
1

This is the authors version of an article accepted for publication in
Computer Vision and Image Understanding (CVIU).

Multimodal Attention Networks for Low-Level Vision-and-Language Navigation

Federico Landia,∗∗, Lorenzo Baraldia, Marcella Corniaa, Massimiliano Corsinib, Rita Cucchiaraa

aUniversity of Modena and Reggio Emilia, Italy
bISTI - CNR, Italy

ABSTRACT

Vision-and-Language Navigation (VLN) is a challenging task in which an agent needs to follow a lan-
guage-specified path to reach a target destination. The goal gets even harder as the actions available
to the agent get simpler and move towards low-level, atomic interactions with the environment. This
setting takes the name of low-level VLN. In this paper, we strive for the creation of an agent able to
tackle three key issues: multi-modality, long-term dependencies, and adaptability towards different
locomotive settings. To that end, we devise “Perceive, Transform, and Act” (PTA): a fully-attentive
VLN architecture that leaves the recurrent approach behind and the first Transformer-like architec-
ture incorporating three different modalities – natural language, images, and low-level actions for
the agent control. In particular, we adopt an early fusion strategy to merge lingual and visual infor-
mation efficiently in our encoder. We then propose to refine the decoding phase with a late fusion
extension between the agent’s history of actions and the perceptual modalities. We experimentally
validate our model on two datasets: PTA achieves promising results in low-level VLN on R2R and
achieves good performance in the recently proposed R4R benchmark. Our code is publicly available
at https://github.com/aimagelab/perceive-transform-and-act.

1. Introduction

Effective instruction-following and contextual decision-
making can open the door to a new world for researchers in
embodied AI. Deep neural networks have the potential to build
complex reasoning rules that enable the creation of intelligent
agents, and research on this subject could also help to empower
the next generation of collaborative robots (Savva et al., 2019;
Xia et al., 2018). In this scenario, Vision-and-Language Navi-
gation (VLN) (Anderson et al., 2018c) plays a significant part
in current research. This task requires to follow natural lan-
guage instructions through unknown environments, discovering
the correspondences between lingual and visual perception step
by step. Additionally, the agent needs to progressively adjust
navigation in light of the history of past actions and explored
areas. Even a small error while planning the next move can
lead to failure because perception and actions are unavoidably
entangled; indeed, we must perceive in order to move, but we
must also move in order to perceive (Gibson, 2014). For this
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reason, the agent can succeed in this task only by efficiently
combining the three modalities – language, vision, and actions.

Recent literature identifies two main operating settings for
VLN (Landi et al., 2019), called high-level action space and
low-level action space (Fig. 1a). The concept of a high-level,
panoramic action space was first proposed by Fried et al.
(2018). In this setting, navigation takes place on a graph whose
connectivity is known a priori and the nodes are represented
by different viewpoints (i.e., the locations where the agent can
step and look at the surroundings). High-level agents predict
the path to the goal as a sequence of connected viewpoints, and
move through the environment using a teleporting system. This
aspect limits adaptability to real-world applications and pre-
vents current research on high-level VLN from having a practi-
cal impact on embodied navigation robots. Instead, low-level
methods make predictions over the agent locomotor system,
hence performing actions with a one-to-one correspondence
with the robot control system – rotate X°, tilt up/down, and
step forward are examples of low-level actions. Even though
low-level navigation can still be performed on a graph-like en-
vironment (with viewpoints as nodes), the agent is not aware
of it and does not exploit any knowledge related to the struc-
ture of the underlying simulating platform. This setting is more
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(a) Low-level and High-level action spaces
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(b) PTA is entirely based on attention

Fig. 1. Previous approaches to VLN perform high-level navigation, relaxing the assumptions on the agent action space, and build upon recurrent neural
networks to model long-term dependencies among the three modalities involved – text, images, and actions. Instead, PTA implements low-level interactions
with the environment and exploit only attention mechanisms

in line with recent research on embodied AI platforms (Savva
et al., 2019; Xia et al., 2018), which is moving towards realistic
and low-level interactions with the environment and continuous
control of the agent. Since the adaptability to real-world appli-
cations represents an important challenge in this scenario, we
tackle the task of low-level VLN, in which abstract reasoning
(i.e., teleporting from a viewpoint to the next and knowledge of
the connectivity graph) is no longer available to the agent.

Encouraged by the success of attention in many vision-and-
language tasks (Devlin et al., 2019; Lu et al., 2019; Vaswani
et al., 2017), we propose a new model for low-level VLN that
exploits fully-attentive networks to merge the knowledge com-
ing from different domains. In this work, we devise Perceive,
Transform, and Act (PTA), in which the different modalities
(text, vision, and actions) can be conditioned on the full history
of previous observations. While all the previous approaches
to VLN rely on a recurrent policy to track the agent’s internal
status through time, we directly infer the state from the obser-
vations via attention and avoid any form of recurrence (Fig. 1b).
For this reason, our agent can model the dependencies tied to
navigation more efficiently and generalize to longer episodes
better than other models.

