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Abstract

Incremental learning requires a model to continually learn
new tasks from streaming data. However, traditional fine-
tuning of a well-trained deep neural network on a new
task will dramatically degrade performance on the old
task — a problem known as catastrophic forgetting. In
this paper, we address this issue in the context of anchor-
free object detection, which is a new trend in computer
vision as it is simple, fast, and flexible. Simply adapt-
ing current incremental learning strategies fails on these
anchor-free detectors due to lack of consideration of their
specific model structures. To deal with the challenges of
incremental learning on anchor-free object detectors, we
propose a novel incremental learning paradigm called Se-
lective and Inter-related Distillation (SID). In addition, a
novel evaluation metric is proposed to better assess the
performance of detectors under incremental learning con-
ditions. By selective distilling at the proper locations and
further transferring additional instance relation knowl-
edge, our method demonstrates significant advantages on
the benchmark datasets PASCAL VOC and COCO.

1 Introduction

Due to the rapid development of deep neural networks
(DNNs), significant advances have been achieved on many
computer vision applications. The traditional method of
supervised training of a DNN requires access to labeled
data where the number of classes for the task is prede-
fined. However, in many real-life applications, the model
needs to gradually learn new classes from streaming data.
For example, in microbiology, an object detector may be
trained to detect several known types of bacteria. How-
ever, at a later date, the pathologist might want the detec-
tor to be able to detect new types of bacteria as well as all
previous types of bacteria. Unfortunately, at this time the
original labelled training data might be inaccessible due to
privacy, storage or license problems. Directly fine-tuning
the model in a scenario where only new class data is avail-
able will cause a dramatic drop in performance on the old
classes — this is a well-known problem called catastrophic
forgetting (Goodfellow et al., 2014; McCloskey and Co-
hen, 1989). To tackle this problem, incremental learning
techniques have been widely explored in image classifica-
tion (Li and Hoiem, 2017; Rebuffi et al., 2017) and also

Figure 1: An example of incremental object detection.
The challenge is to retrain the model to maintain the de-
tection of the old classes whilst learning the new classes.
During each incremental step, only new class data and
annotations for new class objects are provided.

in anchor-based object detection (Shmelkov et al., 2017).

Modern Anchor-free fully convolutional object detec-
tors were proposed to achieve superior performance com-
pared to older anchor-based counterparts. Compared to
anchor-based detectors, anchor-free detectors are more ef-
ficient and avoid complex hyper-parameter tuning related
to anchor boxes. Also, object detection seems to be the
only prediction task that deviates from the fully convo-
lutional per-pixel prediction framework due to the need
for clumsy anchor boxes. Anchor-free detectors provide a
research direction for designing a single model to perform
multiple prediction tasks. Therefore, these anchor-free
methods have become the new trend in object detection.
Naturally, this new trend creates new challenges for incre-
mental object detection. Exploring the fully convolutional
anchor-free incremental object detection is an important
step towards developing a universal incremental model
that can perform multiple incremental prediction tasks.

Figure 1 illustrates an example of incremental object
detection. Given an object detection model that is trained
using images from certain classes, incremental object de-
tection is the task of retraining the model to maintain the
detection performance on the previously learned classes
whilst learning new classes. In multi-step incremental de-
tection, all categories trained during any previous steps
are regarded as old classes. The original model is regarded
as the source model (old model) and the retrained model
is regarded as the target model (new model). Knowledge
distillation (Hinton et al., 2015) is a popular strategy for
incremental learning and has shown superior performance
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in both classification and detection tasks. LwF (Li and
Hoiem, 2017) was the first to explore incremental learning
by knowledge distillation. It uses the source model out-
put itself as the ground truth to guide the target model to
follow the behavior of the source model on the old classes.
Shmelkov et al. (2017) adapted LwF for incremental de-
tection by distilling the classification and bounding box
regression outputs for a two-stage anchor-based detector
(Fast RCNN). Although LwF works well on incremen-
tal classification and also anchor-based incremental ob-
ject detection, we find that it shows no significant im-
provement compared to direct fine-tuning when applied
to anchor-free object detectors.

