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ABSTRACT

Drones are enabling new forms of human actions surveillance due to their low cost and fast mobility.
However, using deep neural networks for automatic aerial action recognition is difficult due to the need
for a large number of training aerial human action videos. Collecting a large number of human action
aerial videos is costly, time-consuming, and difficult. In this paper, we explore two alternative data
sources to improve aerial action classification when only a few training aerial examples are available.
As a first data source, we resort to video games. We collect plenty of aerial game action videos using
two gaming engines. For the second data source, we leverage conditional Wasserstein Generative Ad-
versarial Networks to generate aerial features from ground videos. Given that both data sources have
some limitations, e.g. game videos are biased towards specific actions categories (fighting, shooting,
etc.,), and it is not easy to generate good discriminative GAN-generated features for all types of ac-
tions, we need to efficiently integrate two dataset sources with few available real aerial training videos.
To address this challenge of the heterogeneous nature of the data, we propose to use a disjoint multi-
task learning framework. We feed the network with real and game, or real and GAN-generated data in
an alternating fashion to obtain an improved action classifier. We validate the proposed approach on
two aerial action datasets and demonstrate that features from aerial game videos and those generated
from GAN can be extremely useful for an improved action recognition in real aerial videos when only
a few real aerial training examples are available.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, drones are ubiquitous and actively being used

in several applications such as sports, entertainment, agricul-

ture, forest monitoring, military, and surveillance Dutta and

Ekenna (2019); Huang et al. (2018); Zhou et al. (2018). In

video surveillance, drones can be much more useful than CCTV

cameras due to their freedom of mobility and low cost. One

critical task in video surveillance is monitoring human actions

using drones.

Automatically recognizing human action in drone videos is

∗∗Corresponding author: Tel.: +92-3365109108;
e-mail: waqas.sultani@itu.edu.pk (Waqas Sultani)

a daunting task. It is challenging due to drone camera mo-

tion, small actor size, and most importantly the difficulty of

collecting large scale training aerial action videos. Computer

vision researchers have tried to detect human action in vari-

eties of videos including sports videos (Soomro et al., 2013) ,

surveillance CCTV videos Sultani et al. (2018), cooking and

ego-centric videos Damen et al. (2018). However, despite be-

ing very useful and of practical importance, not much research

work is done to automatically recognize human action in drone

videos.

Deep learning models are data-hungry and need hundreds

of training video examples for robust training. However, col-

lecting training dataset is quite challenging in several vision
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applications. To address this difficulty of real data collection

and its annotations, recently researchers have used games and

synthetic images in several computer vision applications such

as semantic segmentation Richter et al. (2016), measuring 6D

object pose Mercier et al. (2018), and depth image classifica-

tion Carlucci et al. (2016). Inspired by the use of video games

in Richter et al. (2016); Mercier et al. (2018); Carlucci et al.

(2016), we propose to collect and use game action videos to

improve human action recognition in real-world aerial videos.

Recently, computer graphics techniques and gaming technol-

ogy have improved significantly. For example, GTA (Grand

Theft Auto) and FIFA (Federation International Football Asso-

ciation) gaming engines use photo-realistic simulators to render

real-world environment, texture, objects (human, bicycle, car,

etc) and human actions. Games videos for action recognition

are intriguing because 1) without much effort, one can collect

a large number of videos containing environment and motion

that looks close to real-world, 2) It is easy Richter et al. (2016)

to get detailed annotations for action detection and segmenta-

tion which are otherwise very expensive to obtain, 3) Most of

the gaming engines allow the players to simultaneously capture

the same action from the different views (aerial, ground, front,

etc.,). This means that we can easily collect a large scale multi-

view dataset with exact frame-by-frame correspondence. All

three advantages make gaming videos quite appealing for aerial

action recognition where data collection is difficult and expen-

sive. To the best of our knowledge, we are the first one to use

game videos in aerial action recognition research. Another di-

rection to address the scarcity of data is to use GAN-generated

video examples generated through generative adversarial net-

works Goodfellow et al. (2014). Although the quality of images

and videos generated by GAN is not yet good enough to train

deep networksXian et al. (2018), GAN generated discriminative

features may be still suitable for action classification. There-

fore, we propose to employ conditional Wasserstein GAN Ar-

jovsky et al. (2017); Cao et al. (2018) to generate discriminative

features. We believe that the GAN-generated aerial examples,

when integrated properly with a few real action examples, can
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Figure 1. Summary of the proposed training approach. We propose to

utilize game videos and GAN generated aerial features to improve aerial

action classification when a few real aerial training examples are available.

Our approach does not require the same labels for real and game actions.