At the present time, there is no study exploring the possibility
for a given architecture to switch between the high-level and the
low-level action spaces. In this work, we experimentally show
that methods born and designed for high-level navigation expe-
rience a drop in performance when adapted for low-level VLN.
Indeed, high-level reasoning and abstraction from the physical
environment is too heavily exploited to let the agent walk on its
own. This is not true for PTA, which is designed for low-level
use but can easily adapt to high-level scenarios. We summarize
our main contributions as follows:

• We propose a novel multimodal framework for low-level
VLN that replaces any form of recurrence with attention
mechanisms, using them to tackle both long-term depen-
dencies and multi-modality. To the best of our knowl-
edge, our model is the first Transformer-like architec-
ture to merge visuo-linguistic perception with information

coming from the agent action system;

• We technically describe how it is possible to switch from
a high-level output space to a low-level locomotor system
and vice versa. Experimental results on this subject are
the first to analyze the mutual relationships between low-
level and high-level VLN, and validate the hypothesis that
high-level architectures are not easily adaptable to the low-
level counterpart. Such results highlight the need for more
experiments in this direction for future works;

• Experimental results show that PTA achieves good perfor-
mance on low-level VLN. We validate this claim on two
different benchmarks of increasing instruction length and
complexity. Since our setting is closer to real-world ap-
plications and requires to decode fine-grained atomic ac-
tions, we believe that low-level VLN represents the next
testbed for embodied agents aiming to perform Vision-
and-Language Navigation.

2. Related Work

There is a wide area of research devoted to bridge natural
language processing and image understanding. Image caption-
ing (Anderson et al., 2018b; Vinyals et al., 2015; Xu et al.,
2015), visual question answering (Antol et al., 2015; Goyal
et al., 2017), and visual dialog (Das et al., 2017a,b) are ex-
amples of active research areas in this field. At the same
time, visual navigation (Gupta et al., 2017; Shen et al., 2019;
Xia et al., 2018) and goal-oriented instruction following (Chen
et al., 2019; Fu et al., 2019; Qi et al., 2020b) represent an impor-
tant part of current work on embodied AI (Das et al., 2018a,b;
Savva et al., 2019; Yang et al., 2019). In this context, Vision-
and-Language Navigation (VLN) (Anderson et al., 2018c) con-
stitutes a peculiar challenge, as it enriches traditional naviga-
tion with a set of visually rich environments and detailed in-
structions. Additionally, all the scenes are photo-realistic and
unknown to the agent beforehand.

High-level Vision-and-Language Navigation. The idea of a
high-level action space was first proposed by Fried et al. (2018),
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and immediately allowed for an important boost in terms of
performance. Following work includes visual and textual co-
grounding with progress inference (Ma et al., 2019a) and back-
tracking with learned heuristics (Ma et al., 2019b). Other meth-
ods implement a speaker module which strengthens consis-
tency between the chosen path and the instruction (Fried et al.,
2018; Wang et al., 2019). Wang et al. (2019) propose a rein-
forced cross-modal matching critic, together with a new self-
supervised imitation learning setting. Tan et al. (2019) devise a
novel environmental dropout method to improve traditional fea-
tures dropout for VLN. Ke et al. (2019) propose a FAST navi-
gation agent which improves the performance both over greedy
decoding of the next action and over beam search. Very re-
cently, Zhu et al. (2020) exploit auxiliary reasoning tasks and
the rich semantic given by the navigation in their model, while
Hao et al. (2020) investigate an efficient pre-training for generic
VLN agents. While pragmatic approaches with high-level rea-
soning allow for a boost in performance, architectures built for
high-level VLN rely heavily on the information coming from
the underlying simulating platform. Even when the environ-
ment is supposed to be unknown (e.g. during test) the agent
can get a priori knowledge from the connectivity graph and
exploit this information for a more efficient navigation. Re-
cently proposed benchmarks and new evaluation metrics (Jain
et al., 2019) show that traditional approaches hardly adapt to
longer trajectories. Indeed, the recurrent nature of previous
methods exacerbates the difficulty of learning long-term depen-
dencies (Bengio et al., 1994) both in the instruction and in the
navigation.

After the initial submission of this paper, new methods have
been proposed to deal with VLN on a high-level perspective:
a recent line of work designs graph operations to boost plan-
ning capabilities (Deng et al., 2020) or to model visuo-linguistic
relationships in the graph nodes (Hong et al., 2020). Zhang
et al. (2020) propose to employ two levels of attention-guided
co-grounding, together with a new learning scheme alternating
teacher-forcing and student-forcing. Qi et al. (2020a) design an
architecture taking advantage from both visual tokens and ac-
tion tokens in the instructions. Visual tokens are employed to
identify meaningful visual features in the environment, while
action tokens consider only the agent state (represented by co-
ordinates features). In this work, we leverage the same intuition
in our multi-modal decoder. In fact, we propose an additional
decoding branch that does not employ visual features, but fo-
cuses on action clues provided in the sole instruction.