In this paper, we revisit knowledge distillation and
propose a Selective and Inter-related Distillation (SID)
method for anchor-free fully convolutional detectors. In-
stead of distilling from the source model outputs, we selec-
tively perform distillation on non-regression outputs and
some intermediate layers. For different detectors, accord-
ing to their unique network structures, performing dis-
tillation at the proper locations is critical for extracting
noise-free source model knowledge. By transferring the
instance relations from the source model, our method pre-
serves more old class knowledge in the target model. In
addition, to evaluate the capability of a detector under
incremental conditions, a new evaluation metric is pro-
posed.

The contributions of this paper are as follows:

• To the best of our knowledge, we are the first to ex-
plore incremental detection on anchor-free fully con-
volutional object detectors.

• We propose a selective and inter-related distillation
strategy for incremental anchor-free object detection.

• We propose a new evaluation metric, F1i to better
represent the performance of incremental detectors
on both old and new classes.

• Using two different type anchor-free detectors, we
demonstrate the superior performance of our pro-
posed method on benchmark datasets under several
incremental protocols.

2 Related Work

In this section, we introduce the state-of-the-art anchor-
free object detectors and then discuss incremental learn-
ing methods.

2.1 Anchor-Free Object Detection

YOLOv1 Redmon et al. (2016) is one of the very first
works on anchor-free object detection. It predicts the cen-
ter of the objects and regresses the widths and heights of
the respective bounding boxes. However, to produce more
precise detection, YOLOv1 only predicts bounding boxes
at points near the center of objects which leads to low re-
call. Zhou et al. (2019) proposed CenterNet which regards
each pixel within the feature map as a shape-agnostic

anchor. For each pixel within the feature map, Center-
Net predicts whether it is an object center and regresses
the width and height. Due to its tiny structure, Cen-
terNet does not need Non-Maximum Suppression (NMS)
for post-processing and achieves a good speed-accuracy
trade-off. FCOS designed by Tian et al. (2019) is another
recently proposed anchor-free detector. For each object,
FCOS predicts a point inside the object and regresses the
distance from that point to the four sides of the bounding
box. Unlike YOLOv1 which only considers points near
the center of objects, FCOS takes advantage of all points
inside a ground truth box to predict the bounding box.
A multi-level Feature Pyramid Network (FPN) is used in
FCOS to handle the low recall and ground truth box over-
lapping problems. During post-processing, NMS is used
to filter redundant bounding boxes. FCOS achieves com-
parable detection accuracy to most anchor-based detec-
tors. On account of their model structures, we use FCOS
(using FPN) and CenterNet (not using FPN) as our back-
bone networks to explore how different network structures
will affect the anchor-free incremental detection.

2.2 Incremental Learning

Currently, one of the most popular incremental learn-
ing methods is to use extra regularization. The
regularization-based approaches can be further divided
into prior-focused and data-focused. Prior-focused meth-
ods penalize the important weights for old tasks to en-
courage them to stay unchanged. The main difference
between this type of methods is how they define the im-
portant weights for old tasks (Kirkpatrick et al., 2017;
Schwarz et al., 2018). Data-focused approaches use data
from new task to approximate the performance of the pre-
vious tasks. They penalize changes in the input-output
function of the neural network for the old tasks. Li and
Hoiem (2017) first applied knowledge distillation (Hinton
et al., 2015) to incremental learning and proposed an in-
cremental classifier called LwF. During incremental learn-
ing, the new class data is passed to both the source model
and the target model. The target model is then trained
using ground truth information for the new classes in ad-
dition to the source model output for the old classes. The
distillation loss will force the target model to follow the
behavior of the source model on old tasks.

For this paper, we target on proposing a knowledge
distillation based method for incremental object detec-
tion. Compared to incremental classification, there are
far fewer works on the more challenging problem of incre-
mental object detection. Using Fast RCNN as the back-
bone network, Shmelkov et al. (2017) adapted LwF to
the detection task and proposed the first knowledge dis-
tillation based incremental detector. Following Shmelkov
et al. (2017), some researchers have designed incremental
learning methods on more advanced state-of-the-art ob-
ject detectors. Hao et al. (2019) proposed an incremental
method based on Faster R-CNN (Ren et al., 2015). They
divided the training data to multiple class groups to avoid
missing annotations for old classes in the new data. Li
et al. (2019) and Zhang et al. (2020) designed incremen-
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tal detectors based on RetinaNet (Lin et al., 2017). Zhang
et al. (2020) proposed to handle the prediction bias be-
tween old and new classes using online unlabeled data.
Perez-Rua et al. (2020) designed a few-shot incremental
detector based on CenterNet, but their method mainly fo-
cus on few-shot and meta learning. Although much effort
has been devoted to exploring incremental learning on de-
tection tasks, to the best of our knowledge, there is no pre-
vious work exploring incremental learning for anchor-free
detectors which are the latest research trend for object
detection.

