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ABSTRACT

Multimedia event detection is the task of detecting a specific event of interest in an user-generated
video on websites. The most fundamental challenge facing this task lies in the enormously varying
quality of the video as well as the high-level semantic abstraction of event inherently. In this paper,
we decompose the video into several segments and intuitively model the task of complex event de-
tection as a multiple instance learning problem by representing each video as a “bag” of segments in
which each segment is referred to as an instance. Instead of treating the instances equally, we associate
each instance with a reliability variable to indicate its importance and then select reliable instances for
training. To measure the reliability of the varying instances precisely, we propose a visual-semantic
guided loss by exploiting low-level feature from visual information together with instance-event sim-
ilarity based high-level semantic feature. Motivated by curriculum learning, we introduce a negative
elastic-net regularization term to start training the classifier with instances of high reliability and grad-
ually taking the instances with relatively low reliability into consideration. An alternative optimization
algorithm is developed to solve the proposed challenging non-convex non-smooth problem. Experi-
mental results on standard datasets, i.e., TRECVID MEDTest 2013 and TRECVID MEDTest 2014,
demonstrate the effectiveness and superiority of the proposed method to the baseline algorithms.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed the unprecedented booming of
multimedia data generation and distribution on the Internet
thanks to the growth of platforms such as YouTube, Facebook
and Twitter. As a natural way by which human beings interact
with these multimedia data, content-based multimedia analysis
is of primary importance (Wu et al., |2000; |Yuan et al. 2021}
/hang et al.| 20204} |Yan et al.| [2020; [Zhang et al.| [2020b). It
therefore turns an interesting research efforts to content-based
multimedia analysis for various applications such as multime-
dia information indexing and retrieval [Cheng et al.| (2019);
Zhang et al.| (2018)), multimedia recommendation and multi-
media event detection (Chen et al.| (2020); Zhan et al.| (2019).
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As the first significant step in video analysis towards automatic
categorization, recognition, search and retrieval, complex event
detection that aims to automatically discover a particular event
of interest in the videos, has attracting more and more research
attention in the field of both computer vision and multimedia
communities (Chang et al., 2017b; |Song et al., 2017} |Chang
et al., 2017a; Yan et al., 2021; |[Ren et al., 2021).

Unlike elementary visual concept detection which focus
mainly on simple actions, objects, and scenes, complex event
detection is a much more challenging task for the richer con-
tent and higher level semantic abstraction of the unconstrained
Internet videos. On one hand, a complex event in a video clip
typically comprises of several lower level components such as
multiple objects, various actions, different scenes, and the rich
interactions between them; for example, “carabiners”, “climb-
ing gym” and “moving hands and feet along side of rock face”
can be found in the event “rock climbing”. On the other hand,
the quality of user-generated videos in websites varies enor-
mously; In practice many video clips contain some shots that



are completely irrelevant to the event of interest or even mis-
leading (Vahdat et al, 2013). This makes it difficult to model
these unconstrained Internet videos precisely, and consequently
could potentially devastate the performance of event detection.

Technically, the key of detecting the event of interest from
multimedia data lies in feature extraction and classifier training.
Since an untrimmed video lasts for a given period of time, it
is usually decomposed into several shots to capture additional
local information. In such a way, multiple instance learning
approach proposed in is intuitively used for
complex event detection by representing each video as a “bag”
of segments in which each segment is referred to as an instance.
In the framework of multiple instance learning, a video bag is
labeled positive with respect to an event of interest if at least one
instance in that video is positive, while the video bag is labeled
negative if all the instances in it are negative. Note that the
labels are assigned only to video bags of instances, rather than
the individual instance. In this sense, a positive video bag often
contains some instances which are irrelevant to the event, while
negative bags can also contain some instances that may appear
in positive bags (Li and Vasconcelos| 2013). As a result, there
are two main issues to be considered with respect to training the
classifier for complex event detection:

* How to represent an instance precisely to identify its reli-
ability?

* How to alleviate the negative effect of instances with low
reliability?

To the first issue, early researches usually focus on low-
lever visual features of appearance and motion in a video, such
as Scale Invariant Feature Transform (SIFT) [2004),
Laptev’s Space-Time Interest Points (STIP) (Laptev} 2005), and
Improved Dense Trajectory (IDT) (Wang et al) 2013} [Wang|
[and Schmid}, 2014} [Stein and McKennal, 2017). However, these
handcrafted features are practically infeasible

2013). Leveraging on recent success in deep learning,

convolution neural networks (CNN) features
2014a) have been exploited and have yielded impressive perfor-

mance. A complex event, however, often contains some prior
knowledge, such as specific sequences or certain scenes and
objects. Nevertheless, these visual information-based methods
might fail to exploit such external information about the event
of interest. As a result, great effort has been devoted to ex-
ploiting semantic information for multimedia event detection
tasks. For example, J. SanMiguel and J. Martinez (SanMiguel
[and Martinez, 2012)) propose a framework for complex event
recognition guided by hierarchical event descriptions; Con-
cept detectors (Snoek and Smeulders|, [2010) that are typically
learned from different multimedia archives, have come to be
leveraged to enhance the performance because the descriptions
of event often contain valuable concept information
[and Snoek| 2014} Ma et al., 2013} [Li et al., 2019} Mazloom|
2013). However, these approaches heavily depend on hu-
man knowledge to design the elementary concepts space
let al. 2017} [Cheny et al} [2019); Moreover, the limited number
of concepts that are well-defined before training manually may
result in concept mis-identification during the training process.
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Fig. 1: An example showing the semantic and visual information of different

frames.