To tackle different action labels in the game and real dataset, we propose to

use disjoint multitask learning framework to efficiently learn robust action

classifier.

help learn a more generalized and robust aerial action classifier.

In this paper, we propose to utilize game video features and

GAN-generated features to improve aerial action classification

when a few real aerial training examples are available (see Fig-

ure 1). However, one of the key challenges is the disjoint nature

of the problem. Video games are designed to address the inter-

est of game playing audience and contain human motions and

environments biased towards a few specific human actions. For

example, the majority of actions in FIFA games are related to

playing a soccer game in a soccer field and the majority of ac-

tions in GTA are about fighting. Therefore, it is highly likely

that classes of actions in games are different from the types of

action classes we are interested to recognize in the real world.

Similarly, it is not easy to generate good discriminative GAN-

generated features for all types of action. However, our key idea

is that despite different classes in games and real videos and the

low-quality nature of GAN-generated aerial features, all three

data types (games, real and GAN-generated) capture similar lo-

cal motion patterns, human movements, and human-object in-

teractions, and, if integrated properly, can help learn more accu-

rate aerial action classifiers. To achieve this, we combine games

and GAN-generated examples with a few available real train-

ing examples using disjoint multitask learning. Specifically, we

feed the network with real and game (or GAN-generated) data

in an alternating fashion to obtain a more accurate action classi-
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fier. Note that in this paper, we call the videos as ground action

videos if the person recording the videos is on the ground or at

side-angle and the aerial videos are the ones that are taken by

UAVs. In summary, this paper makes the following contribu-

tions:

•We propose to tackle the new problem of drone-based hu-

man action recognition when only a few aerial training exam-

ples are available.

• To the best of our knowledge, we are the first one to demon-

strate the feasibility of game action videos for improving ac-

tion recognition in real-world aerial videos. Although game

imagery has been used before in different computer vision ap-

plications, it has not been used for aerial action recognition.

• We show that game and GAN-generated action examples

can help to learn a more accurate action classifier through a

disjoint multitask learning framework.

• We present two new action datasets: 1) Aerial-Ground

game dataset containing seven human actions where for each

action we have 100 aerial-ground video pairs, 2) Real aerial

dataset containing actions corresponding to eight actions of

UCF101.

2. Related Work

Human action recognition in videos is one of the most chal-

lenging and active vision problems Ali and Shah (2010); Wang

and Schmid (2013); Sultani and Saleemi (2014); Carreira and

Zisserman (2017); Tran et al. (2015); Wu et al. (2011); Si-

monyan and Zisserman (2014); Chen et al. (2018); Kataoka and

Satoh (2019); Huang et al. (2018); Zhou et al. (2018). Classi-

cal approaches used hand-crafted features Ali and Shah (2010);

Wang and Schmid (2013) to train generalized human action

recognition models that can perform well across different ac-

tion datasets Cao et al. (2010); Sultani and Saleemi (2014).

With the resurgence of deep learning, several deep learn-

ing approaches have been proposed for action recognition. Si-

monyan et al. Simonyan and Zisserman (2014) proposed RGB

and optical flow-based networks for action recognition videos.

Both RGB and optical flow networks employ 2D convolution.

Tran et al. Tran et al. (2015) demonstrated the feasibility of

3D convolution for action recognition. In addition to present-

ing a new large scale action recognition dataset of 400 classes,

Carreira et al. Carreira and Zisserman (2017) proposed a two-

stream inflated 3D ConvNet (I3D) that is based on 2D con-

vnet inflation and demonstrated state of the art classification

accuracy. Recently, an efficient action recognition framework

is proposed by Chen et al. Chen et al. (2018). Furthermore,

there has been an increased interest to train the generalized ac-

tion recognition model using multi-task learning. Kataoka et al.

Kataoka and Satoh (2019) put forwarded a multi-task approach

for the out-of-context action understanding. Similarly, Kim et

al. Kim et al. (2018) proposed disjoint multi-task learning to

obtain improved video action classification and captioning in a

joint framework.

Recently, Zhou et al. Zhou et al. (2018) proposed to analyze

human motion using videos that are captured through a drone

that orbits around the person. They demonstrated that, as com-

pared to static cameras, videos captured by drones are more

suitable for better motion reconstruction. Similarly, Huang et

al. Huang et al. (2018) presented a system that can detect cin-

ematic human actions using 3D skeleton points employing a

drone.

Although human action recognition is quite an active area of

research in computer vision, there does not exist many research

works in the literature that deals with aerial action recognition.