Low-level Vision-and-Language Navigation. In low-level
VLN, the agent takes move in the environment by using ac-
tions such as rotate, tilt up, and step ahead. So far, only a
small portion of literature has taken this direction. Anderson
et al. (2018c) build on a traditional sequence-to-sequence archi-
tecture, while Wang et al. (2018) employ a mixture of model-
free and model-based reinforcement learning. In these works
the agent perceives only the first person view of the surround-
ing environment. More recently, Landi et al. (2019) propose a
sequence-to-sequence model which exploits dynamic convolu-
tion to make the visual representation more compact and infor-
mative for the agent. In this last work, the agent perceives the

360° image of the surroundings. This generalization does not
hurt adaptability to real-world scenarios, since it is relatively
easy to enrich the agent with additional RGB cameras.

3. Perceive, Transform, and Act

Our goal is to navigate unseen environments using low-level
actions with the only help of natural language instructions and
egocentric visual observations. To merge multimodal knowl-
edge coming from the environment, we devise a two-stage en-
coder. In the first stage, we focus on encoding the instruction
– this step can be done once per episode as the natural lan-
guage indication remains the same throughout the navigation.
In the second stage, we use spatial attention to encode the vi-
sual observation and then employ the encoded instruction com-
ing from the previous phase to enrich the agent representation
of the surrounding environment. At each time step, the agent
selects a move to progress towards the goal. To determine the
next action, we fuse visuo-linguistic information with the his-
tory of actions via attention and build a multimodal decoder
which merges the three modalities: actions, images, and text.
We then decode a probability distribution over a low-level out-
put space in which possible actions are atomic moves like turn
or step ahead. After a first phase in which we train the agent
with classical imitation learning, we implement an extrinsic re-
ward function to promote coherence between ground-truth and
predicted trajectories. We are the first, to the best of our knowl-
edge, to build a VLN architecture without recurrence. Each
component of our model is end-to-end trainable. Our architec-
ture is depicted in Fig. 2 and detailed next.

3.1. Two-stage Encoder

At the beginning of each navigation episode, the agent re-
ceives a natural language instruction {w0,w1, . . . ,wn−1} of vari-
able length n. The agent also perceives a panoramic 360° image
of the surroundings It at each timestep t. Our encoder consists
of a single branch for each modality: text and images, and then
employs attention to create a fused representation which specif-
ically models the relevance of the source instruction into the
visual observation.

Instruction Encoding. To encode the textual instruction, we
employ an attention mechanism with multiple heads, followed
by a feed-forward network. As a first step, we filter stop words
and apply GloVe embeddings (Pennington et al., 2014) to ob-
tain a meaningful representation for each word. We then apply
the following transformation:

X̃ = LayerNorm (max(0, XWx + bx)) , (1)

where X is the GloVe embedding for the natural language in-
struction, Wx ∈ RdGloVe×dmodel and bx ∈ Rdmodel are learnable
parameters, and LayerNorm(·) stands for layer normalization.
Since the instruction encoder has no recurrence, we must in-
ject information about the relative position of the words in the
sentence. Such information is added in the form of positional
encoding to the input embeddings. The positional encodings
have the same dimension as the embeddings, so that the two
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Fig. 2. Overview of our approach. Our attention-based architecture for VLN builds upon three main blocks: an instruction encoder, an image encoder, and
a multimodal decoder. SA, CA, and FF stand for self-attention, cross-attention, and feed-forward networks respectively. Dotted lines stand for residual
connections between the results of the attention blocks and their inputs. For sake of clarity, we omit layer normalization after each block

can be summed. We employ sine and cosine functions of dif-
ferent frequencies, in line with (Vaswani et al., 2017):

PE(pos,2 j) = sin(pos/100002 j/dmodel )

PE(pos,2 j+1) = cos(pos/100002 j/dmodel )
(2)

where pos is the position in the sequence and j is the chan-
nel index. At this point we use multi-head attention to create
a representation that models temporal dependencies inside the
instruction. Multi-head attention is defined as:

MH (Q, K,V) = Concat (h1, h2, . . . , hh) WO

with hi = Attention
(
QWQ

i , KWK
i ,VWV

i

)
,

(3)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and

WO ∈ Rhdv×dmodel denote learnable weight matrices, and the in-
dex i stands for the ith head in the multi-head attention mod-
ule. As also stated in our implementation details, dk = dv =

dmodel/h. In each head, we employ the scaled dot-product atten-
tion defined by Vaswani et al. (2017):

Attention (Q, K,V) = softmax
(

QK>
√

dk

)
V. (4)

The attention mechanism described by Eq. 4 computes a
weighted sum of the values (V) basing on the similarity be-
tween the keys and the queries (K and Q). In the self-attention,
the same source sequence (X̃ in this case) is employed to model
the (Q, K,V) triplet of Eq. 3. Following the attention layer, we
place a feed-forward multilayer perceptron:

FF
(
X̃
)

= max
(
0, X̃W1 + b1

)
W2 + b2, (5)

where W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel , b1 ∈ Rdff , b2 ∈ Rdmodel .
At the end of this step, we obtain the attended representation
for the current instruction X̃ = {x̃0, x̃1, . . . , x̃n−1}, that we use
both during image encoding and in our multimodal decoder.