3 Methodology

In this section, we propose a novel method as well as an
evaluation metric for incremental object detection.

3.1 Distillation at the Proper Locations

Finding appropriate distillation locations is critical to
achieve performance gain. To deal with the different prop-
erties presented in different layers, we provide a detailed
analysis of how to properly perform distillation.

Output Distillation: For anchor-free fully convolu-
tional object detectors, the regression outputs are partly
trained only at positive pixels where new class objects ex-
ist. The negative pixels which do not contain new class
objects are not included in regression outputs training, so
the model will output random predictions on background
pixels. Thus, the partially trained regression outputs are
very noisy and cannot be directly used for distillation.
This has also been observed by Zhang et al. (2020). In
their paper, Zhang et al. (2020) use an anchor-based fully
convolutional object detector (RetinaNet) as their back-
bone. They mention that for RetinaNet, the ratio of pos-
itive and negative anchor boxes is highly imbalanced and
the negative boxes that correspond to background carry
little information for knowledge distillation. Thus, Zhang
et al. (2020) propose an anchor box selection method to
remove the noisy negative boxes. Although the regression
outputs are not suitable for distillation, regression pre-
diction on old class objects is not significantly affected.
For negative pixels where new class objects do not exist
and old class objects may indeed exist, the target model
automatically follows the source model prediction since
it is initialized by the source model parameters which
are not retrained. One the other hand, non-regression
outputs, such as classification, are trained at all pixels,
so there is little noise within these outputs. Thus, for
anchor-free fully convolutional object detectors, only the
non-regression outputs will be used for distillation.

Intermediate Distillation: The class-agnostic inter-
mediate features are commonly used for distillation to
preserve old class information. However, we find that the
efficiency of intermediate distillation strongly depends on
the model structure. If the detector model contains a
FPN within its backbone, the intermediate distillation
offers limited improvement. The distillation at the fi-
nal outputs which are connected with multiple feature

maps from the FPN will back-propagate the front back-
bone layers and provide sufficient old model information.
On the other hand, if the detector model does not use the
FPN, intermediate distillation can help to further allevi-
ate catastrophic forgetting since distillation at the final
output has limited long-range regularization effect on the
front layers. In our experiments, we use the L2 loss for
both non-regression output and intermediate feature dis-
tillation. The distillation loss is written as:

LDist =
∑∥∥Mt −Ms

∥∥2
2

(1)

where t and s refer to the target and the source networks,
respectively. M is the feature map from intermediate lay-
ers or final outputs. The distillation loss at different layers
is added to form the final distillation loss.

Restore Parameters on the Classification Layer:
For a detection model, all parameters are shared between
different classes except the final classification layer. Al-
though distillation has been performed to restrict the up-
dating of important old class parameters, the target model
still cannot obtain the same parameters of the source
model which provide the best old class performance. How-
ever, since the final classification layer is class-wise, the
parameters for old class predictions are only related to
old classes. Thus, after target model training, we can
replace the parameters of the target model by that of
the source model at the final classification layer towards
old categories. Ablation studies in the Experiments Sec-
tion corroborate our discoveries on output distillation, in-
termediate feature distillation, and the final classification
layer.

3.2 Inter-Related Distillation

In conventional knowledge distillation based incremental
learning methods, distillation is performed for each in-
put image independently. The inter-relation between fea-
tures from different training instances is rarely consid-
ered. However, the inter-relations between different in-
stance features can help to provide extra source model
information. Inspired by Liu et al. (2019) and Park et al.
(2019), we transfer additional information from the source
model by considering the relationship among different in-
stances. In our experiments, Euclidean distance is used
to measure the inter-relations between instance features.

Dl(i, j) =
∥∥Ml i −Ml j

∥∥2
2
, i, j = 1, ..., I, (2)

where Dl represents the feature distance in the lth layer,
Ml i and Ml j refer to the lth layer feature map for image
i and j, respectively. I represents the total number of
samples used for calculating inter-relations and the inter-
relation is calculated in pair-wise between all I samples.
The inter-related distillation loss is written as:

LIR Dist =
∑
L

∑
I

∥∥Dt l(i, j)−Ds l(i, j)
∥∥2
2

(3)

where L represents the total number of layer outputs
used for calculating the inter-relations.
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Table 1: Ablation study of SID method based on FCOS Tian et al. (2019) using the VOC dataset under the one-step
incremental protocol.

