatmaps computations were used, without the ad-
ditional refinement subnetwork proposed in our work. The
heatmaps are estimated using a Cascaded Heatmap subnet-
work (CHCNN) consisting of multiple successive heatmap-
based localization subnetworks, that compute a coarse-to-
fine estimate of the landmark localization. This localization
estimate is refined by applying the Cascaded Regression
CNN (CRCNN) subnetwork. The cascaded layers in both
the CHCNN and CRCNN are non-weight-sharing, allowing
to separately learn a particular range of localizations. The
CCNN is experimentally shown to compare favourably with
contemporary state-of-the-art face localization schemes. Al-
though this work exemplifies the use of the proposed ap-
proach in the localization of facial landmarks, it is of general
applicability and can be used for any class of objects, given
an appropriate annotated training set.

Heat Maps Estimation CNN 

Input 
image 

Heat Maps 

LOSS 

Base
CNNs 

LOSS  LOSS  LOSS 

Landmark Regression CNN 

LOSS  LOSS  LOSS  LOSS 

Landmarks 
Update 

Fig. 2: The outline of the proposed CCNN framework. The
CCNN consists of Base CNNs that are proceeded by the
Cascaded Heatmap subnetwork (CHCNN) that estimates
the heatmaps and the Cascaded Regression CNN (CRCNN)
that refines the heatmaps localization via pointwise regres-
sion.

Thus, we propose the following contributions:
First, we derive a face localizations scheme based on

CNN-based heatmaps estimation and refinement by a cor-
responding regression CNN.

Second, both heatmap estimation and regression are
formulated as cascaded subnetworks that allow iterative
refinement of the localization accuracy. To the best of our
knowledge, this is the first such formulation for the face
localization problem.

Last, the proposed CCNN framework is experimen-
tally shown to outperform contemporary state-of-the-art
approaches.

This paper is organized as follows: Section 2 provides
an overview of the state-of-the-art techniques for facial
landmark localization, while Section 3 introduces the pro-
posed CCNN and its CNN architecture. The experimental
validation and comparison to state-of-the-art methods is
detailed in Section 4. Conclusions are drawn in Section 5

2 RELATED WORK

The localization of facial landmarks, being a fundamental
computer vision task, was studied in a multitude of works,

dating back to the seminal results in Active Appearance
Models (AAM) [6] and Constrained Local Models (CLM)
[8] that paved the way for recent localization schemes. In
particular, the proposed scheme relates to the Cascaded
Shape Regression (CSR), [19] and Deep Learning-based [14],
[15], [20], [21], [22] models.

CSR schemes localize the landmark points explicitly by
iterative regression, where the regression estimates the local-
ization refinement offset using the local image features com-
puted at the estimated landmarks locations. Such schemes
are commonly initiated by an initial estimate of the land-
marks based on an average face template, and a bounding
box of the face detected by a face detector, such as Viola-
Jones [23]. Thus, the Supervised Descent Method by Xiong
and De-la-Torre [11] learned a cascaded linear regression
using SIFT features [24] computed at the estimated land-
mark locations. Other schemes strived for computational
efficiency by utilizing Local Binary Features (LBF) that are
learnt by binary trees in a training phase. Thus, Ren et
al. in [25] proposed a face alignment technique achieving
3000 fps by learning highly discriminative LBFs for each
facial landmark independently, and the learned LBFs are
used to jointly learn a linear regression to estimate the facial
landmarks’ locations.

Chen et al. [26] applied random regression forests to
landmark localization using Haar-like local image features
to achieve computational efficiency. Similarly, a discrimina-
tive regression approach was proposed by Asthana et al.
[27] to learn regression functions from the image encodings
to the space of shape parameters. A cascade of a mixture
of regressors was suggested by Tuzel et al. [28], where each
regressor learns a regression model adapted to a particu-
lar subspace of pose and expressions, such as a smiling
face turned to the left. Affine invariance was achieved by
aligning each face to a canonical shape before applying the
regression.

A parts-based approach for a unified approach to face
detection, pose estimation, and landmark localization was
suggested by Zhu and Ramanan [12], where the facial
features and their geometrical relations are encoded by the
vertices of a corresponding graph. The inference is given by
a mixture of trees trained using a training set. An iterative
coarse-to-fine refinement implemented in space-shape was
introduced by Zhu et al. [13], where the initial coarse solu-
tion allows to constrain the search space of the finer shapes.
This allows to avoid suboptimal local minima and improves
the estimation of large pose variations.

