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ABSTRACT

Recognizing objects and scenes are two challenging but essential tasks in image understanding. In
particular, the use of RGB-D sensors in handling these tasks has emerged as an important area of
focus for better visual understanding. Meanwhile, deep neural networks, specifically convolutional
neural networks (CNNs), have become widespread and have been applied to many visual tasks by
replacing hand-crafted features with effective deep features. However, it is an open problem how to
exploit deep features from a multi-layer CNN model effectively. In this paper, we propose a novel
two-stage framework that extracts discriminative feature representations from multi-modal RGB-D
images for object and scene recognition tasks. In the first stage, a pretrained CNN model has been
employed as a backbone to extract visual features at multiple levels. The second stage maps these
features into high level representations with a fully randomized structure of recursive neural networks
(RNNs) efficiently. To cope with the high dimensionality of CNN activations, a random weighted
pooling scheme has been proposed by extending the idea of randomness in RNNs. Multi-modal fu-
sion has been performed through a soft voting approach by computing weights based on individual
recognition confidences (i.e. SVM scores) of RGB and depth streams separately. This produces con-
sistent class label estimation in final RGB-D classification performance. Extensive experiments verify
that fully randomized structure in RNN stage encodes CNN activations to discriminative solid features
successfully. Comparative experimental results on the popular Washington RGB-D Object and SUN
RGB-D Scene datasets show that the proposed approach achieves superior or on-par performance
compared to state-of-the-art methods both in object and scene recognition tasks. Code is available at
https://github.com/acaglayan/CNN_randRNN.

1. Introduction

Convolutional neural networks (CNNs) have attracted re-
searchers to handle many visual recognition tasks since their
breakthrough emergence. However, building an effective model
can be quite challenging due to the lack of labeled training
data, limited time and computational resources, and the need
for well defined hyperparameter settings for a good general-
ization capability. Especially in many real-world tasks, it is
not preferable to train a model from scratch. Luckily, CNNs
offer highly efficient solutions with their transferable off-the-
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shelf features. Consequently, many approaches take advantage
of these features to propose new solutions for object recognition
(e.g. Sharif Razavian et al. (2014); Schwarz et al. (2015)), scene
recognition (e.g. Liao et al. (2016); Song et al. (2019)), object
detection (e.g. Girshick et al. (2014); Sermanet et al. (2014)),
and semantic segmentation (e.g. Girshick et al. (2014); Fara-
bet et al. (2013)) due to their high representation ability and
capability of generalization among different tasks when trained
with large scale datasets. The most common and straightfor-
ward strategy among these methods is to utilize the features ob-
tained from final layers which provide semantically rich infor-
mation with smaller dimensions comparing to the earlier layers
(Sharif Razavian et al., 2014; Schwarz et al., 2015; Girshick
et al., 2014; Sermanet et al., 2014; Farabet et al., 2013). How-
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Fig. 1: General overview of the proposed framework. The framework accepts RGB and depth images as inputs. In the CNN-Stage, activations at different levels of
a pretrained model are extracted. In the RNN-Stage, first, CNN activations are adjusted through preprocessing operations so that they can be utilized by RNNs to
output same number of feature vectors at each level. Then, multiple random RNNs are applied to map these inputs into high level representations. Finally, multiple
level fusion and classification steps are deployed for recognition tasks.

ever, one of the concerns about this semantics is the fact that
as features evolve towards the final layers, they are increas-
ingly dependent on the chosen dataset and task (Yosinski et al.,
2014), which might diminish the generalization capabilities of
these features when transferred. Moreover, this strategy ignores
the locally activated distinctive information of the earlier lay-
ers which is less sensitive to semantics (Hariharan et al., 2015;
Zaki et al., 2016). One of the main challenges in earlier lay-
ers of deep CNNs is the high dimensionality of extracted fea-
tures. In addition, when these features are used as is, it makes
the feature space untraceable. Eventually, while features are
transformed from low-level general to high-level specific repre-
sentations throughout the network, the relational information is
distributed across the network at different levels (Yosinski et al.,
2014; Hariharan et al., 2015). However, it remains unclear how
to exploit the information effectively.