It is noteworthy that Venugopalan et al. (Venugopalan et al.
proposed a sequence-to-sequence model to describe vi-
sual content using natural language by mapping a video to a
semantic description, and thereby achieve better performance.
Although research that aims to jointly exploits visual and se-
mantic information in video is still in its early stage, these stud-
ies have demonstrated that semantic information about a video
is valuable and should not be neglected.

To the second issue on the reliability of instances, Fan et
al. select reliable instance from positive and
negative video bags by inferring a binary indicator, and train
classifier on the selected reliable instances only. This strategy
achieves remarkable performance on multimedia event detec-
tion task. However, this work neglects the semantic information
involved in each instance and identifies the reliability accord-
ing to visual information only, which might lead to incorrect
results. For example, in Figure [T] there are some instances of
a rock climbing video bag. It would be quite easy to identify
segments b and d as irrelevant and reliable instances respec-
tively by looking at visual or semantic information alone. The
instance a may be classified as irrelevant since there is no vi-
sual feature pertaining for the event rock climbing. However,
the concepts “artificial rock formation” and “rope” found as
tagged in the red circle in instance a are relevant to the event
rock climbing if semantic information is taken into considera-
tion. In this sense, instance a should be determined as a reliable
instance and have a positive effect in the training stage. On
the other hand, although instance ¢ contains an action feature
that resembles climbing (“pulling up”), it does not contain any
semantic concept of the event rock climbing. Indeed, this in-
stance may appear in many video bags of other events, such as
“physical training” or “indoor sport” video bags. As a result,
this instance should not be regarded as reliable in rock climbing
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Fig. 2: The framework for our training process in multimedia event detection task.

video bag.

Figure [2] illustrates an overview of our proposed training
process of multimedia event detection. In our work, we take
both the high-level semantic information (similarity between
the concept of event description and the semantic feature of the
instance own) and low-level visual information (CNN feature
of the instance) into consideration to learn a reliability variable
for each instance in order to indicate its importance (see the
left part of Figure2). Since the instances with low reliability
are difficult to use for training a robust classifier, we are mo-
tivated by curriculum learning (Bengio et all, [2009) and start
training the classifier on high-reliability instances first, and then
gradually take the instances with relatively low reliability into
consideration (see the right part of Figure[2). We formulate our
proposed approach as an optimization problem, which turns out
to be highly non-convex, and hence we propose an alternating
algorithm to search for the optimal value of the reliability vari-
ables and classifier parameters simultaneously. The highlights
of our work are summarized as follows:

» Taking the visual low-level feature and high-level semantic
information simultaneously, we propose a visual-semantic
guided loss to measure the reliability of instance in the
framework of multi-instance learning for event detection.

* To alleviate the negative influence of irrelevant and am-
biguous segments in the training process, we begin
the training with high-reliability instances and gradually
added in instances with relatively low reliability over time.

* We conduct extensive experiments on two standard
datasets, i.e., TRECVID MEDTest 2013 and TRECVID
MEDTest 2014. The promising results demonstrate the ef-
fectiveness and superiority of the proposed method to the

state-of-the-art methods.

The remainder of this paper is organized as follows. In Sec-
tion II, we give a brief review of some related works on mul-
timedia event detection. Our visual-semantic guided reliable
shot identification for complex event detection is proposed in
Section III. An efficient algorithm is presented in Section IV for
finding the solution. In Section V, extensive experiments over
benchmark datasets are conducted to verify the effectiveness
and superiority of the proposed algorithm. Finally, conclusions
are given in Section VI.

Notations and Terms: Throughout this paper, we follow
the standard notation and use normal lowercase characters for
scalars (e.g., z € R), bold lowercase characters for vectors (e.g.,
z = (21,22, ,z4]" € RY), normal uppercase characters for
matrices (e.g., Z = [Z1,Zy,- - ,Z,] € R¥*P), and calligraphic al-
phabets for sets (e.g., Z). The transpose of matrix Z is denoted
by Z'. The £,-norm and ¢;-norm of vector z € R4 are defined

[wd d .
as |zl = /2y ziz and ||z, = X;_, Izil, respectively.

2. Related Work

In this section, we briefly review the existing related works
which are relevant to multimedia complex event detection,
multi-instance learning, and self-paced learning.