Wu et al., Wu et al. (2011) proposed to use low-rank optimiza-

tion to separate objects and moving camera trajectories in aerial

videos. UCF-ARG dataset Arjun Nagendran and Shah contains

ground, rooftop, and aerial triplets of 10 realistic human ac-

tions. This dataset is quite challenging as it contains severe

camera motion, non-discriminative backgrounds, and humans

in these videos occupy only a few pixels. Perera et al. Perera

et al. (2018) proposed to use human pose features to detect ges-

tures in aerial videos. They introduced a dataset that is recorded

by a slow and low-altitude (around 10ft) UAV. Although useful,

their dataset only contains gestures related to UAV navigation

and aircraft handling. Recently, Barekatain et al. Barekatain
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et al. (2017) proposed a new video dataset for aerial view con-

current human action detection. It consists of 43 minute-long

fully-annotated sequences with 12 action classes. They used a

single-shot detection approach Liu et al. (2016) to obtain human

bounding boxes and then used features within those bounding

boxes for action classification. They have neither addressed the

problem for the less number of training videos nor they have

used the multiple data sources.

Gathering large-scale datasets and its annotation is expen-

sive and requires hundreds of human hours. To address this

challenge, there is an increasing interest in employing synthetic

data to train deep neural networks. Josifovski et al. Josi-

fovski et al. (2018) proposed to use annotated synthetic data

to train the instance-based object detector and 3D pose estima-

tor. Mercier et al. Mercier et al. (2018) used weakly labeled

images and synthetic images to train a deep network for object

localization and 6D pose estimation in real-world settings. Car-

lucci et al. Carlucci et al. (2016) proposed to use synthetic data

for depth image classification. Recently, Richter et al., Richter

et al. (2016) designed a method to automatically gather ground

truth data for semantic segmentation and Hong et al. (2018)

presented a GAN based approach to use game annotations for

semantic segmentation in real images. Finally, Mueller et al.,

Mueller et al. (2016) put forwarded photo-realistic simulators

to render real-world environment and provide a benchmark for

evaluating tracker performance.

In this paper, in contrast to the above-mentioned methods, we

demonstrate the feasibility of game action videos for improv-

ing action recognition in real-world aerial videos. To evade

collecting costly drone training videos, we claim to provide a

unified framework employing games and GAN-generated data

to achieve improved aerial action recognition. No one has used

disjoint multitask learning for aerial action recognition or with

three different data types. Note that although we use real ground

videos for GAN-generated features, our approach does not re-

quire exact ground-aerial pairs. Furthermore, our game dataset

collection highlights the built-in multi-view action capturing

feature in games that can be used for multi-view action recogni-

tion. Multiple views make the dataset more extensive and open

avenues for other researchers to solve novel challenging prob-

lems. We believe that our dataset will push the research in joint

game-real aerial action recognition.

3. Proposed Approach

In this section, we provide the details of our game actions

video collection, the method to generated GAN-generated fea-

tures, and finally disjoint multitask approach where we train

the aerial action classifier using game aerial, GAN-generated

aerial, and a few real aerial videos in a unified framework.

3.1. Games Action Dataset
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Figure 2. Two frames of each action for both aerial and ground views from

our game action dataset. The first, third, fifth and seventh row represent

aerial videos and second, forth, sixth, and eight row shows the ground

videos. For each action, we show the two frames per video.

We employ GTA-5 (Grand Theft Auto) and FIFA (Federation

International Football Association) for collecting the game ac-
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tion dataset 1. We ask the players to play the games and record

the same action from multiple views. Note that GTA and FIFA

allow users to record the actions from mutiple angles with real-

looking scenes and different realistic camera motions. In total,

we collect seven human actions including cycling, fighting, soc-

cer kicking, running, walking, shooting, and skydiving. Due to

the availability of plenty of soccer kicking in FIFA games, we

collect kicking from FIFA and the rest of the actions are col-

lected from GTA-5. Although in our current approach we are

only using aerial game video, for more complete dataset pur-

poses, we capture both ground and aerial video pairs i.e., the

same action frames captured from both aerial and ground cam-

eras. Figure 2 shows two frames of each action for both aerial

and ground views. These videos will be made publicly avail-

able.

For each action, our dataset contains 200 videos (100 ground

and 100 aerial) with a total of 1400 videos for seven actions.

Note that most of the scenes and interactions in the video games

are biased towards actions related to fighting, shooting, walking

and running, etc. Therefore, employing game videos to improve

action recognition in real-world videos is not trivial. Therefore,

in this paper, we propose a unified approach to combine games

and real videos employing disjoint multitask learning.

3.2. GAN-generated Aerial Examples

We generate GAN-generated aerial video features using Gen-

erative Adversarial Networks (GAN) Goodfellow et al. (2014).

GAN consists of two networks: Generator and Discriminator.