Note: a / b denotes overall mAP accuracy / F1i score + 1 class (20) + 5 classes (16-20) + 10 classes (11-20) (1-20)
Directly fine-tuning on FCOS 14.7% / 20.5% 16.5% / 9.7% 35.5% / 10.3%

71.6%
(normal train)

LwF adapted to FCOS 13.3% / 18.6% 15.2% / 9.6% 33.4% / 11.5%
Distill at ‘center-ness’, ‘classification’ 36.0% / 38.2% 26.1% / 27.4% 38.6% / 20.8%
Distill at ‘center-ness’, ‘classification’
w ‘classification’ replaced

42.0% / 41.5% 37.0% / 39.1% 41.5% / 28.3%

Distill at ‘center-ness’, ‘classification’, CONV Tower
w ‘classification’ replaced

68.1% / 43.3% 61.7% / 48.1% 58.9% / 58.8%

Distill at ‘center-ness’, ‘classification’, CONV Tower,
ResNet w ‘classification’ replaced

68.1% / 38.5% 61.1% / 46.1% 58.5% / 58.4%

Distill at ‘center-ness’, ‘classification’, CONV Tower
and inter-relation (2 samples) w ‘classification’ replaced
(Our method)

68.3% / 42.4% 62.2% / 48.7% 59.8% / 59.7%

Figure 2: Framework of SID method based on FCOS
(Tian et al., 2019).

3.3 Total Loss Function

The overall loss (Ltotal) is the weighted summation of
the standard training loss, non-regression output and in-
termediate feature distillation loss (1), and inter-related
distillation loss (3). For standard training loss, we follow
the loss function mentioned in the baseline model paper.
Hyper-parameters λ1 and λ2 help to balance each loss
term and are empirically set to 1 in all our experiments.

Ltotal = LModel + λ1LDist + λ2LIR Dist (4)

3.4 Incremental Learning Score Metric
(F1i)

For conventional object detection tasks, the mean aver-
age precision (mAP) on all categories is commonly used
for evaluating the performance. However, this evaluation
method is not appropriate for incremental learning since
it does not differentiate between old and new class perfor-
mance. An ideal incremental detector needs to have the
capability to preserve the old class performance with lit-
tle affect on new class learning. Inspired by the F1 score,
we propose a F1i score which calculates the harmonic
mean of the performance on the old and new classes. It
is written as:

F1i = 2× Po × Pn

Po + Pn
(5)

where Po and Pn represents the average mAP for old and
new classes, respectively. When the incremental detector
performs equally well on both the old and new classes, the
F1i score is the same as the overall mAP. When the incre-
mental detector fails on either the old or new tasks, the

F1i score will be dominated by the smaller mAP, which
indicates unbalanced behavior on incremental learning.
The commonly used overall mAP does not convey this
important information. Thus, it is preferable to use our
proposed metric for incremental learning.

4 Experiments

In this section, to prove the effectiveness of each part of
our proposed method, we first perform ablation studies on
the VOC dataset using two baseline detectors — FCOS
and CenterNet. Then we perform experiments on several
one-step and multi-step incremental scenarios on both the
VOC and COCO datasets to validate our method.

4.1 Model Implementation Details

We build our method on top of FCOS (Tian et al., 2019)
and CenterNet (Zhou et al., 2019) using their public im-
plementations. Both models are implemented using Py-
torch framework. For FCOS, ResNet-50 (He et al., 2016)
and FPN (Lin et al., 2017) are used as its backbone. We
follow the training strategy of Shmelkov et al. (2017) to
train our model. For the first training step, the network
is trained by 40k iterations for VOC and 400k iterations
for COCO. In the following incremental steps, the net-
work is trained for 10k iterations when only one class is
added and the same number of iterations as the first step
if multiple classes are added at once. The learning rate
is set to 0.001, decaying to 0.0001 after 30k iterations.
For CenterNet (Zhou et al., 2019), ResNet-50 is used as
its backbone. We follow the same training strategy men-
tioned in their paper to train our model. The network is
trained by 70 epochs for each incremental step for both
the VOC and COCO datasets. The learning rate is set to
0.000125, decaying by 10 times at 45 and 60 epochs.