Deep Learning was also applied to face alignment by
extending regression-based schemes for face alignment. The
Mnemonic Descent Method by Trigeorgis et al. [19] com-
bines regression as in CSR schemes, with feature learning
using Convolutional Neural Networks (CNNs). The image
features are learnt by the convolution layers, followed by a
cascaded neural network that is jointly trained, yielding an
end-to-end trainable scheme.

Autoencoders were applied by Zhang et al. [29] in
a coarse-to-fine scheme, using successive stacked autoen-
coders. The first subnetwork predicts an initial estimate of
the landmarks utilizing a low-resolution input image. The
following subnetworks progressively refine the landmarks’
localization using the local features extracted around the
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current landmarks. A similar CNN-based approach was
proposed by Shi et al. [30], where the subnetworks were
based on CNNs, and a coarse face shape is initially es-
timated, while the following layers iteratively refine the
face landmarks. CNNs were applied by Zhou et al. [31]
to iteratively refine a subset of facial landmarks estimated
by preceding network layers, where each layer predicts the
position and rotation angles of each facial feature. Xiao et
al. in [20] introduced a cascaded localization CNN using
cascaded regressions that refine the localization progres-
sively. The landmark locations are refined sequentially at
each stage, allowing the more reliable landmark points to be
refined earlier, where LSTMs are used to identify the reliable
landmarks and refine their localization.

A conditional Generative Adversarial Network (GAN)
was applied by Chen et al. [32] to face localization to induce
geometric priors on the face landmarks, by introducing
a discriminator that classifies real vs. erroneous (“fake”)
localizations. A CNN with multiple losses was derived by
Ranjan et al. in [14] for simultaneous face detection, land-
marks localization, pose estimation and gender recognition.
The proposed method utilizes the lower and intermediate
layers of the CNN followed by multiple subnetworks, each
with a different loss, corresponding to a particular tasks,
such as face detection etc. Multi-task estimation of multiple
facial attributes, such as gender, expression, and appearance
attributes was also proposed by Zhang et al. [15], and was
shown to improve the estimation robustness and accuracy.

Multi-task CNNs with auxiliary losses were applied by
Sina et al. [33] for training a localization scheme using par-
tially annotated datasets where accurate landmark locations
are only provided for a small data subset, but where class
labels for additional related cues are available. They propose
a sequential multitasking scheme where the class labels are
used via auxiliary losses. An unsupervised landmark local-
ization scheme is also proposed, where the model is trained
to produce equivalent landmark locations with respect to a
set of transformations that are applied to the image.

Pfister et al. [17] introduced the use of heatmaps for
landmark localization by CNN-based formulation. It was
applied to human pose estimation in videos where the
landmark points marks body parts, and optical flow was
used to fuse heatmap predictions from neighboring frames.
This approach was extended by Belagiannis and Zisserman
by deriving a cascaded heatmap estimation subnetwork,
consisting of multiple heatmap regression units, where the
heatmap is estimated progressively such that each heatmap
regression units received as input its predecessor’s output.
This school of thought is of particular interest to our work
that is also heatmaps-based, but also applies a cascaded
regression subnetwork that refines the heatmap estimate.

Bulat and Tzimiropoulos [34] applied convolutional
heatmap regression to 3D face alignment, by estimating
the 2D coordinates of the facial landmarks using a set of
2D heatmaps, one per landmark, estimated using a CNN
with an L2 regression loss. Another CNN is applied to the
estimated heatmaps and the input RGB image to estimate
the Z coordinate. A scheme consisting of two phases was
proposed by Shao et al. [22] where the image features are
first estimated by a heatmap, and then refined by a set of
shape regression subnetworks each adapted and trained for

a particular pose.
Kowalski et al. [16] proposed a multistage scheme for

face alignment. It is based on a cascaded CNN where
each stage refines the landmark positions estimated at the
previous one. The inputs to each stage are a face image nor-
malized to a canonical pose, the features computed by the
previous stage, and a heatmap computed using the results
of the previous phase. The heatmap is not estimated by the
CNN, and in that, this scheme differs significantly from the
proposed scheme, and other schemes that directly estimate
the heatmaps as part of the CNN [17], [22], [34]. Last,
we summarize the different face localization approaches in
Table 1, where we detail the training and test datasets, as
these are the basis for forming the experimental validation
in Section 4.