Generator tries to mimic the real data distribution and fools the

discriminator by producing realistic looking videos or features

while the discriminator job is to robustly classify real and gener-

ated video or features. Both generator and discriminator can be

simple multi-layer perceptrons. As compared to vanilla-GAN,

in conditional GAN Mirza and Osindero (2014), both genera-

tor and discriminator are conditioned on auxiliary information.

Auxiliary information can be video labels or some other video

1The customized engine such as Lai et al. (2018) can also be used to collect

more game videos

features. Our goal is to generate GAN-generated aerial visual

features given the real ground features (auxiliary information).

Therefore, in our case, the objective function of conditional

GAN is given by:

Lcgan = E[logD( fra | frg )]

+ E[log(1 − D(G(z, frg )| frg ))],
(1)

where D represents discriminator and G represents generator,

in D( fra | frg ), fra and frg are real aerial and ground features re-

spectively. These features are randomly sampled from given

real aerial and ground features distributions. Note that we do

not assume any correspondence between fra and frg . Given the

noise vector z and frg , generator tries to fool discriminator by

producing GAN-generated aerial features.

To optimize the above objective function, usually KL or JS

divergence is employed to reduce the difference between real

and generated data distributions. However, one of the key lim-

itations with KL or JS divergence is that the gradient of diver-

gence decreases with the increase of distance, and the generator

learns nothing through gradient descent. To address this lim-

itation, recently Wasserstein GAN is introduced in Arjovsky

et al. (2017); Cao et al. (2018), which uses Wasserstein dis-

tance. WGAN learns better because it has a smoother gradient

everywhere. Finally, to make Wasserstein distance tractable,

the 1-Lipschitz constraint is used through gradient penalty loss

Gulrajani et al. (2017). The objective function of generating

GAN-generated aerial features using conditional Wasserstein

GAN (WCGAN-GP) is given by:

Lcwgan = E[D(G(z, frg )| frg )] − E[logD( fra | frg )]

+ E[(
∥∥∥∇mD(m, (G(z, frg ))

∥∥∥
2 − 1)2],

(2)

where m = tG(z, frg ) + (1 − t) frg and t is uniformly sampled

between 0 and 1. Our ultimate goal is to train discrimina-

tive action classifiers using GAN-generated features. Although

the above objective function generates realistically looking fea-

tures, it does not guarantee to generate the discriminative fea-

tures suitable for classification. To accomplish this, we first

train soft-max classifiers using a few available real aerial ex-

amples. Finally, to enforce WCGAN-GP to produce discrim-

inative features, we use classification loss computed over the
Page 5
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Ground real features Generator Discriminator Adversarial loss

Real aerial 
classfiier (trained) Classfication loss

Generated aerial features

Real aerial  features

Figure 3. GAN-generated aerial features generation pipeline. Given

ground real features, noise and a few real aerial videos, employing adver-

sarial and classification loss, GAN-generated aerial features are generated.

GAN-generated aerial examples given as:

Lcl = −E[logP(yrg |G(z, frg ); θ)], (3)

where P(yrg |G(z, frg ) denotes the probability of correct label pre-

diction of generated examples. Since labels for real ground and

GAN-generated aerial examples are the same, we use the labels

of real ground videos (yrg ) as ground truth. Finally, the overall

objective function for GAN-generated aerial examples gener-

ation is given by combination of Eq. 2 and Eq. 3. Figure 3

summarize the complete GAN-generated aerial feature genera-

tion scheme.

3.3. Aerial videos classification using Disjoint Multi-Task

learning

Multitask learning improves the generalization capabilities

of the model by effectively learning multiple related tasks. It

has been used in several computer vision problems to learn the

joint model such as; simultaneous object detection and segmen-

tation Hariharan et al. (2014), surface normal estimation, and

pixel labeling Misra et al. (2016) and joint pose estimation and

action recognition Gkioxari et al. (2014). One of the limitations

of multitask learning is the requirement of the availability of

multiple labels for each task for the same data. However, most

of existing action datasets do not have such labels and hence

restricting multitask learning on these datasets. To address this,

recently disjoint multitask learning Kim et al. (2018) is intro-

duced. Since, in our approach, the two data sources (games and

real) are different, and secondly, we do not assume any common

3D CNN

Games Aerial Videos Real Aerial Videos

1

Real labels
Real data

432

Real labels
Game data

Game labels
Real data

Game labels
Game data

Real aerial featuresGame aerial features

(a)

3D CNN

Real Aerial Videos

Real labels
Real data

Real labels
Gen data

Gen labels
Real data

Gen labels
Gen data

WGAN Real aerial features

(b) (c)

3D CNN

Real Aerial Videos

Real labels
Real data

Real labels
Gen data

Gen labels
Real data

Gen labels
Gen data

WGAN Real aerial features
Generated aerial features

Trained on Game data
using (a)

fc layers

Generated aerial features

Figure 4. Disjoint multitasking framework for aerial, games and GAN-

generated examples. (a) Disjoint multitask learning (DML) using games

and a few real aerial videos. (b) DML using GAN-generated aerial and

real aerial video features (c) DML using real, GAN-generated, and game

data. GAN-generated aerial features are abbreviated as Gen data.

action classes, this fits well in the context of disjoint multitask

learning.