4.2 Dataset and Evaluation Metric

Two detection benchmark datasets are used, PASCAL
VOC 2007 (Everingham et al., 2010) and COCO 2014
(Lin et al., 2014). For experiments on VOC, we use train
and validation set for training and test set for testing. For
experiments on COCO, we use train and valminusminival
set for training and minival set for testing. For the evalu-
ation metric, we use mAP at 0.5 Intersection over Union
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Table 2: Ablation study of SID method based on CenterNet Zhou et al. (2019) using the VOC dataset under the
one-step incremental protocol.

Note: a / b denotes overall mAP accuracy / F1i score + 1 class (20) + 5 classes (16-20) + 10 classes (11-20) (1-20)
Directly fine-tuning on CenterNet 7.3% / 9.0% 13.2% / 5.0% 28.6% / 0.0%

65.6%
(normal train)

LwF adapted to CenterNet 12.5% / 10.9% 6.9% / 1.5% 17.6% / 0.0%
Distill at ‘heatmap’ layer-1 4.2% / 2.9% 12.9% / 2.6% 31.4% / 0.0%
Distill at ‘heatmap’ layer-2 16.2% / 22.3% 16.3% / 9.2% 31.4% / 0.0%
Distill at ‘heatmap’ layer-1 w ‘heatmap’ layer-2 replaced 32.0% / 37.5% 24.8% / 24.7% 33.4% / 7.5%
Distill at ‘heatmap’ layer-1, Up CONV
w ‘heatmap’ layer-2 replaced

37.5% / 40.8% 29.9% / 31.9% 33.8% / 8.8%

Distill at ‘heatmap’ layer-1, Up CONV, ResNet
w ‘heatmap’ layer-2 replaced

40.6% / 43.6% 31.1% / 33.3% 35.9% / 15.5%

Distill at ‘heatmap’ layer-1, Up CONV, ResNet
and inter-relation (2 samples) w ‘heatmap’ layer-2 replaced

42.3% ± 0.82%
/ 39.1% ± 1.72%

42.8% ± 0.58%
/ 42.2% ± 0.29%

49.1% ± 0.38%
/ 47.5% ± 0.42%

Distill at ‘heatmap’ layer-1, Up CONV, ResNet
and inter-relation (3 samples) w ‘heatmap’ layer-2 replaced

43.7% ± 0.38%
/ 36.4% ± 1.48%

49.7% ± 0.16%
/ 44.7% ± 0.25%

46.2% ± 0.18%
/ 46.2% ± 0.17%

Distill at ‘heatmap’ layer-1, Up CONV, ResNet
and inter-relation (4 samples) w ‘heatmap’ layer-2 replaced
(Our method)

45.5% ± 0.84%
/ 27.0% ± 2.35%

51.9% ± 0.67%
/ 46.1% ± 1.00%

43.3% ± 0.47%
/ 43.0% ± 0.42%

Figure 3: Framework of SID method based on CenterNet
(Zhou et al., 2019).

(IoU) for both datasets and also use mAP weighted across
various IoUs from 0.5 to 0.95 for COCO. In addition, the
proposed F1i score is calculated to evaluate the balance
between old and new class performance.

Incremental object detection requires several important
settings for the training data. First, we need to specify
the sequence of the new categories being provided to the
model. We follow the widely used protocol in current
literature (Shmelkov et al., 2017; Zhang et al., 2020) —
the new categories are continually added in alphabetical
order. Second, we specify the accessible data for each
incremental step. Storing representative old data exem-
plars (Castro et al., 2018; Rebuffi et al., 2017) or using
unlabeled online data (Zhang et al., 2020) are commonly
used in many incremental learning methods to boost the
model performance. In our experiments, no old data or
extra online data is provided. In each incremental train-
ing step, only the training data for the new classes is
available. Third, we specify how to handle old class ob-
jects appearing in the new class data. For object detec-
tion, each input image may contain multiple classes of
objects. In incremental detection, the object classes can
come from both old and new categories. Similar to the
work in Shmelkov et al. (2017), to make the annotating
procedure much closer to real-life conditions, the labels
for old class objects are not provided in new class data.