3 FACE LOCALIZATION USING CASCADED CNNS

The face localization problem is the localization of a set of
landmarks points P = {pi}N1 , such that pi=[xi, yi]

T , in a
face image I ∈ Rw×h×3. The number of estimated points
N relates to the annotation convention used, and in this
work we used N = 68 landmark points following most con-
temporary works. The general and detailed outlines of the
proposed CCNN’s architecture are depicted in Figs. 2 and 3,
respectively. It comprises of three subnetworks, where the
first is a pseudo-siamese (non-weight-sharing) subnetwork
consisting of two subnetworks {BaseCNN1, BaseCNN2}
that compute the corresponding feature maps {F1,F2} of
the input image and an initial estimate of the heatmaps.

The second subnetwork is the cascaded heatmap sub-
network (CHCNN) that robustly estimates the heatmaps,
that encode the landmarks, a single 2D heatmap per facial
feature location. The heatmaps are depicted in Fig. 4. The
CHCNN consists of K = 4 cascaded 3D heatmaps esti-
mation units, detailed in Section 3.2, that estimate K 3D
heatmaps {Hk}K1 such that Hk ∈ R64×64×N . The cascaded
formulation implies that each CHCNN subunit Hk is given
as input the heatmap estimated by its preceding subunit
Hk−1, alongside the feature map F1. The heatmap subunits
are non-weight-sharing, as each subunit refines a different
estimate of the heatmaps. In that, the proposed schemes dif-
fers from the heatmaps-based pose estimation of Belagiannis
and Zisserman [18] that applies weight-sharing cascaded
units. The output of the CHCNN are the locations of the
maxima of {Hk}K1 denoted {P̂k}K1 , such that P̂k =

{
p̂ik
}

.
As the heatmap-based estimates {P̂k}K1 are given on

a coarse grid, their locations are refined by applying the
Cascaded Regression CNN (CRCNN) detailed in Section
3.2. The CRCNN consists of K cascaded regression sub-
units {Ek}K1 , where each regression subunit Ek applies a
regression loss to refine the corresponding heatmaps-based
landmark estimate P̂k, and estimate the refinement ∆P̂k

∆P̂k = vec (Pk)− vec
(
P̂k
)
, (1)

where vec (·) is a vectorized replica of the N points in a set,
and Eq. 1 is optimized using an L2 loss.

3.1 Base subnetwork
The Base subnetwork consists of two pseudo-siamese (non-
weight-sharing) subnetworks detailed in Table 2. The first
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TABLE 1: Overview of contemporary state-of-the-art facial
landmark localization schemes.

Paper Training Sets Test Sets Pts#

Ren [25]
LFPW [9], i-bug [35]

68Helen [5], Helen+LFPW [5], [9]
AFW,300-W i-bug+Helen+LFPW

Ranjan [14] AFLW [36]
i-bug 68

AFLW [36] 21

Zhu [13]

LFPW, i-bug

68
Helen, Helen+LFPW
AFW, i-bug+Helen+LFPW
300-W LFPW [9]

Helen [5]

Zhang [15]

MAFL [37], i-bug

68
AFLW, Helen+LFPW

COFW [38], i-bug+Helen+LFPW
Helen,300-W Helen

Xiao [20]

LFPW, i-bug

68
Helen, Helen+LFPW
AFW, i-bug+Helen+LFPW
300-W LFPW

Helen

Lai [21]

LFPW, i-bug

68
Helen, Helen+LFPW
AFW, i-bug+Helen+LFPW
300-W LFPW

Helen

Shao [22]
CelebA [39], i-bug

68300-W, Helen+LFPW
MENPO [40] i-bug+Helen+LFPW

Sina [33]
Helen, i-bug

68AFW, Helen+LFPW
LFPW i-bug+Helen+LFPW

Chen [41]
Helen, i-bug

68300-W, Helen+LFPW
MENPO i-bug+Helen+LFPW

Kowalski [16]

LFPW, i-bug

68

Helen, Helen+LFPW
AFW, i-bug+Helen+LFPW
300-W 300-W private test set
LFPW, i-bug

Helen,AFW, Helen+LFPW
300-W, i-bug+Helen+LFPW

MENPO 300-W private test set

He [42]

LFPW,

i-bug 68
Helen,AFW

300-W,
MENPO

Chen [32]
LFPW,

300-W private test set 68Helen,AFW
i-bug,

part of the subnetwork, layers A1-A7 in Table 2, computes
the feature maps of the input image. The succeeding layers
A8-A12 compute an estimate of the N = 68 heatmaps, one
per facial feature. These layers apply filters with wide 9× 9
support to encode the relations between neighboring facial
features.