Figure 4 demonstrates the model overview. We first com-

pute deep features of a few available real aerial videos and

game videos using a 3D convolutional neural network Chen

et al. (2018); Carreira and Zisserman (2017); Hara et al. (2018).

Secondly, we obtain GAN-generated aerial features using the

method described in Section 3.2. We use two fully connected

layers shared between all tasks and one dedicated fully con-

nected layer for each task. Figure 4.a shows training using

real and game visual features, Figure 4.b shows training using

real and GAN-generated visual features, and Figure 4.c demon-

strates training using the real, game and GAN-generated data.

Joint learning using real and game videos: We denote the real

and game aerial visual features as ra ∈ Ra, ga ∈ Ga respectively.

Note that we do not assume the type or the number of actions in

both datasets to be the same. We train all four branches of the

network for the classification using softmax as a final activation

function along with cross-entropy loss.

As shown in Figure 4 (a), we have real and game labels avail-

able for real and game data (branch 1O and 4O). However, we

do not have real labels for the game data and the game labels

for the real data (branch 2O and 3O) due to the disjoint nature

of two datasets. We train different branches of the multi-task
Page 6



framework using the aerial real and game iteratively. First, we

train real and game classification branches ( 1O and 4O) for which

we have corresponding ground truth labels available. Next, we

train branch 2O and 3O which predicts the real labels for the

game data and game labels for real data respectively. How-

ever, due to unavailability of labels for 2O and 3O, we use the

prediction from 1O and 4O as a ground truth labels for 2O and 3O

respectively. The overall objective function of the framework is

given by:

min
Θ

∑
ra∈Ra

1O︷             ︸︸             ︷
L(yra , P(yra |ra)) +

3O︷             ︸︸             ︷
L( ˆyga , P(yga |ra)

+ min
Θ

∑
ga∈Ga

2O︷             ︸︸             ︷
L(ŷra , P(yra |ga) +

4O︷              ︸︸              ︷
L(yga , P(yga |ga))

(4)

where yra and P(yra |ra) represents ground truth labels and pre-

dicted labels of real aerial videos, ra, ˆyga are the labels obtained

from 4O (the layer trained with game ground truth labels) and

P(yga |ra) are predicted game action labels for real videos. Sim-

ilarly, yga and P(yga |ga) are ground truth and predicted action

labels of game aerial videos, ŷra are obtained from 1O (the layer

trained with real aerial ground truth labels) and P(yra |ga) is pre-

dicted real action labels for game videos. Finally Θ represents

network parameters. We repeat the above procedure for several

epochs and fine-tune the parameters on the validation data.

Joint learning using GAN-generated and real videos: For

joint learning using real and GAN-generated video features,

we repeat the same approach as discussed above for real and

game videos. Specifically, to obtain an improved action classi-

fier, we feed the network with real and GAN-generated aerial

features in an alternating fashion to a disjoint multitask learn-

ing framework. Figure 4(b) illustrates the joint learning using

real and GAN-generated video features. Note that since we use

real ground features to generate GAN-generated aerial exam-

ples (see Figure 3), we use the labels of real ground videos (yrg )

as GAN-generated aerial examples labels, abbreviated as ‘Gen

labels’ in the third and fourth branch in Figure 4(b). As shown

in Figure 4(a) and Figure 4(b), we use the same network archi-

tecture for joint learning using games or GAN-generated data.

Joint learning using real, GAN-generated and game videos:

Finally, we combine all three data types i.e., real, GAN-

generated, and game videos in a single framework (see Figure

4(c)). In this case, instead of training the network from scratch,

we initialize the network with the weights obtained through

training using game data. Specifically, networks weights of

Figure 4(a) are used to initialize weights of two backbone ( fc)

layers and ( fc) layer being trained using real data and real labels

(the layers are shown in the brown block in Figure 4(c)). In our

case, since the numbers of classes in real and GAN-generated

features are the same but that of games are different, we initial-

ize the rest of ( fc) layers from scratch. Finally, the network is

fine-tuned iteratively by feeding real and GAN-generated data.