4.3 Ablation Study

To validate the effectiveness of each part of our proposed
method, we perform experiments on three one-step in-
cremental learning scenarios on the VOC dataset. Table
1 and 2 show the experimental results based on FCOS
and CenterNet, respectively. When directly fine-tuning
the model on new class data, catastrophic forgetting hap-
pens and both models’ performance dramatically drops.
Both tables show that LwF which works well for incre-
mental classification does not provide better performance
than directly fine-tuning. In addition, the performance
of incremental detection strongly depends on the baseline
model. It is quite misleading to directly compare different
incremental detectors based on fundamentally different
baseline models. Shmelkov et al. (2017), Li et al. (2019)
and Hao et al. (2019) perform distillation at the model
output and inter-mediate features based on Fast RCNN,
RetinaNet, and Faster RCNN, respectively. In our ab-
lation study, we extensively explored the effect of final
output distillation at different output locations, such as
classification and regression outputs, and feature distilla-
tion at different intermediate layers. Part of our ablation
study can be regarded as comparisons with these works
but reproduced on our anchor-free backbone models.

Figure 2 shows the framework of our SID method on
FCOS (Tian et al., 2019). The model output of FCOS
comprises three parts: ‘classification’, ‘center-ness’ and
‘regression’. It predicts each object as a point and a 4D
vector containing the distance from that point to the four
sides of the bounding box. As the ‘regression’ branch is
partially trained only at positive pixels, the ‘regression’
branch will output random numbers at locations without
objects. Therefore, the raw outputs from FCOS, espe-
cially the ‘regression’ output, contain correct predictions
as well as strong noise components. Compared with LwF
which distills at all model outputs, only distilling at non-
regression outputs (‘center-ness’ and ‘classification’) pro-
vides 22.7%, 10.9% and 5.2% (19.6%, 17.8% and 9.3%)
mAP (F1i) improvement on each incremental scenario
for adding 1, 5 and 10 new classes, respectively. Then
by simply replacing the old class parameters of the final
classification layer, the distilled model has 6.0%, 10.9%
and 2.9% (3.3%, 11.7% and 7.5%) mAP (F1i) improve-
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Table 3: Performance for SID based on FCOS under the three-step incremental adding five new classes at a time
protocol on the VOC dataset. A(a-b) is the first-step normal training for categories a to b and +B(c-d) is the
incremental learning for categories c to d.

Note: a / b denotes overall mAP accuracy / F1i score A(1-5) +B(6-10) +B(11-15) +B(16-20) A(1-20)
Directly fine-tuning (Catastrophic forgetting)

70.6%

37.2% / 8.2% 23.0% / 0.7% 12.4% / 1.4%

71.6%
EWC (Kirkpatrick et al., 2017) 44.1% / 33.8% 28.5% / 16.5% 18.3% / 16.0%
Online EWC (Schwarz et al., 2018) 44.1% / 33.8% 29.3% / 18.7% 18.7% / 16.7%
SID (Our method) 58.8% / 58.6% 44.9% / 46.1% 36.2% / 31.9%

Table 4: Performance for SID based on FCOS under the five-step incremental adding two new classes at a time
protocol on the VOC dataset.

Note: a / b denotes
overall mAP accuracy
/ F1i score

A(1-10) +B(11-12) +B(13-14) +B(15-16) +B(17-18) +B(19-20) A(1-20)

Directly fine-tuning
73.4%

14.9% / 14.8% 7.8% / 2.9% 7.8% / 0.0% 4.1% / 1.1% 6.1% / 2.7%
71.6%

SID (Our method) 62.7% / 53.7% 54.1% / 43.1% 48.6% / 49.4% 43.8% / 29.0% 39.8% / 33.0%

Table 5: Performance for SID based on FCOS under the five-step incremental adding one new classes at a time
protocol on the VOC dataset.

Note: a / b denotes
overall mAP accuracy
/ F1i score

A(1-15) +B(16) +B(17) +B(18) +B (19) +B(20) A(1-20)

Directly fine-tuning
73.71%

21.1% / 26.0% 10.3% / 12.3% 4.8% / 6.5% 1.4% / 0.5% 2.5% / 0.0%
71.6%

SID (Our method) 68.0% / 31.5% 63.0% / 31.5% 57.3% / 29.0% 53.2% / 32.4% 48.9% / 35.9%

ment on each scenario. After that, an intermediate dis-
tillation is applied at the 4-layer Head CONV Tower out-
puts which provide 26.1%, 24.7% and 17.4% (1.8%, 9.0%
and 30.5%) mAP (F1i) improvement on each scenario.
Although the intermediate distillation at Head CONV
Tower outputs significantly alleviates catastrophic forget-
ting, the intermediate distillation at ResNet outputs is not
effective. FPN is used in FCOS structure, so distillation
at non-regression and Head CONV Tower outputs will be
back-propagated to feature maps from different backbone
layers. Further distillation at the ResNet layers cannot
provide extra information. The inter-related distillation
is also applied at the Head CONV Tower outputs and is
calculated between 2 training samples. It helps to provide
a further overall accuracy improvement.