Image Encoding. As a first step, we discretize the 360°
panoramic image of the surroundings It in 36 squared locations

and we extract the corresponding visual features with a ResNet-
152 (He et al., 2016) trained on ImageNet (Deng et al., 2009).
Each viewpoint covers 30° in the equirectangular image repre-
senting the agent surroundings, hence the image representation
takes the form of a 3 × 12 grid. We then project visual features
with a transformation similar to Eq. 1, but instead of using si-
nusoidal positional encodings, we append a coordinate vector
given by:

coordt = (sin φt, cos φt, sin θt) , (6)

where φt ∈ (−π, π] and θt ∈ [− π2 ,
π
2 ] are the heading and ele-

vation angles for each viewpoint in the 3 × 12 grid relative to
the agent position at timestep t. We then apply multi-head self-
attention according to Eq. 3 to help modeling concepts such
as relative positions between objects. In this layer, the input
sequence modeling (Q, K,V) is composed by the features ex-
tracted from the 36 squared regions of It.

After this step, we aim to create an image representation en-
riched with the textual concepts expressed by the attended in-
struction X̃. We use cross-attention to achieve this goal, and
employ X̃ as keys and values for multi-head attention (Eq. 3),
while the queries come from the output of the previous self-
attention layer. Using cross-attention, we enrich visual infor-
mation with a weighted sum of the instruction tokens. From the
resulting representation it is possible to draw concepts such as
the tableness or the redness of an image region, given an in-
struction that refers to concepts such as table or red. Finally,
a feed-forward network as in Eq. 5 is applied to obtain the at-
tended visual observation Ĩt.

3.2. Multimodal Decoder
Our decoder predicts the next action to perform among the

following instructions: turn right/left 30°, tilt up/down, step for-
ward, and end episode – to signal that it has reached the goal.

Contextual History for Action Decoding. The first part of our
decoder takes into account the history of past actions. While
previous methods employ a recurrent neural network to keep
track of previous steps (see for instance Anderson et al. (2018c);
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Ma et al. (2019a); Wang et al. (2019)), we explicitly model
Ht = {a0, a1, . . . , at−1} as the set of actions performed before
the current timestep t. Note that a0 coincides with the <start>
token. We add sinusoidal positional encoding (Eq. 2) to provide
temporal information and apply multi-head self-attention to ob-
tain an attended history representation H̃t = {ã0, ã1, . . . , ãt−1}.

Late Fusion of Perception and Action. At this point, H̃t con-
tains the relevant information regarding the action history of
the navigation episode. However, this information must be en-
riched with the perception coming from the environment. We
merge textual and visual information with H̃t via attention, al-
lowing mutual influence between perception and motion. We
build two branches of multi-head cross-attention accepting re-
spectively X̃ and Ĩt as key/value pairs and using H̃t as query.
The image-action cross-attention is motivated by the fact that
the agent needs to look around before decoding the next ac-
tion. Since Ĩt already contains information coming from the
instruction, this cross-attention layer is sufficient to achieve
decent results on the VLN task (as demonstrated by our ab-
lation studies). However, we find out that adding a separate
text-action cross-attention layer helps generalization in unseen
environments. After this step, we concatenate the two repre-
sentations and apply a FC layer to obtain the output sequence
whose last element corresponds to ãt. With this last layer, we
perform a late fusion of visuo-linguistic information with the
agent internal state (given by its previous history). It is worth
noting that PTA also comprises an early fusion mechanism: the
cross-attention between X̃t and the attended visual input intro-
duced in the Image Encoder. In our ablation study, we discuss
the positive effects given by the early fusion and the late fusion
mechanisms.

Action Selection. To select the next low-level action, we
project the final representation ãt in a six-dimensional space
corresponding with the agent locomotor space containing the
following actions: turn right/left 30°, tilt up/down, step forward,
and end episode. The output probability distribution over the
action space can therefore be written as:

pt = softmax
(
ãtWp + bp

)
, (7)

where Wp ∈ Rdmodel×nactions and bp ∈ Rnactions are learned parame-
ters (nactions = 6). During training, we sample the next action
to perform at from pt, while we select at = argmax(pt) during
evaluation and test.

3.3. Training
Our training setup includes two distinct objective functions.

The first estimates the policy by imitation learning, while the
second enforces similarity between the ground-truth and pre-
dicted trajectories via reinforcement learning.

Imitation Learning. To approximate a good policy, we first
train our agent using strong supervision. At each timestep t, the
simulator outputs the ground-truth action yt. In the low-level
setup, the ground-truth action is the one that allows getting to
the next target viewpoint in the minimum amount of steps. In
this phase, we aim to minimize the cross-entropy loss of the
predicted distribution pt w.r.t. the ground-truth action yt.