4. Experiments

The main goal of our experiments is to quantitatively eval-

uate the proposed approach and analyze the different compo-

nents. For evaluation, we use two aerial action datasets: UCF-

ARG-Aerial Arjun Nagendran and Shah (publicly available)

and YouTube-Aerial (will be publicly released). We perform

experiments with and without games and GAN-generated data

(Table 1 and Table 2), with and without disjoint multi-task

learning (Fig 3). We also performed K-shot learning experi-

ments (Fig 7), and analyzed robustness of proposed approach

across three different visual features (Table 1 and Table 2). Fi-

nally, action-wise performance on two datasets are given in Ta-

ble 4 and Table 5 and confusion matrices for the different com-

ponents of our approach are shown in Fig 8.

4.1. Datasets

UCF-ARG Arjun Nagendran and Shah: UCF-ARG dataset

contain 10 human actions. This dataset includes: boxing, car-

rying, clapping, digging, jogging, open-close trunk, running,

throwing, walking, and waving. This is a multi-view dataset

where videos are collected from an aerial camera mounted on

a Helium balloon, ground camera, and rooftop camera. All

videos are of high resolution 1920 × 1080 and recorded at

60fps. The aerial videos contain severe camera shake and large
Page 7



Horse-riding Kayaking Cliff-diving Band-marching

Skateboarding GolfCyclingSurfing

Figure 5. Examples of videos from the YouTube-Aerial dataset. In each

video, different human action is being performed. We aim to automatically

recognize human action in these videos when only a few training aerial

examples are available.

camera motion. On average, each action contains 48 videos.

The dataset partition includes 60% of videos of each action

for training, 10% for validation, and 30% for testing. Figure

6 shows some of the videos from the UCF-ARG dataset. Note

that the testing experiments are done on the aerial part of the

UCF-ARG dataset (named as UCF-ARG-Aerial).

YouTube-Aerial Dataset: We collect this new dataset our-

selves from the drones videos available on YouTube. This

dataset contains actions corresponding to eight actions of

UCF101 Soomro et al. (2013). The actions include band march-

ing, biking, cliff-diving, golf-swing, horse-riding, kayaking,

skateboarding, and surfing. The videos in this dataset contain

large and fast camera motion and aerial videos are captured at

variable heights. A few examples of videos in this dataset are

shown in Figure 5. Each action contains 50 videos. Similar to

the UCF-ARG dataset, the dataset partition includes 60%, 10%,

and 30% of videos for training, validation, and testing respec-

tively.

4.2. Implementation details

We use five aerial videos of each action (named as a few

available training examples in the above sections). For vi-

sual features computations, we use three recently proposed

video features; namely 3D multi-fiber network (MFN-3D)

Chen et al. (2018), 3D Inception network (I3D) Carreira and

Zisserman (2017), and 3D residual network (Resnet-3D) Hara

OpenCloseTruckOpenCloseTruck Throwing

WavingDigging

Throwing

DiggingDigging Waving Waving

Figure 6. Examples of videos from the UCF-ARG dataset. The first two

columns show the videos captured by the ground camera while the last two

columns show the same actions captured by a UAV.

et al. (2018). Authors in Chen et al. (2018) showed that a multi-

fiber network provides state-of-the-art results on several com-

petitive datasets and is the order of magnitude faster than sev-

eral other video features networks. It achieves high computa-

tional efficiency by dividing the complex neural network into

small lightweight networks. We extract the features (768D) for

all videos from the second last layer of the network. I3D fea-

tures were proposed in Carreira and Zisserman (2017), where

authors suggested a novel technique to inflate 2D ConvNets

into 3D and bootstrap 3D filters from 2D filters. We extract

the features (1024D) from the global average pooling layer us-

ing 128-frame snippets. Experiments are performed using RGB

stream only. Similarly, we extract 512 dimension features from

the last layer of 3D-Resnet34 Hara et al. (2018).

For disjoint multitask learning, we have two shared fully con-

nected ( fc) layers (512 and 256 units respectively). We have

four task-specific layers: two fc layers with the number of units

equal to the number of actions in the real dataset and two fc

layers with the number of units equal to the number of actions

in the game dataset. Similarly, for training without DML, we

use only five aerial videos for each action. We employ three

fully connected ( fc) layers. The first two ( fc) layers have 512

and 256 units respectively and the third one has the number of

units equal to the number of actions in the dataset. The net-

work is trained using the negative log-likelihood loss. We use

the Adam optimizer with learning rate of 0.001, beta1=0.5, and

beta2=0.999.
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To generate GAN-generated examples, both our generator

and discriminator contain four fully connected ( fc) layers where

the first three fc layers have Leaky ReLU activation. In the case

of the generator, the last fc has ReLU activation. The noise

vector z (312D) is drawn from unit Gaussian. For all networks,

we use Adam optimizer. Since the network is already trained

on game data, for joint learning from GAN-generated and game

data (Figure 4(c)), we reduce the weight of loss for the branches

being trained on the GAN-generated data. We ran the experi-

ments several times with random initialization of the network

( fc layers) and report the average results.