The base CNNs {BaseCNN1, BaseCNN2} and corre-
sponding feature maps {F1,F2} are trained using differ-

I 

H1 

Base
CNN2

HM Loss 

L2 Loss 

HM Loss HM Loss HM Loss 

L2 Loss L2 Loss  L2 Loss 

Base
CNN1

H2 H3 H4 
H0 

E1 E2 E3 E4 

R1 R2 R3 R4 

Fig. 3: A schematic visualization of the proposed CCNN
localization network. The input image is analyzed by the
two Base subnetworks {BaseCNN1, BaseCNN2}, and the
Cascaded Heatmap CNN (CHCNN) consisting of four
heatmap (HM) estimation units H1 − H4. Their results
are refined by the Cascaded Regression CNN (CHCNN)
consisting of four regression units R1 − R4. The symbol ⊕
relates to the concatenation of variables along their third
dimension.

ent losses and backpropagation paths as depicted in Fig.
3. BaseCNN1 is connected to the CRCNN and is thus
adapted to the regression task, while BaseCNN2 is con-
nected to the CHCNN and its feature map F2 is adapted
to the heatmaps estimation task. BaseCNN2 computes the
initial estimate of the heatmaps and is trained using a L2

loss, while BaseCNN1 is trained using the backpropaga-
tion of the CRCNN subnetwork.

3.2 Cascaded heatmap estimation CNN

The heatmap images encode the positions of the set of
landmarks points P = {pi}N1 , by relating a single heatmap
Hi per landmark pi to the location of the maximum of Hi,
where the heatmaps are compute in a coarse resolution of
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Fig. 4: Visualizations of facial landmarks localization heatmaps. The first row shows the face images, while the second
row depicts a corresponding single heatmap of a particular facial feature. The third row shows the corresponding N = 68
points of all heatmap.

TABLE 2: Base subnetwork architecture. Given the input im-
age, the base subnetwork estimates the feature map F and
the heatmap H . Two such non-weight-sharing subnetworks
are used as depicted in Fig. 3.

Layer Feature Map FSize Stride Pad
Input : I 256 x 256 x 3 - - -
A1-Conv 256 x 256 x 3 3 x 3 1 x 1 2 x 2
A1-ReLu 256 x 256 x 64 - - -
A2-Conv 256 x 256 x 64 3 x 3 1 x 1 2 x 2
A2-ReLu 256 x 256 x 64 - - -
A2-Pool 256 x 256 x 64 2 x 2 2 x 2 0 x 0
A3-Conv 128 x 128 x 64 3 x 3 1 x 1 2 x 2
A3-ReLu 128 x 128 x 64 - - -
A4-Conv 128 x 128 x 64 3 x 3 1 x 1 2 x 2
A4-ReLu 128 x 128 x 128 - - -
A4-Pool 128 x 128 x 128 2 x 2 2 x 2 0 x 0
A5-Conv 64 x 64 x 128 3 x 3 1 x 1 2 x 2
A5-ReLu 64 x 64 x 128 - - -
A6-Conv 64 x 64 x 128 3 x 3 1 x 1 2 x 2
A6-ReLu 64 x 64 x 128 - - -
A7-Conv 64 x 64 x 128 1 x 1 1 x 1 -
Output : F 64 x 64 x 128 - - -
A8-Conv 64 x 64 x 128 9 x 9 1 x 1 8 x 8
A8-ReLu 64 x 64 x 128 - - -
A9-Conv 64 x 64 x 128 9 x 9 1 x 1 8 x 8
A9-ReLu 64 x 64 x 128 - - -
A10-Conv 64 x 64 x 128 1 x 1 1 x 1 0 x 0
A10-ReLu 64 x 64 x 256 - - -
A11-Conv 64 x 64 x 256 1 x 1 1 x 1 0 x 0
A11-ReLu 64 x 64 x 256 - - -
A11-Dropout0.5 64 x 64 x 256 - - -
A12-Conv 64 x 64 x 256 1 x 1 1 x 1 0 x 0
A12-ReLu 64 x 64 x 68 - - -
Output : H 64 x 64 x 68 - - -

1/4 of the input image resolution. The heatmaps are com-
puted using the CHCNN subnetwork consisting of K = 4
Heatmap Estimation Subunits (HMSU) detailed in Table 3.

The cascaded architecture of the CHCNN implies that
each heatmap subunit estimates a heatmap Hk and receives
as input the heatmap Hk−1 estimated by the previous
subunit, and a feature map F2 estimated by the Base sub-
network BaseCNN2. The different inputs are concatenated
as channels such that the input is given by F2 ⊕Hk−1.