2.1. Multimedia Event Detection

It is crucial and difficult to represent the videos precisely
for multimedia event detection since the long videos like those
from TRECVID MEDTest-13 and TRECVID MEDTest-14
usually comprise of several lower level components such as
multiple objects, various actions, different scenes, etc. Early



research basically extracts and aggregates various complemen-
tary low-level feature descriptors from the whole video to create
a unique vector representation |Zhang et al.[(2017a); Ma et al.
(2017);/Chang and Yang|(2017);/Chang et al.|(2016b)). To name
a few, Shen et al. (Shen et al.l 2008) leverage multimodal in-
formation and apply subspace selection technique to generate
video descriptor; Sun et al. (Sun and Nevatial [2013)) use Fisher
Vector coding (Sanchez et al.| [2013) as a robust feature pool-
ing technique to combine four types of descriptors, i.e., motion
boundary histogram (MBH) (Wang et al., 2013)), histograms of
gradients (HoG), optical flow (HoF) and the shape of the trajec-
tories; Oneata et al. (Oneata et al., [2013)) combine three feature
descriptors including dense MBH (Wang et al.| 2013), SIFT
and mel-frequency cepstral coefficients (MFCC) audio features
(Rabiner and Schafer, 2007) with Fisher vector encoding for
characterizing complex event detection task, and come to a con-
clusion that SIFT and MFCC features provide complementary
cues for complex events. Xian et al. (Xian et al., 2016)) use a
uniform experimental setup to evaluate seven different types of
low-level spatio-temporal features in the context of surveillance
event detection. Despite of their good performance, the low-
level features fail to capture the inherent semantic information
in an event.

Concept detectors that utilize several external image/video
archives and learn a high-level semantic representation for the
videos with complex contents (Snoek and Smeulders| [2010),
are exploited to advance event detection for its consistence with
human’s understanding and reasoning. For example, Natara-
jan et al. (Natarajan et al., |2012) combine a large set of fea-
tures from different modalities using multiple kernel learning
and late score level fusion methods, where the features consists
of several low-level features as well as high-level features ob-
tained from object detector responses, automatic speech recog-
nition, and video text recognition. Jiang et al. (Jiang et al.
2012)) train a classifier from low-level features, encode high-
level feature of concepts into graphs, and diffuse the scores on
the established graph to obtain the final prediction of event.
To mitigate the unavoidable noise in concept high-level fea-
tures, Yan ef al. (Yan et al., 2015) select the high-level seman-
tic meaningful concepts based on both events-kit text descrip-
tions and concept detectors, and learn a concept-driven event
oriented dictionary representation for complex event detection;
Chang et al. (Chang et al.| 2016a)) weight the semantic repre-
sentations attained from different multimedia archives and pro-
pose a semantic representation analyzing framework on both
source-level and the overall concept-level. Due to the growth
of deep convolution neural networks (CNN) (Krizhevsky et al.
2012), CNN descriptors have been exploited for multimedia
event detection and achieved impressive performance improve-
ments (Xu et al.l 2015; [Zha et al., 2015). However, these tra-
ditional approaches typically extract and aggregate local de-
scriptors from video frames or shots to create a unique vector
representation for the entire video. This strategy might fail to
make full use of the important structural or temporal informa-
tion contained in the videos (Zhao et al., [2018)), such that the
key evidences are diluted for event detection, especially when
the event of interest only occurs within a short period of time in

an untrimmed long video.

To tackle the issues mentioned above, several research are
devoted to the efforts to exploit the evidences of event inter-
est for better performance of event detection. To name a few,
Tang et al. (Tang et al., 2012a)) divided video into several seg-
ments and discovered the discriminative and interesting seg-
ments by leaning latent variables over the frames based on the
variable-duration hidden Markov model; Lai et al. (Lai1 et al.|
2014b) represented each video as multiple “instances’ with dif-
ferent temporal intervals, and inferred the instance labels and
the instance-level classifier simultaneously. Fan et al. (Fan
et al.l 2017) also followed the multi-instance learning frame-
work and estimated a linear SVM classifier together with the se-
lection procedure of reliable training instances. Note that these
approaches focus on the visual information contained in each
instance (segment) and ignore the semantic information. As a
result, Chang et al. (Chang et al.| 2017b) prioritized the seg-
ments according to their semantic saliency scores which assess
the relevance of each shot with the event of interest, and then
developed a nearly-isotonic SVM classifiers to exploit the con-
structed semantic ordering information. Phan et al. (Phan et al.,
2015)) measured the importance of each segment by matching
its detected concepts against the evidential description of the
event interest, and jointly optimized with instance visual fea-
ture in a variant of multiple instance learning framework.