4.3. Experiments Results

Table 1 and Table 2 demonstrates the experimental results

of proposed approach on YouTube-Aerial and UCFARG-Aerial

datasets using three visual features Chen et al. (2018); Car-

reira and Zisserman (2017); Hara et al. (2018). All the clas-

sification results are on real aerial videos. As compared to the

YouTube-Aerial dataset, all visual features have lower classi-

fication accuracy on UCF-ARG-Aerial. This is mainly due to

two reasons; firstly visual features networks (MFN-3D, I3D,

Resnet-3D) were initially pre-trained on YouTube videos (Ki-

netics Carreira and Zisserman (2017), Sports-1M Karpathy

et al. (2014) datasets) which are similar to YouTube-Aerial

videos, secondly, UCF-ARG dataset is more challenging due

to non-discriminative backgrounds and very small actors size.

Component-wise accuracy: In Table 1 and Table 2, trained

using ‘Ground videos’ demonstrates classification results when

training is done on ground camera videos only. Note that

the UCF-ARG dataset contains ground cameras videos for the

corresponding aerial action videos. For the YouTube-Aerial

dataset, we use the videos of eight actions from UCF101 ground

camera videos. We use ground videos from UCF101 (instead of

collecting new ground videos ourselves) because our approach

does not require pair-wise correspondence between aerial and

ground videos. Note that in our approach ground videos fea-

tures are only used to generate GAN-generated aerial videos

features (see Figure 3). Training using ‘GAN-generated with

DML’ demonstrates the experimental results when the network

is trained using disjoint multi-task learning employing GAN-

generated visual features. Training using ‘Games with DML’

shows the results using game data and finally, training using

‘Games + GAN-generated with DML’ depicts classification re-

sults using both game and GAN-generated data. The experi-

mental results in Table 1 and Table 2 show that the proposed

approach results in improved aerial action classification. The

results emphasize the strength of the proposed approach and

suggest that given a few aerial videos (five in our case), games

and GAN-generated aerial features can improve the classifica-

tion accuracy when integrated properly using disjoint multitask

learning.

Table 1. Results of the proposed approach on YouTube-Aerial dataset

Trained using MFN-3D I3D Resnet-3D

Ground videos 49.7 50.7 53.5

GAN-generated with DML (Fig 4.b) 64.2 65.6 58.3

Games with DML (Fig 4.a) 62.9 64.8 56.7

Games + GAN-generated with DML (Fig 4.c) 68.2 67.0 58.6

Table 2. Results of the proposed approach on UCF-ARG-Aerial dataset

for three visual features. The results in Table 1 and Table 2 demonstrate

that each component of our approach is important. Both games and GAN-

generated visual features are useful for improved aerial classification and

combining them further improve the classification results.

Trained using MFN-3D I3D Resnet-3D

Ground videos 21.3 11.3 9.7

GAN-generated with DML (Fig 4.b) 32.1 15.6 12.4

Games with DML (Fig 4.a) 34.4 16.8 13.7

Games + GAN-generated with DML (Fig 4.c) 35.9 16.3 15.1

Impact of disjoint multitask learning: To verify the useful-

ness of disjoint multitask learning in our approach, in Table 3,

we show the classification accuracy with and without training

using disjoint multitask learning. We use the same experimental

settings in both experiments and use the same number (five) of

aerial videos. In experiments without DML, we use five aerial

videos and in experiments with DML, we use games and GAN-

generated data along with five aerial videos. The results demon-

strate that integrating games and GAN-generated data through

disjoint multitask learning significantly outperforms the train-

ing without disjoint multitask learning specifically when the
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Table 3. Classification results on YouTube-Aerial dataset when training is

done without and with employing disjoint multitask learning. In training

Without/with disjoint multitask learning, we have used the same five real

aerial videos.

Training MFN-3D I3D Resnet-3D

Without Disjoint Multitask Learning 61.1 62.7 54.2

With Disjoint Multitask Learning 68.2 67.0 58.6
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Figure 7. Accuracy of the proposed approach for the different number

of videos. (a), (b), and (c) show the results on YouTube-Aerial dataset

with MFN-3D Chen et al. (2018), I3D Carreira and Zisserman (2017) and

Resnet-3D Hara et al. (2018) features respectively. The red curves show the

proposed approach while the green curves show the results when training

is done without disjoint multitask learning.

number of available training videos is small.