Motivation and Proposed Work: In this paper, we aim to
present an effective deep feature extraction framework to derive
powerful image representations through transfer learning. The
proposed pipeline relies on two key insights. The first one is to
employ a pretrained CNN as the backbone model and exploit
activations at different layers of the network to cover the pre-
dominant information of the underlying localities. The second
one is to implement multiple random recursive neural networks
(RNNs) on top of CNNs to encode the CNN activations into
a robust representation with reduced dimensionality and suf-

ficient descriptiveness. Our motivation is twofold. We want
our framework to generate highly discriminative deep feature
representations without the need for training during the feature
extraction stage, yet provide a training capability for extra per-
formance boost. We question whether a fully random neural
network stage lacks representation power.

In developing our framework, we particularly deal with the
RGB-D object and scene recognition problems, which are chal-
lenging yet crucial tasks especially with the today’s wider appli-
cation of robotics technologies. Moreover, the multi-modality
of the RGB-D sensors arises additional difficulties in represen-
tation of input data such as handling different modalities and de-
vising solutions that captures complementary information from
both RGB and depth data effectively. Besides these challenges,
alleviating limitations on time and memory consumption is an-
other challenge to deal with. To address these challenges, we
propose a novel framework that gathers feature representations
at different levels in a compact and representative feature vector
for both of RGB and depth data. After obtaining CNN activa-
tions, we first apply a preprocessing operation to the activation
maps of each level through reshaping or randomized pooling.
This not only provides a generic structure for each level by fix-
ing an RNN tree but also it allows us to improve recognition ac-
curacy through multi-level fusion. We then give the outputs of
these operations to multiple random RNNs (Socher et al., 2012)
to acquire higher level compact feature representations. Incor-
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porating multiple fixed RNNs together with the pretrained CNN
models allows feature transition at different levels to preserve
both semantic and spatial structure of objects. In order to trans-
fer learning from a pretrained CNN model for depth modality,
we embed depth data into the RGB domain with a highly ef-
ficient depth colorization technique based on surface normals.
As for the multi-modal fusion of RGB and depth modalities,
we explore different fusion techniques. Moreover, we present
an approach that provides a decisive fusion of RGB and depth
modalities based on the modality importance through a weight-
ing scheme (see Sec. 3.3).

The proposed framework is evaluated with exhaustive exper-
iments on two popular public datasets (i) Washington RGB-D
Object dataset (Lai et al., 2011) for RGB-D object recogni-
tion task and (ii) Sun RGB-D Scene dataset (Song et al., 2015)
for RGB-D scene recognition task. The experimental results
demonstrate the effectiveness of our approach in terms of accu-
racy by achieving superior performance over the current state-
of-the-art methods. A preliminary version of this work ap-
peared in (Caglayan and Can, 2018) for RGB-D object recog-
nition. In our preliminary research, we have already explored
various properties of RNNs, such as non-linearity functionality,
comparative accuracy performance and feature size over the use
of CNN-only features. In this work, we present an extended
and enhanced version of our work in (Caglayan and Can, 2018)
with a novel framework and make the following improvements.
First, we improve the idea by designing and implementing the
pipeline from scratch. Second, we have made the proposed
work applicable to a variety of backbone models from shallow
to deep. To this end, we introduce a random pooling strategy as
a preprocessing step to deal with the high dimensionality of the
activation maps of deep models such as ResNet and DenseNet,
so that early layers of these models could be utilized in our
random recursive neural networks. Third, we introduce a soft
voting approach for multi-modal RGB-D fusion based on in-
dividual classification confidences of each modality. This pro-
vides better accuracy performance in recognition tasks. Fourth,
although prior research has presented randomness in neural net-
works with various approaches such as feature extraction sys-
tems in (Jarrett et al., 2009; Socher et al., 2012; Cheng et al.,
2015b; Bui et al., 2016) and stochastic pooling (Zeiler and Fer-
gus, 2013), in this work, we improve on these and elaborate
randomness both in technical perspective and empirical inves-
tigation. Finally, we extend the proposed approach to RGB-D
scene recognition task and achieve the state-of-the-art results in
challenging benchmarks.

Contributions: To sum up, the main contributions of this
paper can be listed as follows:

• We present a novel framework (see Fig. 1) for deep fea-
tures with two-stage organization where information at
different levels is encoded by incorporation of multiple
random RNNs with a pretrained CNN model for RGB-D
object and scene recognition (see Sec. 3). The framework
is applicable to a variety of pretrained CNN models in-
cluding AlexNet (Krizhevsky et al., 2012), VGGNet (Si-
monyan and Zisserman, 2015), ResNet (He et al., 2016),
and DenseNet (Huang et al., 2017). The overall struc-

ture has been designed in a modular and extendable way
through a unified CNN and RNN process. Thus, it offers
easy and flexible use. These also can easily be extended
with new capabilities and combined with different setups
and other models for implementing new ideas. In fact,
our preliminary approach has been already successfully
applied to another challenging robotics task in a SLAM
system (Guclu et al., 2019).