The HMSU architecture comprises of wide filters, [7× 7]
and [13×13] corresponding to layers B1 and B2, respectively,
in Table 3. These layers encode the geometric relation-
ships between relatively distant landmarks. Each heatmap
is trained with respect to a L2 loss, and in the training phase,
the locations of the facial landmarks are labeled by narrow
Gaussians centered at the landmark location, to improve the
training convergence.

TABLE 3: The heatmap estimation subunit. The heatmap
CNN (CHCNN) is a cascaded CNN consisting of a series of
K = 4 subunits. The input to each subunit is the output of
the previous subunit and the feature map F2.

LType Feature Map FSize Stride Pad
Input : F1 ⊕Hk−1 64 x 64 x 136 - - -
B1-Conv 64 x 64 x 136 7 x 7 1 x 1 6 x 6
B1-ReLu 64 x 64 x 64 - - -
B2-Conv 64 x 64 x 64 13 x 13 1 x 1 12 x 12
B2-ReLu 64 x 64 x 64 - - -
B3-Conv 64 x 64 x 64 1 x 1 1 x 1 0 x 0
B3-ReLu 64 x 64 x 128 - - -
B4-Conv 64 x 64 x 128 1 x 1 1 x 1 0 x 0
B4-ReLu 64 x 64 x 68 - - -
Output : Hk 64 x 64 x 68 - - -
L2 regression loss

3.3 Cascaded regression CNN

The Cascaded regression CNN (CRCNN) is applied to refine
the robust, but coarse landmark estimate computed by the
CHCNN subnetwork. Similar to the CHCNN subnetwork
detailed in Section 3.2, the CRCNN comprises of K = 4

subunits {Ek}K1 detailed in Table 4. Each subunit Ek is
made of two succeeding subnetworks: the first computes
a feature map of the regression CNN using layers C1-C3 in
Table 4, while the second subnetwork, layers C4-C6 in Table
4, estimates the residual localization error. The input x to
each regression subunit Ek is given by

x = F1 ⊕ F2 ⊕Hk ⊕HE , (2)
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that is a concatenation of both feature maps F1 and F2

computed by the Base CNNs, the corresponding heatmap
estimate Hk and a baseline heatmap estimate H0. The
output of the regression subunit Ek is the refinement term
∆P̂k as in Eq. 1, that is the refinement of the heatmap-based
localization. It is trained using a L2 regression loss, and the
final localization output is given by the output of the last
unit EK .

TABLE 4: The landmark regression subunit. The Cascaded
regression CNN (CRCNN) is a cascaded CNN consisting of
a series of K = 4 subunits. The input to each subunit is the
output of the previous regression subunit, the correspond-
ing heatmap unit, as well as the feature maps F1 and F2.

LType Feature Map FSize Stride Pad
Input :
F1 ⊕ F2 ⊕Hk ⊕HE 64 x 64 x 332 - - -
C1-Conv 64 x 64 x 332 7 x 7 2 x 2 5 x 5
C1-Pool 32 x 32 x 64 2 x 2 1 x 1 1 x 1
C2-Conv 32 x 32 x 64 5 x 5 2 x 2 3 x 3
C2-Pool 16 x 16 x 128 2 x 2 1 x 1 1 x 1
C3-Conv 16 x 16 x 128 3 x 3 2 x 2 1 x 1
C3-Pool 8 x 8 x 256 2 x 2 1 x 1 1 x 1
Output : Ek 8 x 8 x 256 - - -
Input : Ek ⊕ Ek−1 8 x 8 x 512 - - -

C4-Conv 8 x 8 x 512 3 x 3 2 x 2 1 x 1
C4-Pool 4 x 4 x 512 2 x 2 1 x 1 1 x 1
C5-Conv 4 x 4 x 512 3 x 3 2 x 2 1 x 1
C5-Pool 2 x 2 x 1024 2 x 2 1 x 1 1 x 1
C6-Conv 2 x 2 x 1024 1 x 1 1 x 1 0 x 0
Output : ∆P̂k 1 x 1 x 136 - - -
L2 regression loss

3.4 Discussion

The heatmap-based representation of the facial landmarks is
essentially a general-purpose metric-space representation of
a set of points. The use of smoothing filters applied to such
representation relates to applying kernels to characterize a
data point based on the geometry of the points in its vicinity
[43], [44], where the use of filters of varying support allows
approximate diffusion-like analysis at different scales. More-
over, applying multiple convolution layers and nonlinear
activation functions to the heatmaps allows to utilize con-
volution kernels that might differ significantly from classical
pre-designed kernels, such as Diffusion Kernels [43], as the
filters in CNN-based schemes are optimally learnt given an
appropriate loss.