Figure 3 shows the framework of our SID method on
CenterNet (Zhou et al., 2019). The output of CenterNet
comprises three parts: ‘heatmap’, ‘regression’ and ‘offset’.
It predicts each object as a center point and two 2D vec-
tors. One vector (‘regression’) represents the width and
height of the bounding box. Another (‘offset’) represents
the offsets of center point location towards the horizontal
and vertical axis. Similar to FCOS, the raw outputs from
CenterNet, especially the ‘regression’ and ‘offset’ outputs,
contain strong noise. Different from FCOS which only has
one convolutional layer for each output branch, Center-
Net consists of two convolutional layers for each output
branch. The first convolutional layer is class-agnostic, and
the second convolutional layer is class-wise. We find that
for the non-regression output branch (‘heatmap’), distill-
ing at the first convolutional layer output and replacing
the old class parameters for the second convolutional layer
provides the best results. Compared to LwF, this selec-
tive distillation operation shows 19.5%, 17.9% and 15.8%
(26.6%, 23.2% and 7.5%) mAP (F1i) improvement on
each incremental scenario in Table 2.

After that, intermediate distillation is applied at Up
CONV and ResNet outputs which provide 5.5%, 5.1%,

0.4% (3.3%, 7.2%, 1.3%) and 3.1%, 1.2%, 2.1% (2.8%,
1.4%, 6.7%) mAP (F1i) gain on each one-step incremen-
tal scenario. On the contrary to FCOS, as in CenterNet
FPN is not used, distillation at ResNet outputs helps to
extract model information from front layers and shows
improvement. During the incremental training for Cen-
terNet, the batch size is set to 16. Considering computa-
tional expense, we choose 2, 3 or 4 samples to calculate
their inter-relations. The samples are randomly picked
within the batch for each iteration. As there is random-
ness in sampling, we perform each of the experiment three
times and calculate the mean and deviation. For one-step
adding 1 new class scenario, the best mAP is obtained
when 4 samples are used and the improvement is 4.9%.
In this setting, although using inter-related distillation
improves the overall accuracy, the F1i score decreases.
Under the same incremental scenario, similar result is also
obtained on FCOS based model. For incremental scenar-
ios that the old and new class ratio is large (19:1 for this
case), the retrained model suffers from more severe catas-
trophic forgetting problem. In such settings, a stronger
distillation can help to maintain more old class knowledge
but inevitably hurting the performance of new classes. As
in this setting, the only one new class absorbing all the
negative effects, which causes large accuracy difference be-
tween old and new classes, and leads to a lower F1i score.
For one-step adding 5 new classes scenario, the best per-
formance is obtained when 4 samples are used and the
mAP (F1i) improvement is 20.8% (12.8%). For one-step
adding 10 new classes scenario, the best performance is
obtained when 2 samples are used and the mAP (F1i)
improvement is 13.2% (32.0%).

Under different incremental settings, the best number
of samples for inter-related distillation is varied. We
think this is because, for different incremental settings,
the extent of catastrophic forgetting is different due to
the amount of training data, the ratio between old and
new classes, and the percentage of old class missing anno-
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Table 6: Performance for one-step incremental experiments on the COCO dataset.
Note: a / b denotes
overall mAP accuracy / F1i score

+ 5 classes (76-80) + 10 classes (71-80) + 40 classes (41-80) normal train (1-80)

Directly fine-tuning (mAP@.5) 3.3% / 0.0% 6.4% / 0.0% 25.4% / 0.5%
47.0%

SID (Our method) (mAP@.5) 46.8% / 48.4% 46.4% / 46.6% 41.6% / 41.2%
Directly fine-tuning (mAP@[.5, .95]) 2.2% / 0.0% 4.1% / 0.0% 16.2% / 0.3%

29.3%
SID (Our method) (mAP@[.5, .95]) 28.9% / 29.9% 28.8% / 28.7% 25.2% / 24.9%

Table 7: Performance for multi-step incremental experiments on the COCO dataset. A(a-b) is the first-step normal
training for categories a to b and +B(c) is the incremental learning for category c.