Extrinsic Reward. After a first training phase with supervised
learning, we finetune our agent using an extrinsic reward func-
tion. Recently, Magalhaes et al. (2019) propose to employ Dy-
namic Time Warping (DTW) (Berndt and Clifford, 1994) to
evaluate the trajectories performed by navigation agents. In
particular, they define the normalized Dynamic Time Warping
(nDTW) as:

nDTW(R,Q) = exp
(
−

DTW(R,Q)
|R| · dth

)
, (8)

where R and Q are respectively the reference and the query
paths, |R| is the length of the reference path, and dth is the suc-
cess threshold distance. At each navigation step t, the agent
receives a reward equal to the gain in terms of nDTW:

Rt = nDTW(q0,...,t,R) − nDTW(q0,...,t−1,R). (9)

Additionally, we give an episode-level reward to the agent if
it terminates the navigation within a success threshold distance
dth from the goal, given by Rs = max(0, 1 − dgoal/dth), where
dgoal is the final distance between the agent and the target. We
can write our final reinforcement learning objective function as:

Lrl = −Eat∼πθ [At] . (10)

where the advantage function At = Rt + Rs. Based on REIN-
FORCE algorithm (Williams, 1992), we derive the gradient of
our reward-based objective as:

∇θLrl = −At∇ log πθ(at |st). (11)

4. Low-level and High-Level Navigation

Section 3 describes our approach to low-level VLN. Here, we
discuss the main technical differences with the high-level coun-
terpart and explain how PTA can switch from one setting to the
other. Differently from the low-level architectures, a high-level
method aims to predict the next node to traverse in the navi-
gation graph, as physical navigation takes place with a teleport
mechanism. The choice at time step t is done with a similarity
measure between the agent internal state st and the appearance
vector for the navigable locations vt. This similarity function is
normally mapped into a bilinear dot-product:

pt = softmax
(

f (st)>g(vt)
)

(12)

where f (·) and g(·) are generic transformations.
In principle, it is possible to substitute the final softmax clas-

sifier of a low-level architecture (Eq. 7) with Eq. 12 and change
the corresponding action space. According to this observation,
we can swap the action space of a model to test its adaptability
to different navigation settings. While traditional approaches
start from the hidden state of the recurrent policy to estimate
the agent’s internal state st, we can derive it directly from ãt:

st = ãtWs + bs, (13)

where Ws and bs are learned parameters. As vt, we select the
unattended visual features augmented with the coordinate vec-
tor described by Eq. 6, and apply the following transformation:

g(vt) = max (0, vtWv + bv) , (14)



6

where Wv and bv are learned parameters.
In our architecture, ãt can fit to represent any kind of infor-

mation about the current navigation. This is because it can draw
knowledge from the perceptual modalities and the history of
past actions directly and without the bottleneck represented by
a recurrent network. Our experiments on this subject (Sec. 5.3)
show that our model stands out from the literature in terms of
adaptability. In other words, PTA can adapt to a different action
space because it does not make any assumptions on the under-
lying simulating platform. Instead, our architecture relies on
efficient visuo-linguistic fusion mechanisms designed to be ag-
nostic towards the final action space. We will see that methods
making stronger assumptions on the action space experience a
larger drop in performance than PTA.

5. Experiments and Discussion

5.1. Experimental Setup

Datasets. In our experiments, we primarily test our architec-
ture on the R2R dataset for VLN (Anderson et al., 2018c). This
dataset builds on the Matterport3D dataset of spaces (Chang
et al., 2017), which contains complete scans of 90 different
buildings. The visual data is enriched with more than 7 000
navigation paths and 21 000 natural language instructions. The
episodes are divided into a training set, two validation splits
(validation-seen, with environments that the agent has already
seen during training, and validation-unseen, containing only
unexplored buildings), and a test set. The testing phase takes
place in previously unseen environments and is accessible via
a test-server with a public leaderboard. While the instructions
in R2R are quite long and complex (about 29 words on aver-
age), navigation episodes usually involve a limited number of
steps – max 6 steps for high-level action space and max 23 steps
for the low-level setup. In the R4R dataset, Jain et al. (2019),
merge the paths in R2R to create a more complex and challeng-
ing setup. Episodes become considerably longer, pushing the
traditional approaches to their limits and testing their general-
izability to arbitrary long instructions and more complex trajec-
tories.

Evaluation Metrics. In line with previous literature, we mainly
focus on four metrics. NE (Navigation Error) measures the
mean distance from the goal and the stop point. SR (Success
Rate) is the fraction of episodes concluded within a thresh-
old distance from the target – 3 meters for all of the previ-
ous papers on the subject. OSR (Oracle SR) represents the
SR that the agent would achieve if it received an oracle stop
signal when passing within the threshold distance from the
goal, while SPL (SR weighted by inverse Path Length) penal-
izes navigation episodes that deviate from the shortest path to
the goal. SPL is accredited to be the most reliable metric on
the R2R dataset (Anderson et al., 2018a), as it strongly pe-
nalizes exhaustive exploration and search methods like beam
search. Recently, Jain et al. (2019) propose to use Coverage
weighted by Length Score (CLS) to replace SR for generic
navigation trajectories, as this metric is also sensitive to inter-
mediate nodes in the reference path. Additionally, Magalhaes

et al. (2019) propose Dynamic Time Warping (DTW) and de-
rived metrics (Normalized DTW and Success weighted by nor-
malized DTW) to measure the similarity between reference and
predicted paths. These three last metrics are more meaningful
on the R4R dataset than SR and SPL (Jain et al., 2019).