• We extend the idea of randomness in RNNs as a novel
pooling strategy to cope with the high dimensionality of
CNN activations from different levels (see Sec. 3.2.1).
This strategy has been applied as a preprocessing stage be-
fore RNNs and it allows us to evaluate and utilize multiple
level information in deep models such as ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017) models. In addi-
tion, we give the experimental results of different pooling
strategies in terms of accuracy and show the effectiveness
of our pooling strategy over other pooling methods (see
Sec. 4.4.3).

• We study several aspects of transfer learning through an
empirical investigation including level-wise analysis of
different baselines and the effects of finetuning over fixed
pretrained CNN models (see Sec. 4.4 and the supplemen-
tary material for further experimental analysis). In re-
gard to multi-model fusion, unlike our previous work us-
ing concatenation of features, we propose a soft voting ap-
proach based on individual SVM confidences of RGB and
depth streams (see Sec. 3.3) and show the strength of our
approach experimentally (see Sec. 4.4.5). We also provide
experimental results demonstrating that our approach im-
proves the state-of-the-art results on two challenging real-
world public datasets: Washington RGB-D Object dataset
for RGB-D object recognition (see Sec. 4.2) and SUN
RGB-D scene dataset for RGB-D scene recognition (see
Sec. 4.3).

2. Related Work

The proposed work can be related with different areas, such
as multi-modal CNN based approaches, transfer learning based
approaches, and random recursive neural networks. In this sec-
tion, we narrow our focus to RGB-D based recognition and give
a brief review of the relevant approaches with stating the current
work in the literature.

2.1. Multi-Modal CNN based Approaches

Following their success in computer vision, CNN-based so-
lutions have replaced conventional methods such as the works
in Bo et al. (2011b), Bo et al. (2011a), and Tang et al. (2012)
in the field of RGB-D object recognition, as in many other ar-
eas. For instance, the authors of (Wang et al., 2015; Wang et al.,
2015) present CNN-based multi-modal learning systems moti-
vated by the intuition of common patterns shared between RGB
and depth modalities. They enforce their systems to correlate
features of the two modalities in a multi-modal fusion layer
with a pretrained model (Wang et al., 2015) and their custom
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network (Wang et al., 2015) respectively. Li et al. (2018) extend
the idea of considering multi-modal intrinsic relationship with
intra-class and inter-class similarities for indoor scene classifi-
cation by providing a two-stage training approach. In Rahman
et al. (2017), a three-streams multi-modal CNN architecture has
been proposed in which depth images are represented with two
different encoding methods in two-streams and the remaining
stream is used for RGB images. Despite the extra burden, this
naturally has increased the depth accuracy in particular. Sim-
ilar multi-representational approach has been proposed by Zia
et al. (2017) where a hybrid 2D/3D CNN model initialized with
pretrained 2D CNNs is employed together with 3D CNNs for
depth images. Cheng et al. (2015a) propose convolutional fisher
kernel (CFK) method which integrates a single CNN layer with
fisher kernel encoding and utilizes Gaussian mixture models for
feature distribution. The drawback of their approach is the very
high dimensional of the feature space.

2.2. Transfer Learning based Approaches

Deep learning algorithms require a significant amount of an-
notated training data and obtaining such data can be difficult
and expensive. Therefore, it is important to leverage transfer
learning for enhancing high-performance learner on a target
domain and the task at hand. Especially, applying a trained
deep network and then fine-tuning the parameters can speed
up the learning process or improve the classification perfor-
mance (Wang et al., 2017). Furthermore, many works show
that a pretrained CNN on a large-scale dataset can generate
good generic representations that can effectively be used for
other visual recognition tasks as well (Sharif Razavian et al.,
2014; Yosinski et al., 2014; Oquab et al., 2014; Azizpour et al.,
2015b,a). This is particularly important in vision tasks on RGB-
D datasets, which is hard to collect with labeled data and gener-
ally amount of data is much less than that of the labeled images
in RGB datasets.