2.2. Multi-instance Learning

Multi-instance learning was first proposed in (Dietterich
et al.l [1997) and has been applied in several domains success-
fully, such as image categorization (Chen and Wang| [2004), ob-
ject detection (Zhang et al., 2006), drug activation prediction
(Wang et al.| 2019), and retrieval (Zhang et al., [2002). In the
framework of multi-instance learning, an example is regarded
as an instance, while a bag labeled as positive or negative is
composed of several instances. Specifically, a positive bag is
defined as containing at least one positive instance, while a
negative bag contains no positive instances. The classifier is fi-
nally designed to classify bags, rather than individual instances.
Note that the label of a bag can be assigned easily once all in-
stances have been labeled. It is noteworthy that Tibo et al. (Tibo
et al.,|2020) introduced multi-multi instance learning for partic-
ular way of interpreting predictions, where examples are orga-
nized as nested bags of instances. Various works have been pub-
lished about bag representation by merging instances (Gértner
et al.l 2002), the instance distributions of bags (Bunescu and
Mooney, 2007), and the relation between multi-instance learn-
ing and semi-supervised learning (Zhou et al., 2009); however,
these methods are based on the constraint that a positive bag can
be determined by the existence of at least one positive instance.
This assumption leads to a lack of analysis of other positive in-
stances and is too strict for negative bag (Li et al.,[2011)). Since
negative bags may contain several positive instances in many
tasks, some works that focus on relaxing the above constraint
have been developed. For example, Li ez al. (Li et al.,2011])) es-
tablished a general constraint that a positive bag should contain
at least a certain percentage positive instance. Moreover, con-
sidering that the bag can be represented by key instances, a clus-
tering algorithm has been applied to detect these key instances



(Liu et al., |2012). Li and Vasconcelos (Li and Vasconcelos,
2015) showed that using the most positive-liked k instances can
result in better performance. However, the instance labels are
updated under weak supervision, which may lead to unreliable
solutions (Zhang et al.l |2015). For multimedia event detection
task, a video is regarded as a bag and the segments of the video
are treated as instances, after which the classifier is trained on
the instances. Intuitively, the inclusion of irrelevant and am-
biguous segments may have a negative influence on the training
classifier. However, there has been limited research on training
classifiers using only those instances with strong correlations to
an event for the complex event detection tasks (Fan et al.| 2017}
Li et al., [2018blla; Luo et al., 2018)).

2.3. Self-pace Learning

Inspired by the learning mode of human beings, curriculum
learning (Bengio et al.l |2009) and self-pace learning (Kumar
et al.l 20105 [Luo et al.,|2017) were proposed to learn from easy
samples to hard samples in training process to alleviate the neg-
ative effect of noisy samples. Different from curriculum learn-
ing based on certain easiness measurements, self-pace learn-
ing can automatically and dynamically choose the training or-
der of all samples during training process (Jiang et al., 2014b).
Original self-paced learning is focus on the easiness of sam-
ples, Jiang et al. (Jiang et al.l 2014b) proposed an approach
called self-paced learning with diversity which formalizes the
preference for both easiness and diversity of samples via a non-
convex negative £, j-norm. Self-pace learning has been widely
applied to various fields, such as object tracking (Supancic and
Ramanan| 2013)), image classification (Tang et al., 2012b), and
multimedia event detection (Jiang et al., 2014a). Self-paced
learning mode can also be integrated to many existing frame-
works to enhance the performance. Zhang et al. (Zhang et al.,
2017b)) combine the multi-instance learning problem with self-
pace learning to improve the performance in co-saliency de-
tection. Li er al. (Li et al. 2016) proposed a multi-objective
method to enhance the convergence of the self-pace learning al-
gorithms. Zhao et al. (Zhao et al.,[2015)) introduced a soft self-
paced regularizer to matrix factorization to impose adaptive
weights to samples. Zhou et al. (Zhou et al., 2018)) applied self-
paced learning framework into deep learning to learn the stable
and discriminative features. Huang et al. (Huang et al., 2019)
developed a similarity-aware network representation learning
based on self-paced learning by accounting for both the ex-
plicit relations and implicit ones. Dizaji et al. (Ghasedi et al.)
2019) exploited a balanced self-paced learning algorithm for
deep generative adversarial clustering network.

3. The Proposed Methodology

In this section, we first introduce a visual-semantic guided
loss measure at the instance level, and then propose a multi-
instance learning based reliable shot identification model for
multimedia event detection tasks.

In this paper, multimedia event detection task regarding event
e is formulated as a binary classification problem in the frame-
work of multi-instance learning, where the event e usually

5

comes with a short textual description in most video event
datasets such as TRECVID MED13 and TRECVID MED14.
Formally, we use the skip-gram neural network model (Mikolov
et al.l [2013) in natural language processing to convert the tex-
tual description of event e into a vector representation e € R
Suppose there are n video bags for the detection of event e, de-
noted by B = {(B;,y) : yi € {-1,1};i = 1,2,--- ,n}, where B;
refers to the i-th untrimmed long video which are partitioned as

a set of video shots (instances), i.e., B; = {I;; : j=1,2,--- ,m;}
fori=1,2,---,n. If the i-th video bag B; belongs to the event
e,y; = 1; otherwise, y; = —1. Without loss of generality, we ini-

tialize the instance label y;; as the corresponding bag label, i.e.,
yij=yifori=1,2,--- ,nand j=1,2,--- ,m;. We extract the
CNN features from a set of uniformly sampled frames within
each video shot J;; to represent this video shot as x;; € R”. To
exploit the semantic information contained in the video shots,
we generate a text description t;; € RY for each video shot /;;
using an end-to-end sequence-to-sequence model proposed in
(Venugopalan et al., 2015).