In the proposed scheme the heatmap is used as a state
variable that is initiated by the Base subnetwork (Sec-
tion 3.1) and iteratively refined by using two complemen-
tary losses: the heatmap-based (Section 3.2) that induces
the graph structure of the detected landmarks, and the
coordinates-based representation, refined by pointwise re-
gression (Section 3.3).

Such approaches might pave the way for other localiza-
tion problems such as sensor localization [45] where the ini-
tial estimate of the heatmap is given by a graph algorithm,
rather than image domain convolutions, but the succeeding
CNN architecture would be similar to the CHCNN and
CRCNN subnetworks, and we reserve such extensions to
future work.

4 EXPERIMENTAL RESULTS

The proposed CCNN scheme was experimentally evaluated
using multiple contemporary image datasets used in state-
of-the-art schemes, that differ with respect to the appearance
and acquisition conditions of the facial images. We used the
LFPW [9], M2VTS [4], Helen [5], AFW [46], i-bug [35], COFW
[38], 300-W [47] and the MENPO challenge dataset [40].

In order to adhere to the state-of-the-art 300-W compe-
tition guidelines [19], [28] N = 68 landmarks were used in
all of our experiments, where the input RGB images were
resized to 256× 256 dimensions, and the pixel values were
normalized to [−0.5, 0.5]. The heatmaps were computed at
a 64 × 64 spatial resolution, where the landmark’s labeling
was applied using a symmetric Gaussian, with σ = 1.3. The
convolution layers of the CCNN were implemented with
a succeeding batch normalization layer, and the training
images were augmented by color changes, small angles
rotation, scaling, and translations. The learning rate was
changed manually and gradually, starting with 10−5 for
the initial 30 epochs, followed by 5 · 10−6 for the next five
epochs, and was then fixed at 10−6 for the remainder of the
training, where the CCNN was trained for 2500 epochs.

The localization accuracy per single face image was quan-
tified by the Normalized Localization Error (NLE) between
the localized and ground-truth landmarks

NLE =
1

N · d

N∑
i=1

‖p̂i − pi‖2 (3)

where p̂i and pi are the estimated and ground-truth co-
ordinates, of a particular facial landmark, respectively. The
normalization factor d is either the inter-ocular distance (the
distance between the outer corners of the eyes) [13], [25],
[40], or the inter-pupil distance (the distance between the
eye centers) [19].

The localization accuracy of a set of images was quan-
tified by the average localization error and the failure rate,
where we consider a normalized point-to-point localization
error greater than 0.08 as a failure [19]. We also report the
area under the cumulative error distribution curve (AUCα)
[19], [28], that is given by the area under the cumulative dis-
tribution summed up to a threshold α. The proposed CCNN
scheme was implemented in Matlab and the MatConvNet-
1.0-beta23 deep learning framework [48] using a Titan X
(Pascal) GPU.

Where possible, we quote the results reported in previous
contemporary works, as most of them were derived using
the 300-W competition datasets, where both the dataset and
evaluation protocol are clearly defined. In general, we prefer
such a comparative approach to implementing or training
other schemes, as often, it is difficult to achieve the reported
results, even when using the same code and training set.

4.1 300-W results

We evaluated the proposed CCNN approach using the 300-
W competition dataset [35] that is a state-of-the-art face
localization dataset of 3, 837 near frontal face images. It
comprises of images taken from the LFPW, Helen, AFW, i-
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bug, and “300W private test set”1 datasets. Each image in
these datasets was re-annotated in a consistent manner with
68 landmarks and a bounding box per image was estimated
by a face detector.

The CCNN was trained using the 300-W training set
and the frontal face images of the Menpo dataset [40] that
were annotated by 68 landmark points, same as in the 300-
W dataset. The profile faces in the Menpo dataset were
annotated by 39 landmark points that do not correspond to
the 68 landmarks annotations, and thus could not be used
in this work. The overall training set consisted of 11, 007
images.

The validation set was a subset of 2500 images randomly
drawn from the training set. The face images were extracted
using the bounding boxes given in the 300-W challenge,
where the shorter dimension was extended to achieve rect-
angular image dimensions, and the images were resized to
a dimension of 256× 256 pixels.

4.1.1 300-W public testset
We compared the CCNN to contemporary state-of-the-art
approaches using the Public and Private 300-W test-sets. The
Public test-set was split into three test datasets following
the split used in contemporary works [16], [49]. First, the
Common subset consisting of the test-sets of the LFPW and
Helen datasets (554 images overall). Second, the Challenging
subset made of the i-bug dataset (135 images overall), and
last, the 300-W public test-set (Full Set). The localization
results of the other schemes in Tables 5-7 are quoted as were
reported by their respective authors.