There are many successful approaches that use transfer learn-
ing in the field of RGB-D object recognition. Schwarz et al.
(2015) use the activations of two fully connected layers, i.e.
fc7 and fc8, extracted from the pretrained AlexNet (Krizhevsky
et al., 2012) for RGB-D object recognition and pose estima-
tion. Gupta et al. (2014) study the problem of object detection
and segmentation on RGB-D data and present a depth encoding
approach referred as HHA to utilize a pretrained CNN model
on RGB datasets. Asif et al. introduce a cascaded architecture
of random forests together with the use of the fc7 features of
the pretrained models of (Chatfield et al., 2014) and (Simonyan
and Zisserman, 2015) to encode the appearance and structural
information of objects in their works of Asif et al. (2015) and
Asif et al. (2017), respectively. Carlucci et al. (2018) propose
a colorization network architecture and use a pretrained model
as feature extractor after fine-tuning it. They also make use
of the final fully-connected layer in their approach. So, these
above-mentioned studies mainly focus on the outputs of the
fully-connected layers.

On the other hand, many studies (Liu et al., 2015; Zaki et al.,
2016, 2017; Song et al., 2017b; Caglayan and Can, 2018) have
concluded that using fully connected layers from pretrained

or finetuned networks might not be the optimum approach to
capture discriminating properties in visual recognition tasks.
Moreover, combining the activations obtained in different lev-
els of the same modal enhances recognition performance fur-
ther, especially for multi-modal representations, where earlier
layers capture modality-specific patterns (Yang and Ramanan,
2015; Song et al., 2017b; Caglayan and Can, 2018). Hence, uti-
lizing information at different levels in the works of (Yang and
Ramanan, 2015; Zaki et al., 2016, 2017; Song et al., 2017b;
Caglayan and Can, 2018; Zaki et al., 2019) yields better per-
formances. More recent approach of Loghmani et al. (2019)
utilizes the pretrained model of residual networks (He et al.,
2016) to extract features from multiple layers and combines
them through a recurrent neural network. Their experimental
results also verify that multi-level feature fusion provides better
performance than single-level features. While their approach is
based on a gated recurrent unit (GRU) (Cho et al., 2014) with
a number of memory neurons, our approach employs multiple
random neural networks with no necessarily need for training.
A different related approach is proposed by Asif et al. (2018).
They handle the classification task by dividing it into image-
level and pixel-level branches and fusing through a Fisher en-
coding branch. Eitel et al. (2015) and Tang et al. (2019) em-
ploy two-stream CNNs, one for each modality of RGB and
depth channels and each stream uses the pretrained model of
(Krizhevsky et al., 2012) on the ImageNet. In both works (Ei-
tel et al., 2015; Tang et al., 2019), the two-streams are finally
connected by a fully-connected fusion layer and a canonical
correlation analysis (CCA) module, respectively. While fea-
ture fusion approaches (e.g. concatenation) may provide good
accuracy for the visual recognition task, feature fusion may not
be the only solution for multi-level decision process since in-
creased feature space may not be good for recognition with
small number of data. We experiment and show that voting
on the SVM confidence scores for selected levels can also pro-
vide reliable and improved performance. Moreover, this also
enables us to use confidence score based importance to RGB
and depth domains in multi-modal fusion.