Implementation Details. In the instruction encoder, dGloVe =

300. In each component of our model, we project the input fea-
tures into a dmodel-dimensional space, with dmodel = 512. For
multi-head attention, we employ h = 8 heads, thus dk = dv =

dmodel/h = 64. The internal representation of feed-forward net-
works has size dff = 2048. After each sub-module, we add a
residual connection followed by layer normalization. We also
apply dropout (Srivastava et al., 2014) with drop probability
p = 0.1 after each linear layer. During training, we use Adam
optimizer (Kingma and Ba, 2015) with learning rate 10−4, we
set the batch size to 32 and reduce the learning rate by a factor
10 if the SPL on the validation unseen split does not improve
for 5 consecutive epochs. We stop the training after 30 epochs
without improvement on the same metric. When finetuning us-
ing REINFORCE, we set the initial learning rate to 10−7.

5.2. Ablation Study

In our ablation study, we experimentally validate the impor-
tance of each module in our architecture. First, we ablate multi-
modality in our decoder and we do not apply late fusion before
decoding the next action. In a second experiment, we remove
cross-attention between visual and lingual information in the
encoder. Finally, we show the impact of synthetic data augmen-
tation (Fried et al., 2018) and the role of REINFORCE. Results
are shown in Table 1 and discussed below.

Multimodal Decoder. In our first ablation study, we use only
one of the two decoder branches at the time, and we do not
perform late fusion between lingual and visually-grounded in-
formation. When removing the textual branch (Table 1, line 3),
our agent performs worse on unseen environments, hence los-
ing potential in terms of generalization. When removing the
visual modality, our PTA agent is blinded and can only count
on the natural language instruction. This setup leads to success
only when the instruction does not involve references to objects
or visual properties of the environment – a nearly empty sub-
set of the dataset. Indeed, the metrics for our blind agent are
extremely low, and they do not vary between seen and unseen
environments (Table 1, line 4). This result is meaningful in
light of recent studies proving that some single-modality agents
perform better than their multimodal version by removing the
visual perception and overfitting on dataset biases (Thomason
et al., 2018).

Early Fusion of Textual and Visual Perception. As a second
experiment, we remove the early fusion mechanism, namely the
cross-attention layer between the textual and visual branches of
our encoder, to check its contribution. If this fusion layer is
redundant, we expect that the late fusion stage will compensate
for the loss. Instead, we experience a drop in performance:
−12% in SPL in unseen environments (Table 1, line 5). We
thus prove the importance of early textual and visual fusion in
our architecture for VLN.
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Validation-Seen Validation-Unseen

# Method NE ↓ SR ↑ OSR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑ NE ↓ SR ↑ OSR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑

1 Anderson et al. (2018c) 6.01 0.39 0.53 - - - - 7.81 0.22 0.28 - - - -

2 PTA (pure IL, no extrinsic reward) 4.14 0.58 0.70 0.50 0.63 0.48 0.39 6.44 0.39 0.49 0.32 0.48 0.32 0.24
3 − multi-modal decoder (only visual) 3.90 0.61 0.72 0.54 0.65 0.52 0.44 6.56 0.36 0.46 0.29 0.47 0.32 0.22
4 − multi-modal decoder (only textual) 9.64 0.03 0.04 0.03 0.28 0.19 0.02 9.13 0.04 0.04 0.04 0.28 0.21 0.02
5 − early fusion (cross attention) 6.41 0.34 0.44 0.30 0.54 0.28 0.18 7.70 0.23 0.29 0.20 0.43 0.20 0.12
6 − action history (only last action) 5.40 0.42 0.54 0.36 0.55 0.39 0.27 7.19 0.22 0.31 0.18 0.41 0.26 0.12

7 + data augmentation 3.47 0.66 0.76 0.58 0.67 0.54 0.47 5.91 0.40 0.48 0.34 0.50 0.36 0.25
8 + extrinsic reward 3.58 0.65 0.74 0.59 0.69 0.60 0.50 6.00 0.40 0.47 0.36 0.52 0.41 0.28

Table 1. Ablation study proving the effectiveness of our main modules. We also show that our model can be initialized using synthethic data augmentation
and then finetuned with a limited set of refined data. Adding an extrinsic reward function further improves the performance in the final model.

Contextual History for Action Decoding. Ht stores past ac-
tions as a series of one hot vectors, and it is extremely helpful
to model navigation history. It acts as a sort of memory for the
agent, so that it knows what actions have already been made.
A similar trick in LSTM-based VLN consists in adding the last
action as input to the policy RNN at each step. In our model,
removing Ht and using only the last action (losing all the his-
tory) causes a drop in performance: −14% and −17% on SPL
and SR respectively for the Val-Unseen split (Table 1, line 6).

Data Augmentation. In line with previous literature, we find
the use of additional synthetic instructions useful to initialize
our agent. The synthetic training set was provided by Fried
et al. (2018) using a Speaker module. After a first training with
the full set of instructions (synthetic and human-generated), we
finetune using only the original R2R train set. Results are re-
ported in Table 1, line 7.

Extrinsic Reward. While imitation learning allows approxi-
mating a good policy, there is still room for improvement via
reinforcement learning. Wang et al. (2019) were the first to
use REINFORCE in the context of VLN to refine their naviga-
tion policy based on cross-modal matching. In line with them,
we find REINFORCE beneficial for our model: our final agent
sticks more closely to the reference trajectory and penalizes
overlong navigations (Table 1, line 8).