The results are reported in Table 5, and it follows that the
proposed CCNN scheme compared favorably with all other
scheme, outperforming other schemes in three out of the
six test configurations. In particular, the proposed scheme
outperforms all previous approaches when applied to the
Challenging set that is the more difficult to localize.

TABLE 5: Facial landmarks localization results of the 300-W
Public dataset. We report the Normalized Localization Error
(NLE) as a percentage using the 300-W public test set and
its subsets. The best results are marked bold.

Method Common set Challenging set Full Set
Inter-pupil normalization

LBF [25] 4.95 11.98 6.32
CFSS [13] 4.73 9.98 5.76
TCDCN [15] 4.80 8.60 5.54
RAR [20] 4.12 8.35 4.94
DRR [21] 4.07 8.29 4.90
Shao et al. [22] 4.45 8.03 5.15
Chen et al. [41] 3.73 7.12 4.47
DAN [16] 4.42 7.57 5.03
DAN-Menpo [16] 4.29 7.05 4.83
Robust FEC-CNN [42] - 6.56 -
CCNN 4.55 5.67 4.85

Inter-ocular normalization
MDM [19] - - 4.05
k-Convuster [50] 3.34 6.56 3.97
DAN [16] 3.19 5.24 3.59
DAN-Menpo [16] 3.09 4.88 3.44
CCNN 3.23 3.99 3.44

1. The “300W private test set” dataset was originally a private and
proprietary dataset used for the evaluation of the 300W challenge
submissions.

We also depict in Fig. 5 the AUC0.08 accuracy measure
of the CCNN when applied to the Helen and LFPW testsets.

Fig. 5: Facial localization results evaluated using the Helen
and LFPW testsets. We report the Cumulative Error Distri-
bution (CED) vs. the normalized localization error.

4.1.2 300-W private testset
We studied the localization of the 300W Private test set,
LFPW and Helen datasets in Table 6 where the proposed
scheme prevailed in four out of the six test configurations.

TABLE 6: Localization results for the LFPW, Helen and 300-
W Private Set. We report the Normalized Localization Error
(NLE) as a percentage, where the best results are marked
bold.

Method LFPW Helen 300-W Private Set
Inter-pupil normalization

CFSS [13] 4.87 4.63 -
TCDCN [15] - 4.60 -
DRR [21] 4.49 4.02 -
CCNN 4.63 4.51 4.74

Inter-ocular normalization
RAR [20] 3.99 4.30 -
MDM [19] - - 5.05
DAN [16] - - 4.30
DAN-Menpo [16] - - 3.97
GAN [32] - - 3.96
CCNN 3.30 3.20 3.33

The AUC0.08 measure and the localization failure rate
are studied in Table 7, where we compared against contem-
porary schemes using the 300-W public and private test sets.
It follows that the proposed CCNN scheme outperforms all
other schemes in all test setups.

We also used the 300-W private testset and the corre-
sponding split of 300 Indoor and 300 Outdoor images, re-
spectively, as these results were reported by the prospective
authors as part of the 300-W challenge results [35]. Figures
6-8 depict the AUC0.08 accuracy measure vs. NLE, that was
normalized using the inter-ocular normalization. We show
the results for the split of indoor, outdoor and combined
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TABLE 7: AUC and failure rate of the face alignment scheme
applied to the 300-W Public and Private test sets.

Test Set Method AUC0.08 Failure (%)
Inter-ocular normalization

300-W Public

ESR [10] 43.12 10.45
SDM [11] 42.94 10.89
CFSS [13] 49.87 5.08
MDM [19] 52.12 4.21
DAN [16] 55.33 1.16
DAN-Menpo [16] 57.07 0.58
CCNN 57.88 0.58

300-W Private

ESR [10] 32.35 17.00
CFSS [13] 39.81 12.30
MDM [19] 45.32 6.80
DAN [16] 47.00 2.67
DAN-Menpo [16] 50.84 1.83
GAN [32] 53.64 2.50
CCNN 58.67 0.83

(indoor+outdoor) test images in Figs. 6, 7 and 8, respectively.
The results of the schemes we compare against are quoted
from the 300-W challenge results2 [35]. It follows that for all
three test subsets, the proposed CCNN scheme outperforms
the contemporary schemes significantly.

Fig. 6: Facial localization results evaluated using the 300-W
Indoor dataset. We report the Cumulative Error Distribution
(CED) vs. the normalized localization error.