2.3. Random Recursive Neural Networks

Randomization in neural networks has been researched for
a long time in various studies (Schmidt et al., 1992; Pao and
Takefuji, 1992; Pao et al., 1994; Igelnik and Pao, 1995; Huang
et al., 2006; Rahimi and Recht, 2008; Socher et al., 2012) due
to its benefits, such as simplicity and computationally cheap-
ness over optimization (Rahimi and Recht, 2009). Since a
complete overview of these variations is beyond the scope of
this paper, we give an overview specifically with the focus of
random recursive neural networks (Socher et al., 2012). Re-
cursive neural networks (RNNs) (Pollack, 1990; Hinton, 1990;
Socher et al., 2011) are graphs that process a given input into
recursive tree structures to make a high-level reasoning pos-
sible in a part-whole hierarchy by repeating the same process
over the trees. RNNs have been employed for various research
purposes in computer vision including image super-resolution
(Kim et al., 2016), semantic segmentation (Socher et al., 2011;
Sharma et al., 2014), and RGB-D object recognition (Socher
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et al., 2012; Bai et al., 2015; Cheng et al., 2015b). Socher et al.
(2012) have introduced a two-stage RGB-D object recognition
architecture where the first stage is a single CNN layer using
a set of k-means centroids as the convolution filters and the
second stage is multiple random recursive neural networks to
process outputs of the first stage. Bai et al. (2015) propose a
subset based approach of the pioneer work in (Socher et al.,
2012) where they use a sparse auto-encoder instead of the k-
means clustering for convolution filters. Cheng et al. (2015b)
employ the same architecture of Socher et al. (2012) for a semi-
supervised learning system with a modification by adding a spa-
tial pyramid pooling to prevent a potential performance degra-
dation during resizing input images. Bui et al. (2016) have re-
placed the single CNN layer in (Socher et al., 2012) with a pre-
trained CNN model for RGB object recognition and achieved
impressive results. Following their success, in our preliminary
work (Caglayan and Can, 2018), we propose an approach that
aims to improve on this idea by gathering feature representa-
tions at different levels in a compact and representative feature
vector for both of RGB and depth data. To this end, we reshape
CNN activations in each layer that provides a generic structure
for each layer by fixing the tree structure without hurting per-
formance and it allows us to improve recognition accuracy by
combining feature vectors at different levels. In this work, we
propose a pooling strategy to handle large dimensional CNN
activations by extending the idea of randomness in RNNs. This
can be related with the stochastic pooling in Zeiler and Fer-
gus (2013), which picks the normalized activations of a region
according to a multinomial distribution by computing the prob-
abilities within the region. Instead of using probabilities, our
pooling approach here is a form of averaging based on uniform
distributed random weights.

3. Proposed Approach

The proposed pipeline has two main stages. In the first stage,
a pretrained CNN model has been employed as the underlying
feature extractor. In this work, we have examined several mod-
els in this stage. The second stage transforms convolutional
features through a randomized recursive neural network based
structure that aims to acquire more compact representations. To
cope with the high dimensionality of CNN activations, a pool-
ing strategy based on random weights has been proposed. The
final representative outcomes have been passed through a linear
SVM classifier for categorization of objects and scenes. The
overall pipeline can be related as a deeper analogy to Jarrett
et al. (2009) where a proper architecture with random weights
for object recognition task has been explored.

In order to use pretrained CNN models, it is important to
process input images appropriately. To this end, we perform a
set of data preparation processes on both RGB and depth data
and represent depth data into an effective 3-channel structure
similar to RGB data using surface normal estimation (see the
supplementary material for details).

3.1. CNN-Stage
The backbone of our approach is a pretrained CNN model.

Since size of available RGB-D datasets are much smaller than

that of RGB’s, it is important to make use of an efficient knowl-
edge transfer from pretrained models on large RGB datasets.
In addition, it saves time by eliminating the need for train-
ing from scratch. In the previous work (Caglayan and Can,
2018), the available pretrained CNN model of (Chatfield et al.,
2014), named VGG f, in MatConvNet toolbox (Vedaldi and
Lenc, 2015) has been used. In this work, we employ several
available pretrained models of the ImageNet including AlexNet
(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman,
2015) (specifically VGGNet-16 model with batch normaliza-
tion), ResNet (He et al., 2016) (specifically ResNet-50 and
ResNet-101 models), and DenseNet (Huang et al., 2017). We
extract features from seven different levels of CNN models.
For AlexNet, outputs of the five successive convolutional lay-
ers and the following two fully-connected (FC) layers have
been considered, while for VGGNet, the first two FC layers
are taken into account together with the outputs of each convo-
lution block that includes several convolutions and a final max
pooling operations. Unlike AlexNet and VGGNet, ResNet and
DenseNet models consist of blocks such as residual, dense or
transition blocks where there are multiple layers. While ResNet
extends the sequential behaviour of AlexNet and VGGNet with
the introduction of the skip-connections, DenseNet takes one
step further by concatenating the incoming activations rather
than summing up them. The ResNet models consist of five
stages and a following average pooling and an FC layer. There-
fore, each output of the five successive stages and the output
of the final average pool have been considered for the six of
the seven extraction points. As for the remaining extraction
level for these models (ResNet-50 and ResNet-101), the middle
point of the third block (which is the largest block) has been
taken. Similarly, for DenseNet model, the output of all the four
dense blocks (for the last dense block, the output of normal-
ization that follows the dense block has been taken) and the
transition blocks between them have been considered as the ex-
traction points. Since common and straightforward model of
AlexNet has a minimum depth with a seven layer stack-ups, the
above-mentioned CNN extraction points for each model are se-
lected to evaluate and compare level-wise model performances.
In addition, these levels are also related to the CNN model in
the previous work (Caglayan and Can, 2018) that we improve
on by considering their intrinsic reasoning behind the use of
blocks and the approximate distance differences.