K-shot learning: In Figure 7, we demonstrate the accuracy

of the proposed approach when training is done using differ-

ent numbers of aerial videos on the YouTube-Aerial dataset.

For the better analysis, we quantitatively compare the proposed

approach against training without the disjoint multitask learn-

ing framework. The experiments are done for all three visual

features. The classification results for the different number of

training videos suggest that the proposed approach is not only

useful when training data is less but is also beneficial with the

increased training data.

Class-wise accuracy: Table 4 and Table 5 show the class-wise

accuracy of proposed approach using MFN-3D features Chen

et al. (2018) for UCF-ARG and YouTube-Aerial datasets. For

YouTube-Aerial datasets, in five out of eight classes, the pro-

posed approach significantly outperforms the classifier trained

only on ground videos. A similar trend can be seen in six

out of ten classes of the UCF-ARG dataset. Furthermore, in

both datasets, for the majority of classes, combining GAN-
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Figure 8. This figure shows confusion matrixes averaged over all three

visual features (MFN-3D, I3D, and Resnet-3D) on the YouTube-Aerial

dataset. Confusion matrixes are (a) for the network trained using ground

videos, (b) the network trained using aerial videos without DML, (c), and

the network trained using aerial videos with DML employing both GAN-

generated and game data. It can be seen that confusion between actions

reduces through DML training.

generated and game data either improve the accuracy or keep

the best of both. The proposed approach works better for the

actions which have discriminative motion patterns such as Bik-

ing, Swing, Kayaking, Carry, Clap, and Running, etc. However,

our approach has limitations for the actions which have strong

background scene biases water or mountains in Diving class) or

contain less human body part motion (Skateboarding).

Confusion matrices: Figure 8 shows the confusion matrix av-

eraged over all three visual features on the YouTube-Aerial

dataset. The proposed disjoint multi-task learning framework

significantly reduced the confusion between different actions as

the classification accuracy increases from 51.3 (Figure8.a) to

59.4 (Figure8.b) to 64.5 (Figure8.c).

5. Conclusion

Recently, low cost and lightweight hardware make drones a

good candidate for monitoring human actions. However, train-

ing the deep neural network for action recognition needs lots

of training examples that are difficult to collect. In this paper,

we explore two alternative data sources to obtain more accu-

rate neural network classifiers. To tackle the different types

of actions in the game and real action datasets, we propose to

use disjoint multitask learning. Our experimental results and

thorough analysis demonstrated that game action and GAN-

generated examples, when integrated properly, can help to get

improved aerial classification accuracy. The future works will

aim at spatio-temporal localization of actors in drone videos,
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Table 4. Quantitative results on YouTube-Aerial dataset. The top row shows class-wise action recognition accuracy on aerial testing videos when trained

on done on ground videos.The second, third and forth rows demonstrate accuracy when training is done using DML employing GAN-generated features,

game features and both respectively.

Trained Using M
ar

ch
-

in
g

Bi
ki

ng

D
iv

in
g

Sw
in

g

Ri
di

ng

K
ay

ak

Sk
at

e-
bo

ar
d

Su
rfi

ng

Av
g

Ground Videos 26.7 0 100 80 26.7 40 53.3 73.3 49.7

GAN-generated with DML 53.3 46.7 73.3 100 40 86.7 20 86.7 64.3

Games with DML 60 73.3 86.7 100 26.7 86.7 13.3 53.3 62.9

Games + GAN-generated with DML 60 73.3 86.7 100 13.3 80 46.70 86.7 68.2

Table 5. Quantitative results for UCF-ARG dataset. Similar to the Table 4, the top row shows class-wise action recognition accuracy on aerial testing

videos when trained on done on ground videos.The second, third and forth rows demonstrate accuracy when training is done using DML employing

GAN-generated features, game features and both respectively.
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ng
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ap

D
ig

Jo
g
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un

k
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n
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ro

w

W
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k

W
av

e

Av
g

Ground Videos 0 0 0 0 0 0 40 33.3 80 60 21.33

GAN-generated with DML 60 40 20 13.3 13.3 58.3 26.7 6.70 13.3 66.7 31.83

Games with DML 53.3 60 40 00.0 6.70 83.3 40 6.70 13.3 40.0 34.33

Games + GAN-generated with DML 73.3 60.0 26.7 6.7 13.3 58.3 26.7 13.3 13.3 66.7 35.92

which will need attention based deep features. In our current

work, we only use aerial game videos. However, it would be

useful to use ground and aerial game videos jointly to learn the

transformations between two ground and aerial views. Finally,

one of the limitations of drones is their limited battery life. Fu-

ture work could include designing the algorithms which work

on low power devices.
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