Figure 9 shows some of the estimated landmarks in
images taken from the 300-W indoor and outdoor test sets.
In particular, we show face images with significant yaw
angles and facial expressions. These images exemplify the
effectiveness of the proposed CCNN framework.

4.2 COFW dataset results

The Caltech Occluded Faces in the Wild (COFW) dataset [38]
is a challenging dataset consisting of 1, 007 faces depicting
a wide range of occlusion patterns, and was annotated
by Ghiasi and Fowlkes [51] with 68 landmark points. The

2. Available at:
https://ibug.doc.ic.ac.uk/media/uploads/competitions/300w results.zip.

Fig. 7: Facial localization results evaluated using the 300-W
Outdoor dataset. We report the Cumulative Error Distribu-
tion (CED) vs. the normalized localization error.

Fig. 8: Facial localization results evaluated using the entire
300-W dataset. We report the Cumulative Error Distribution
(CED) vs. the normalized localization error.

common train/test split is to use 500 images for training
and the other 507 images for testing. Following previous
works, we applied the same CCNN model as in Section
4.1 to the COFW testset (507 images) and compared the
resulting accuracy with several state-of-the-art localization
schemes. The experimental setup follows the work of Ghiasi
and Fowlkes [51], where the results of prior schemes were
also made public3. In this setup the CFSS [13] and TCDCN
[15] schemes were trained using the Helen68, LFPW68 and
AFW68 datasets. The RCPR-occ scheme [38] was trained

3. Available at: https://github.com/golnazghiasi/cofw68-
benchmark
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Fig. 9: Facial landmarks localizations examples. The images are taken from the 300-W test set, where the red and green
dots depict the groundtruth and estimated landmark points ,respectively, estimated by the proposed CCNN scheme.

using the same training sets as the CCNN model, while the
HPM and SAPM schemes, [51] were trained using Helen68
and LFPW68 datasets, respectively. The comparative results
are depicted in Fig. 10 and it follows that the CCNN scheme
outperforms the other contemporary schemes. For instance,
for a localization accuracy of 0.05 the CCNN outperforms
the CFSS, coming in second best, by close to 15%.

Fig. 10: Facial localization results evaluated using the COFW
dataset. We report the Cumulative Error Distribution (CED)
vs. the normalized localization error.

4.3 Ablation study

We studied the effectivity of the proposed CCNN cascaded
architecture by varying the number of cascades used in
the CHCNN (heatmaps) and CRCNN (regression) subnet-
works. For that we trained the CCNN using K = {1, 2, 3, 4}
HCNN and CRCNN cascades with the same training sets
and setup as in Section 4.1. The resulting CNNs were
applied to the same test sets as in Sections 4.1 and 4.2. The
results are depicted in Fig. 11, where we report the local-
ization accuracy at the output of the CRCNN subnetwork.

It follows that the more cascades are used the better the
accuracy, and the most significant improvement is achieved
for using more than a single cascade. Moreover, it seems that
adding another cascade might improve the overall accuracy
by ∼ 2%.

Fig. 11: Ablation study results of the proposed CCNN
scheme. We vary the number of cascades of both the
CHCNN (heatmaps) and CRCNN (regression) subnet-
works, and report the localization accuracy at the output
of the CRCNN subnetwork.

5 CONCLUSIONS

In this work, we introduced a Deep Learning-based cas-
caded formulation of the coarse-to-fine localization of facial
landmarks. The proposed cascaded CNN (CCNN) applied
two dual cascaded subnetworks: the first (CHCNN) esti-
mates a coarse but robust heatmap corresponding to the
facial landmarks, while the second is a cascaded regres-
sion subnetwork (CRCNN) that refines the accuracy of
CHCNN landmarks localization, via regression. The two
cascaded subnetworks are aligned such that the output of
each CHCNN unit is used as an input to the correspond-
ing CRCNN unit, allowing the iterative refinement of the
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localization accuracy. The CCNN is an end-to-end solution
to the localization problem that is fully data-driven and
trainable, and extends previous results on heatmaps-based
localization [52]. The proposed scheme is experimentally
shown to be robust to large variations in head pose and
its initialization. Moreover, it compares favorably with con-
temporary face localization schemes when evaluated using
state-of-the-art face alignment datasets.

This work exemplifies the applicability of heatmaps-
based landmarks localization. In particular, the proposed
CCNN scheme does not utilize any particular appearance
attribute of faces and can thus be applied, to the localization
of other classes of objects of interest. In future, we aim to
extend the proposed localization framework to the localiza-
tion of sensor networks where the image domain CNN is
reformulated as graph domain CNNs.
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