3.1. Visual-semantic Guided Loss Measure

To make better use of the semantic and visual information
of a video simultaneously, we intuitively define the visual-
semantic guided loss measure on each instance /;; as a convex
combination of losses with regard to semantic and visual infor-
mation respectively, i.e.,

Lij=aLl+(1-a)L}; (D

fori =1,2,---,nand j = 1,2,--- ,m;, where a € [0, 1] con-
trols the influence of losses on visual and semantic information.
Specifically, the visual information loss on the video shot [;; is
calculated based on hinge loss function by

LW, b X, yij) = max(0, 1 —y;(w'x;; +b) (2

where w and b are parameters to learn.

The instances exhibiting higher correlation at the semantic
level are more important to the event (Phan et al., [2015) than
the ones with lower correlation. As a result, we measure the
similarity between the semantic feature of each video shot I;;
and the event of interest e by

€ _
s;; = cos(t;j, e)

fori = 1,2,---,nand j = 1,2,--- ,m;, namely the instance-
event similarity. Note that this similarity measurement is differ-
ent from the one defined in (Phan et al.| [2015) which is formu-
lated based on limited number of concepts. With the instance-
event similarity, the label of instance /;; is predicted by function
h, : [0,1] — {-1, 1} with respect to a related level threshold
r € R for all video shots, i.e.,

. 1, if Rank(s{) <r
hr(Sij) = { | /

where the function Rank(sfj) is utilized to quantifies the simi-
larity sfj into a related level. For each instance I;;, the value of
Rank(sfj) being less than r means that the instance can be pred-
icated as having a positive semantic similarity level with high

3)

otherwise



confidence. It is evident that this confidence increases as the
value of threshold r decreases. We define the semantic infor-
mation loss L;?'j. by penalizing the noisy instances, i.e.,

(1= 25¢) + 1,
LY (l’l (sl]) ylj> { gj( Slj)

Note that the loss of correctly labeled instance is set as 0 ac-
cording to Equation (). For the wrongly labeled instances,
moreover, we calculate loss on the following cases:

hr(sfj) * yij
otherwise

“)

* When the wrongly labeled instance I;; is in a positive bag,
its semantic loss .Lj turns to 2 — 2sf., which means we
can apply a higher penalty to those instances with lower
similarity to the event of interest.

* When the wrongly labeled instance /;; is in a negative bag,
its semantic loss _[ZS] = 2s which suggests we can apply
a higher penalty to those 1nstances with higher similarity
to the event of interest.

3.2. Reliable Shots Identification in Multi-instance Learning
Framework

To characterize the importance of instances with different re-
liability, we introduce a variable g;; € {0, 1} for each instance
I;j, and collect the rellablhty variables of video bag B; into
q = [gi.qi, " »qim,]" € {0,1}" fori = 1,2,--- ,n. Intu-
itively, the instance I;; accrues more reliability when the value
of g;; gets closer to 1. To identify the reliable instances for
multimedia event detection task, we assign nonzero weights to
reliable instances on the one hand and disperse these instances
across more bags on the other hand. Following the strategy
used in (Fan et al., |2017), we learn the latent reliability vari-
ables {q;}?_, and the classifier parameters w, b jointly by mini-
mizing the weighted training loss together with the elastic-net
regularization term, i.e.

mn}}moLmbaﬂ+Q@Jy» )

m;
St > gy = pimi(i=1,2,0+ ,n)

j=1

qij € {05 1}(1 = 1’2’“' ,I’l,J: 1727'” ’mi)

where “©” denotes the element-wise product; The first con-
straint refers that the proportion of reliable instances in each
video bag is not less than p; ¢ R (i = 1,2,---,n).
Liw,b;a,r) = [Li, Lo+, Lin]T € R™ represents the
visual-semantic guided loss measurement on the i-th video bag,
where its j-th component is calculated by

Lij = a LW, bixipyi) + (1= )L (h(s5).yi)  (6)

fori=1,2,---,nand j=1,2, - ,m;. The regularization term
Q(q;, A,y) is defined as an negative elastic-net regularization
term combining the /;-norm and /,-norm, i.e.,

Qq;, ,y) =

—Allqilly = Yllgill2 )

6

fori = 1,2---,n, where the parameters A and vy are imposed
on the reliability term and diversity term, respectively. Specif-
ically, on one hand, the reliability term A||q;||; tends to assign
nonzero weights to the instances with high reliability over the
instances with relatively low reliability. However, when 1 # 0
and y = 0, the selected instances may come from only specific
bags, which may lead to overfitting. On the other hand, the di-
versity term v/|q;||» tends to assign nonzero weights to diverse
instances residing in more bags. When 4 = 0 and y # 0, the
algorithm selects only diverse instances so that some noisy in-
stances may be selected, which may make the model to become
biased.