5.3. Results on R2R

In our experiments on the R2R dataset (Anderson et al.,
2018c), we test the ability of our agent to navigate unseen en-
vironments in light of previously unseen natural language in-
structions. The main test-bed for this experiment is represented
by the R2R evaluation leaderboard, which is publicly available
online.

Comparison with SOTA. In Table 2, we report our results on
the R2R test set, together with the results achieved by other
state-of-the-art architectures on VLN. Other methods that oper-
ate in the low-level action space are the sequence-to-sequence
architecture proposed by Anderson et al. (2018c), the RPA
model using a mixture of model-free and model-based rein-
forcement learning (Wang et al., 2018), and the recurrent archi-
tecture with dynamic convolutional filters proposed by Landi
et al. (2019). Our method overcomes the state-of-the-art on
low-level VLN by a large margin (5% in terms of SPL and SR).

Test (Unseen)

Low-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑

Random 9.77 0.13 0.18 0.12
Anderson et al. (2018c) 7.85 0.20 0.27 0.18
Wang et al. (2018) 7.53 0.25 0.33 0.23
Landi et al. (2019) 6.55 0.35 0.45 0.31

PTA 6.17 0.40 0.47 0.36

Test (Unseen)

High-level Methods NE ↓ SR ↑ OSR ↑ SPL ↑

Fried et al. (2018) 6.62 0.35 0.44 0.28
Ma et al. (2019a) 5.67 0.48 0.59 0.35
Wang et al. (2019) 6.01 0.43 0.51 0.35
Ma et al. (2019b) 5.69 0.48 0.56 0.40
Ke et al. (2019) 5.14 0.54 0.64 0.41
Tan et al. (2019) 5.23 0.51 0.59 0.47
Li et al. (2019) 4.53 0.57 0.63 0.53

Table 2. Results on the R2R test server for low-level (top) and high-level
(bottom) methods. We chose the best version of each model basing on SPL.

Although a direct comparison between the two settings is not
feasible, we notice that PTA performs better than some high-
level architectures in terms of SPL. Notably, we achieve this re-
sult without making any assumption on the underlying simulat-
ing platform and decoding a longer sequence of atomic moves,
instead of target viewpoints. Moreover, high-level architectures
can often count on efficient graph-search methods (impractical
when dealing with continuous controls) to decode the final tra-
jectory, and on additional modules that are not present in our
method. While these are effective for high-level VLN, their
generalizability to a low-level setup, closer to real-world appli-
cation, is yet to be tested.

Switching from Low-level to High-level. Our second experi-
ment on R2R aims to test the effects of retraining existing mod-
els after switching their final action spaces (from high-level to
low-level and vice-versa). To that end, we change the final clas-
sifier of PTA as described in Section 4. In this new setting, the
output of the action decoder becomes a probability distribution
over the adjacent nodes of the navigation graph. Once the agent
decides where to go, the displacements are made automatically
and there is no need to decode lower-level actions such as ro-
tations. We train PTA from scratch in this setup, without any
further hyperparameter tuning. In Table 3 we detail the full
set of metrics obtained using PTA with the high-level classifier,
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Fig. 3. Visualization of the navigation error (left) and success rate (right) on the R2R val-unseen split. A larger difference between the blue and gray bars
denotes a lower degree of adaptability. The metric gap is reduced when using PTA

and compare with the model incorporating the low-level control
system. The small gap between the metrics in the two setups
suggests that PTA does not take any particular advantage from
the underlying action space. Of course, metrics that directly
evaluate the final trajectory (like DTW-based metrics) benefits
from using high-level actions with automatic oracle displace-
ments.

In principle, every model should exhibit a decent level of
elasticity towards different locomotor settings. In practice, we
find out that architectural choices that strongly help high-level
VLN often end up hindering the other setup. This is especially
true when the agent exploits high-level reasoning and makes
strong assumptions on the nature of the underlying simulator.
As a result, current high-level methods experience a drop in
performance when adopting a simple, atomic action space (see
Figure 3). PTA, instead, does not rely on such assumptions
and builds on more efficient modules to merge multi-modal
information entailed in the VLN task. The plots in Figure 3
show that our model exhibits far greater flexibility to the final
action space than other architectures. The considerably nar-
row step between the blue and the gray bars (representing the
low-level and the high-level actions spaces respectively) de-
notes that a change in the final action space does not prevent
PTA from reaching its goal. We compare with the Speaker-
Follower (Fried et al., 2018) and the Self-Monitoring agent (Ma
et al., 2019a) from the high-level setup, which experience a
sizeable loss in performance. In fact, results drop of 11% and
13% respectively in terms of SR when adapted for low-level
use. We also compare PTA with a recurrent architecture ex-
ploiting dynamic convolution (Landi et al., 2019) from the low-
level category. The lower degree of adaptability shown by this
competitor is motivated by the fact that it operates a strong com-
pression on the visual input basing on the current instruction.
In this step, much information that could ease high-level action
selection is lost.