Note: a / b denotes
overall mAP accuracy
/ F1i score

A(1-75) +B(76) +B(77) +B(78) +B(79) +B(80) A(1-80)

Directly fine-tuning
(mAP@.5) 46.8%

0.6% / 0.0% 0.4% / 0.0% 0.3% / 0.0% 0.3% / 0.0% 0.5% / 0.0%
47.0%

SID (Our method)
(mAP@.5)

43.5% / 46.3% 40.2% / 32.8% 35.8% / 29.7% 33.2% / 34.3% 31.1% / 42.3%

Directly fine-tuning
(mAP@[.5, .95]) 29.4%

0.5% / 0.0% 0.3% / 0.0% 0.2% / 0.0% 0.2% / 0.0% 0.4% / 0.0%
29.3%

SID (Our method)
(mAP@[.5, .95])

26.4% / 29.7% 24.3% / 19.5% 21.4% / 18.2% 19.8% / 20.5% 18.5% / 26.1%

tations. In addition, the improvement from inter-related
distillation for CenterNet based model is much higher
than FCOS based model. We conjecture the training
batch size is the reason. A larger batch size will help
to provide more sufficient inter-relation information. Ac-
cording to their default implementation, the batch size is
set to 16 for CenterNet and 2 for FCOS.

4.4 Experiments on the VOC Dataset

Using FCOS as the backbone network, we have investi-
gated the results under multi-step incremental scenarios
for the VOC dataset. Observing from Table 3, 4 and 5,
our SID method outperforms directly fine-tuning for each
incremental step on all three different multi-step settings.
The average mAP (F1i) improvement is 22.4%, 41.7%
and 50.1% (42.1%, 37.3% and 23.0%) for scenarios on Ta-
ble 3, 4 and 5, respectively. We find that SID achieves
nearly the same overall mAP and F1i score in some cases
such as in (+B(6-10)) step in Table 3, which indicates the
well-balanced performance of our detector. The gap be-
tween F1i score and mAP shows the degree of the unbal-
anced learning in different scenarios. We conjecture that
the gap is due to the different difficulty levels of different
classes, as well as the unbalanced numbers of the old and
new tasks. On the contrast, the F1i score of fine-tuning is
far lower than our method, since the old class mAP of fine-
tuning is nearly zero and denominates the F1i score. As
the performance of LwF degrades to 0 in the second incre-
mental step, we do not put these results in the table due to
the space limitation. In addition, under three-step incre-
mental adding five new classes scenario, we also compared
our method with EWC (Kirkpatrick et al., 2017) and on-
line EWC (Schwarz et al., 2018). The average mAP (F1i)
improvement is 16.3% and 15.9% (23.4% and 22.5%) com-
paring with EWC and online EWC, respectively.

4.5 Experiments on the COCO Dataset

Using FCOS as the backbone network, we have also per-
formed experiments on the COCO dataset under both
one-step and multi-step incremental scenarios. According

to Table 6, under three different one-step scenarios, our
SID method outperforms directly fine-tuning by a large
margin on both average mAP and F1i score. Table 7
shows the experimental results under five-step incremen-
tal of each time adding one new class protocol. The overall
average gain is 36.4% mAP at 0.5 IoU and 21.7% mAP
at weighted across different IoU from 0.5 to 0.95. The
overall F1i score gain is 37.1% at 0.5 IoU and 22.8% at
weighted across different IoU from 0.5 to 0.95.

5 Conclusion

In this paper, we focus on designing an incremental
paradigm for anchor-free fully convolutional object detec-
tors. Based on knowledge distillation, a novel incremen-
tal detection method SID is proposed. First, conventional
distillation is applied at non-regression model outputs and
suitable intermediate layer outputs. Second, inter-related
distillation is applied to provide extra high order source
model information and further improve the distillation
quality. Finally, after training, the target model’s old
class parameters on the class-wise final classification layer
are replaced with the corresponding parameters from the
source model to further alleviate catastrophic forgetting.
In addition, to better evaluate the balance performance
between old and new classes, a new metric is proposed.
Experiments on benchmark datasets demonstrate the ef-
fectiveness of our method.
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