4. Optimization Strategy

The objective function of optimization problem Equation (5)
is non-convex and non-smooth, thus it is difficult to find the
global minimum. In this section, we exploit an efficient alter-
native optimization algorithm to address this challenging prob-
lem.

To make the optimization problem Equation (3)) tractable, we
set the related level r within the range of {1,2,---,10} and
choose the best performance. Considering the computational
complexity, we initialize the instance label y;; to be the same as
the label of its corresponding video bag B, fori = 1,2,--- ,n
and j=1,2,---,m;. The reliability variable g;; is initialized as
1 for every instance /;; (i = 1,2,--- ,nand j = 1,2,--- ,m;).

Update (w, D). This step aims to update the multi-task network
parameters with the fixed reliability variable Q over the video
set . Note that the instance-event similarity sfj is fixed for each
instance /;;, and therefore the semantic loss .£L;. becomes a con-
stant after y;; is fixed according to Equation (4). Moreover, the
elastic-net regularization term €(q;, 4,y) also becomes a con-
stant. As a result, the optimal parameter (w, b) is obtained by
solving the following optimization problem

min Z Z gi;max(0, 1 — y;(W'x;j + b)) ®)

i=1 j=1

It is evident that this problem can be easily solved as a clas-
sic weighted SVM problem through using some pre-computed
kernel technique.

Update {q;}"_,. With fixed variables w and b, the optimal in-
dicator matrices {q;}/_, corresponding to n video bags B; (i =
1,2,--- ,n)canbe learned individually. Specifically, for the i-th
video bag B;, the visual-semantic guided loss of its j-th instance
turns to a constant .£;;. As a result, its reliable vector q; over
m; instances in the i-th video bag B; is learned by solving the
following optimization problem

mmz%a,wwrﬁwz ©)

Z qij 2 pim;
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Algorithm 1 Optimization Procedure

Input: Instance feature{x;;}; Instance-similarity sfj; Video-
level label{Y;}? | ; Reliability ratio {p;}!_; Parameters a, 4,
Y, F.
Output: w,bandq, (i =1,2,---,n).
Initialize: g;; < 1,y;; <y (i=1,2--- ,n;j=1,2,--- ,m).
1: forr =1to 10do
2:  while not converge do

3: Optimize (w, b) by SVM with fixed q; (i =
1,2,---,n).
4 fori=1toNdo
5 Calculate loss L;(w,b,a,r) € R according to
Equation () and sort its components in ascending
order - L.
6: Set g(¢) as the index mapping such that L;.t = Ligr
t=1,2,---,m).
: fort =1tom; do
8 ift < pim;or L, <A+ «ﬁ%ﬁ then
o: Gign < 1
10: else
11: Gig(r) < 0
12: end if
13: end for
14: end for
15:  end while
16: end for

fori=1,2,---,n. We follow the algorithm proposed in (Jiang
to achieve the global optimum of this non-convex
problem. Specifically, we ascend the instance losses in the i-
th video bag with fixed variable w, b and let g(¢) be the corre-
sponding index mapping such that

Ly = Ligy (10)
fort = 1,2,--- ,m;. In this sense, the g(¢)-th instance will be
selected as a reliable one for training if the following inequality

t < pim;or L, < A+

_r 11
N (o
holds, i.e., the reliability variable g, will be reset as 1 and
vice versa. It is noteworthy that, on one hand, since the rank ¢
has a value within the range 1 to m; for the i-th video bag, the
constraint # < p;m; guarantees that at least p;m; instances are
selected as reliable ones. On the other hand, the threshold A +

Y decreases when the rank ¢ increases for each video bag,

Vi+ V-1
which can make selected instances comes from more different

bags to keep diversity (Jiang et al., 2014b).

We summarize the overall algorithm for the optimization
problem Equation (3 in Algorithm 1. Note that we start train-
ing the classifier using only those reliable instances with high
reliability. As the iterations proceed and the training error be-
comes smaller, more instances will satisfy the constraint Equa-
tion (TT) to minimize the loss function of optimization problem
Equation (E[) As a result, more and more instances will be se-
lected into the reliable instance set to train the classifier. The
computational complexity of the first step which updates the

2k -5 2 -yl 2
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Fig. 3: Exemplars from the TRECVID MEDTest 2014 and MEDTest 2013
datasets.

variables w,b is O(pf?), where f = 37 Z;”" gij refers to the
number of reliable instances used for training. During the sec-
ond step which selects the reliable instances, the computational
complexity of calculating the loss is O(nm;p) and the sorting
process costs O(nm;logm;); Moreover, due to the inequality
p >> logm; usually holds in practice, the computational com-
plexity of this step turns to O(nm;p) for i = 1,2,--- ,n. In
summary, the computational complexity is O(p 2+ O(nm,-p))
for each iteration of Algorithm 1.