To conduct this experiment we adjust the codes from Landi
et al. (2019) and Ma et al. (2019a), which are publicly avail-
able online, and report the results in the paper for Fried
et al. (2018). We choose the Speaker-Follower and the Self-
Monitoring agents because they are flexible frameworks by de-
sign, and for this reason they are the most suitable models
among their high-level peers for this comparison. We believe

Method NE ↓ SR ↑ OSR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑

PTA low-level 6.00 0.40 0.47 0.36 0.52 0.41 0.28
PTA high-level 5.95 0.43 0.49 0.39 0.53 0.53 0.35

Table 3. Comparison between the low-level and the high-level version of
PTA. On all the metrics, a small gap denotes high adaptaility. DTW-based
metrics highly benefits from the use of a high-level action space

that the findings and insights provided in this experiment will
motivate further experiments in this direction, and help to un-
ravel the main reasons of improvements in new architectures
for VLN.

Qualitative Results. In Fig. 4, we report a qualitative result
from the R2R val-unseen set. Remarkably, PTA is able to
ground concepts such as “the second doorway on your left”
and terminates the navigation episode successfully. Since our
agent operates in a low-level setup, it needs to orientate towards
the next viewpoint before stepping ahead, making the decoding
phase more challenging.

5.4. Results on R4R
R4R (Jain et al., 2019) builds upon R2R and aims to pro-

vide an even more challenging setting for embodied navigation
agents. While navigation in R2R is usually direct and takes the
shortest path between the starting position and the goal view-
point, trajectories in R4R may bend and return on the agent’s
previous steps. This change calls for adaptation in evaluation
metrics: SPL and SR are now less indicative because the agent
might stop close the goal in the first half of the navigation and
still fail to complete the second part. In this sense, an important
role is played by recently proposed metrics: CLS (Jain et al.,
2019) and nDTW (Magalhaes et al., 2019) take into account
the agent’s steps and are sensitive to intermediate errors in the
navigation path. For this reason, these last metrics are more
meaningful when evaluating navigation agents on R4R.

Comparison with SOTA. In this experiment, we compare PTA
with other state-of-the-art architectures for VLN and report the
results in Table 4. In the low-level setup, we compare to the
recurrent architecture with dynamic convolution proposed by
Landi et al. (2019). Results show that our approach performs
better on all of the main metrics. In particular, a lower NE and a
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Instruction: Exit the bathroom and walk down the hall to the second doorway on your left. Turn left and enter the room through that doorway.

R R R S S L

S L L S E

S step

E end L left

R right

Result: Success 
(Error: 0 m)

Fig. 4. Navigation episode from the R2R unseen validation split. For each step, we report the agent first-person point of view and the next predicted action
(from left to right, top to bottom)

R4R Validation-Seen R4R Validation-Unseen

Method PL ↓ NE ↓ SR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑ PL ↓ NE ↓ SR ↑ SPL ↑ CLS ↑ nDTW ↑ SDTW ↑

Landi et al. (2019) 11.9 5.74 0.51 0.39 0.50 0.38 0.24 9.98 9.03 0.20 0.11 0.33 0.19 0.06
PTA low-level 11.9 5.11 0.57 0.45 0.52 0.42 0.29 10.2 8.19 0.27 0.15 0.35 0.20 0.08

Fried et al. (2018) 15.4 5.35 0.52 0.37 0.46 - - 19.9 8.47 0.24 0.12 0.30 - -
RCM goal oriented (Jain et al., 2019) 24.5 5.11 0.56 0.32 0.40 - - 32.5 8.45 0.29 0.10 0.20 - -
RCM fidelity oriented (Jain et al., 2019) 18.8 5.37 0.53 0.31 0.55 - - 28.5 8.08 0.26 0.08 0.35 - -
PTA high-level 16.5 4.54 0.58 0.39 0.60 0.58 0.41 17.7 8.25 0.24 0.10 0.37 0.32 0.10

Table 4. Results on the R4R validation splits. Our model is the new state-of-the-art on the two splits in both of its versions – low-level and high-level. Note
that, since the trajectories can bind and return on the agent previous steps, CLS and nDTW are the more indicative metrics. Metrics with ‘-’ were not
reported in the original papers.

higher CLS indicate that our agent tends to get closer to the goal
while sticking to the natural language instruction better than the
competitor. We also report the results obtained by our model
incorporating the high-level decision space. We compare with
Speaker-Follower (Fried et al., 2018) and RCM (Wang et al.,
2019), as implemented in (Jain et al., 2019). PTA performs bet-
ter than its high-level competitors on the majority of the met-
rics. In particular, the higher CLS score shows that PTA can
generally select a path that follows the instruction better than
the competitors. When considering the reference metrics pro-
posed for R4R (Jain et al., 2019), our architecture achieves the
best results on both the setups.

6. Conclusion

In this paper, we have presented Perceive, Transform, and
Act (PTA), the first fully-attentive model for VLN. In particu-
lar, we tackle the challenging task of low-level VLN, in which
high-level information about the environment is no longer ac-
cessible to the agent. We show that previous work on high-level
VLN suffers from low flexibility and experiences a drop in per-
formance when adapted for low-level use, while our agent nat-
urally adapts to the other action space. These results suggest
that boosts in performance observed in high-level VLN may be
due to the use of a simpler action space, and encourage further
research in this direction. Our architectural choices allow for a
significant boost in performance: PTA achieves good results on
low-level VLN, and when testing on the recently proposed R4R
dataset, PTA achieves promising results in both the setups.
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