5. Experiments

In this section, we conduct thorough experimental evalua-
tions of the proposed framework. Firstly, we compare the pro-
posed algorithm against state-of-the-art alternative baselines.
We then compare it against state-of-the-art models using a sin-
gle feature. After that, we compare it against state-of-the-art
systems; finally, we conduct an ablation study to demonstrate
the benefit of each component in the proposed algorithm.

5.1. Experimental setup

Datasets: Following existing works on Multimedia Event
Detection, we evaluate the proposed algorithm on two real-
world event detection datasets. These datasets have been com-
piled by the National Institute of Standard and Technology
(NIST) for the TRECVID Multimedia Event Detection com-
petition. To the best of our knowledge, these datasets are the
largest public datasets for complex event detection.

* MEDTest14 [2014): The TRECVID MEDTest
2014 dataset has 100 positive training examples for each
event, along with about 5,000 negative samples. There are
approximately 23,000 testing videos. This dataset contains
events E021 to E040. Some example events are grooming
an animal, changing a vehicle tire, etc. Please refer to
(NIST, 2014 2013) for a complete list of event names and
descriptions.

* MEDTest13 [2013): Similar to MEDTest14, there
are 100 positive training examples for each event, together
with about 5,000 negative samples in the MEDTest13
dataset. There are also about 23,000 testing videos. It con-
tains events E006 to E015 and E012 to E030. A complete



list of event names and descriptions is provided in (NIST]
2013)).

Table 1: Evaluating the performance of the proposed algorithm against alter-
native baselines. mAP is used as an evaluation metric. The performance is
reported in percentages. Larger value indicates better performance.

MED14 MED13
100Ex 10Ex 100Ex 10Ex
SVM 22.8 18.3 26.9 20.7
RR 23.6 18.8 27.5 21.2
Sparse MIL 19.8 14.3 23.3 16.4
SIL-SVM 22.2 18.5 24.0 19.8
SMIL-TopK 36.9 26.2 40.5 26.9
MIL-SRI 38.6 28.4 43.1 28.7
Ours 43.2 31.8 48.7 33.9

Setting: For all experiments, we strictly follow the /00Ex
evaluation procedure outlined in (NIST} 2013} [2014). Follow-
ing the rules specified in the event kits, we separately detect
each event, resulting in 20 individual tasks for each dataset. In
other words, event detection is a binary classification task. We
use the official split released by the NIST. For each event in the
dataset, we have 100 positive training samples, and about 5,000
negative samples. Once the model has been trained, we evalu-
ate it on the testing videos. In this paper, we consider both the
100Ex and 10Ex settings provided by the NIST.

Feature Extraction: We first segment each video into mul-
tiple shots using the color histogram difference as the indica-
tion of the shot boundary. In line with existing works on event
detection, we simply choose the center frame from each shot,
resize it to 224 x 224, and extract features from the fc6 layer
of VGG16 (Simonyan and Zisserman, 2015). We run a state-
of-the-art video-to-text model on each segment, then generate a
description for each segment (Venugopalan et al., 2015).

Evaluation Metric: Following the NIST standard, we eval-
uate the event detection performance using mean Average Pre-
cision (mAP). Average Precision, which has been widely used
in the area of information retrieval, is a single-valued metric ap-
proximating the area under the precision-recall curve; mAP is
the mean of AP over all event classes.

5.2. Comparison against alternative baselines

In this section, we compare the performance of the proposed
algorithm against state-of-the-art alternative baselines. More
specifically, we conduct comparisons against the following:

* Support Vector Machine (SVM) and Ridge Regression
(RR): SVM and RR are the commonly used classifiers in
the TRECVID Multimedia Event Detection (MED) com-
petition among the top ranked teams and existing technical
reports.

* Sparse Multi-Instance Learning (Sparse MIL): We cal-
culate the central point for each bag via the operation of
average-pooling on all instances, based on which we aim
to train a bag-level classifier.
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Table 2: Performance comparison against state-of-the-art alternatives that use
a single type of feature on the TRECVID MEDTest 2014 and MEDTest 2013
datasets. mAP is used as an evaluation metric. Performance is reported in
percentages. Larger value indicates better performance.

MED14 MED13
100Ex 10Ex 100Ex 10Ex

LTS (Tang et al,2012a) 275 168 346 18.2
SED (Lai et al., 2014a) 29.6 18.4 36.2 20.1
DP (Li et al.,[2013) 28.8 17.6 353 19.5
STN (Karpathy et al.,2014b) 304 19.8 37.1 204
C3D (Tran et al., 2015]) 314 20.5 369 222
MIFES (Lan et al., [2015) 29.0 149 36.3 19.3
CNN-Exp (Zha et al.,[2015) 29.7 - — —
CNN + VLAD (Xu et al.}2015) 35.7 23.2 40.3 25.6
NI-SVM (Chang et al.,2017b) 34.4 26.1 39.2 26.8
MIL-SRI (Fan et al.,[2017) 38.6 284 43.1 28.7
Ours 43.2 31.8 48.7 339

» SIL-SVM: We first assign instances’ labels as the corre-
sponding bags’ labels, then train an instance-level classi-
fier using this information.

e SMIL-TopK: We first select the most confident & in-
stances in each bag, and then train an instance-level classi-
fier based on the selected instances. The optimal parameter
k is tuned via cross-validation.

e Multi-Instance Learning by Selecting Reliable In-
stances (MIL-SRI): MIL-SRI aims to adaptively select
reliable instances and does not require the inference of
instance labels. We tune the parameters in the range of
{1074,1073, 102,107, 1, 10} and select the best one using
cross-validation.

Experimental results are reported in Table [I} from these re-
sults, we can make the following observations. Firstly, the tra-
ditional SVM and RR can obtain promising results in both set-
tings on the datasets of interest. Secondly, Sparse MIL and SIL-
SVM achieve slightly worse performance on these datasets,
and this is mainly because they did not differentiate the in-
stances. Thirdly, we observe that SMIL-TopK and MIL-SRI
significantly improve the performance of event detection on the
used datasets, which indicates the benefits of exploiting reliable
shots. Lastly, the algorithm proposed in this paper outperforms
the other baselines by a large margin. This demonstrates the
benefits of jointly exploring the semantic and visual feature for
reliability learning.

5.3. Comparison under a single feature

To further validate the effectiveness of the proposed model,
we compare the proposed algorithm with state-of-the-art alter-
natives that use a single type of feature. The experimental re-
sults are presented in T able@ Note that, whenever possible, we
directly quote the result from the original reference; in cases
where this result was not directly available, we requested the
code from the authors and ran the experiments ourselves.
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Fig. 4: We compare the results of different versions of the proposed method, including (a) without reliability; (b) without diversity; (c) without semantic; (d) full

system.

Table 3: Comparison of the proposed model against state-of-the-art systems on
the TRECVID MEDTest 2014 and MEDTest 2013 datasets. Performance is
reported in percentages. Larger value indicates better performance.

MED14 MED13
100Ex10Ex  100Ex10Ex
C3D (Tran et al.. 2015) + IDT ~ 33.6 22.1 39.5 26.7
CNN-Exp (Zha et al.| 2015 387 - - -
CNN + VLAD (Xuetal.,2015) 36.8 24.5 44.6 29.8
NISVM + IDT (Chang et a ¥ 2017b) 38.1 27.2 46.3 31.5
MIL-SRI + IDT (Fan et al.,[2017) 41.5 29.6 49.7 34.6
Ours + IDT 449 33.5 50.3 35.2

From the experimental results in Table 2] we can clearly
see that the proposed algorithm outperforms the other mod-
els with a single feature by a large margin. For exam-
ple, on the TRECVID MEDTest 2014 dataset, the proposed
method achieves 43.2% mAP, which outperforms the second
best model, MIL-SRI by 4.6% in the 100Ex setting, while also
outperforming MIL-SRI by 3.4% in the 10Ex setting. This im-
provement is significant in the TRECVID Multimedia Event
Detection competition, since event detection is a very challeng-
ing task.

5.4. Comparison with state-of-the-art systems

In the TRECVID Multimedia Event Detection competition,
the top teams explore different ways to combine multiple dif-
ferent types of features. Accordingly, in this section, we also
compare our method with state-of-the-art systems in the litera-
ture. In the last few years, Improved Dense Trajectories (IDT)
(Wang and Schmid} [2014) have significantly outperformed the
other features for the multimedia event detection competition;
hence, to facilitate fair comparison, we also combine the pre-
diction result of our method with that of IDT. The experimental
results are presented in Table [3] From these results, we can
see that with the proposed model, a simple combination with
IDT can significantly outperform state-of-the-art systems. This
further demonstrates the effectiveness of the proposed model.

5.5. Ablation study

In this section, additional experiments are conducted to con-
firm the effectiveness of different terms in the full system. In
more detail, we compare the full system against (a) full system
without reliability; (b) full system without diversity; and (c) full
system without semantic. The detailed performance on an indi-
vidual event is plotted in Figure[d From the results, we can see
that the full system consistently outperforms the other three al-
ternatives; this confirms the effectiveness of all three functions.
We can also observe that dropping the semantic part results in
the most significant decline in performance. This phenomenon
demonstrates the importance of incorporating semantic infor-
mation in order to learn the reliability for each instance.

6. Conclusion

In this paper, we propose a novel approach to event detec-
tion in the framework of multi-instance learning, which learn
the reliability of each instance by jointly exploiting both visual
and semantic information simultaneously. To improve the ro-
bustness of the classifier, we begin the training process using
high-reliability instances and gradually added in instances with
relatively low reliability over time. This strategy alleviates the
negative influence of irrelevant and ambiguous segments in the
training process. The proposed algorithm was evaluated on two
large-scale challenging datasets, and achieved very promising
results. A possible direction for future work on event detection
may lie in exploiting contrastive learning of visual and semantic
information to extract better representations for multi-instance
learning.
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