3.2. RNN-Stage

Random recursive neural networks offer a feasible solution
by randomly fixing the network connections and eliminate the
need for selection in the parameter space. Motivated by this, we
employ multiple random RNNs, whose inputs are the activation
maps of a pretrained CNN model. RNNs map a given 3D matrix
input into a vector of higher level representations of it by apply-
ing the same operations recursively in a tree structure. In each
layer, adjacent blocks are merged into a parent vector with tied
weights where the objective is to map inputs C ∈ RK×s×s into a
lower dimensional space p ∈ RK through multiple levels in the
end. Then, the output of a parent vector is passed through a
nonlinear function. A typical choice for this purpose is the tanh
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𝐶 ∈ ℝ𝐾×8×8

𝑃(1) ∈ ℝ𝐾×4×4

𝑃(2) ∈ ℝ𝐾×2×2

𝑝 ∈ ℝ𝐾

𝑊 ∈ ℝ𝐾×𝑠2×𝐾
𝑊

𝑊

𝑊

𝑊 𝑊
𝑊

𝑊

𝑃(1) = g(𝑊𝐶)

𝑃(2) = g(𝑊𝑃(1))

𝑝 = g(𝑊𝑃(2))

Fig. 2: Graphical representation of a single recursive neural network (RNN).
The same random weights have been applied to compute each node and level.

function. In our previous work (Caglayan and Can, 2018), we
give the comparative results of different activation functions in
terms of accuracy success and show hyperbolic functions work
well. Therefore, in this work, we employ tanh activation func-
tion as in (Socher et al., 2012; Caglayan and Can, 2018). Fig. 2
shows a graphical representation of a pooled CNN output with
the size K×8×8 and an RNN structure with 3 levels and blocks
of 2 × 2 = 4 child nodes (Note that this figure is inspired by the
RNN graphical representation of Socher et al. (2012)).

In our case, inputs of RNNs are activation maps obtained
from different levels of the underlying CNN model. Let x be an
input image that pass through f (x)l a given CNN model, where
l = 1, .., 7 are the extraction levels and f (x)l = Cl, where the out-
put convolution maps are either a 3D matrix Cl ∈ RK×s×s for l
convolutional layers or a 1D vector of Cl ∈ RM for l FC lay-
ers/global average pooling. Since RNN requires a 3D input of
C ∈ RK×s×s, we first process the convolution maps at each level
to ensure the required form. Moreover, by applying this step,
we ensure that RNNs are able to handle inputs fast and effec-
tively by reducing the receptive field area and/or the number
of activation maps of high-dimensional feature levels (e.g. the
outputs of early levels for models such as VGGNet, ResNet,
DenseNet, etc.). In addition, we apply preprocessing to obtain
similar output structures with the previous work Caglayan and
Can (2018). However, it was enough to apply only reshaping
in the previous work due to less dimensional size of layers in
VGG f model. In this work, we introduce random weighted
pooling that copes with high dimensionality of layers in the un-
derlying deeper models such as ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017). Our pooling mechanism can
downsample CNN activations in both number and spatial di-

mension of maps. After applying the preprocessing step to ob-
tain suitable forms for RNNs, we compute parent vector as

p = g (WCl) (1)

where Cl =


c1
...

cs2

 for each CNN extraction level l = 1, ..., 7, g is

a nonlinearity function which is tanh in this study, s is block
size of an RNN. Instead of a multi-level structured RNN, an
RNN in this study is of one-level with a single parent vector.
In fact, our experiments have shown that the single-level struc-
ture provides better or comparable results over the multi-level
structure in terms of accuracy (see the supplementary material).
Moreover, the single-level is more efficient with less compu-
tational burden. Thus, s block size is actually the receptive
field size in an RNN. In Eq. 1, the parameter weight matrix
is W ∈ RK×s2K and it is randomly generated from a predefined
distribution that satisfies the following probability density func-
tion

W ∼ h⇒
∫ b

a
h(w)dw = P(a ≤ W ≤ b) (2)

where h is a predefined distribution and a and b are boundaries
of the distribution. In our case, the weights are set to be uni-
form random values in [−0.1,+0.1], which have been assigned
by following our previous work Caglayan and Can (2018) and
specifically with the assumption of preventing possible explo-
sion of tensor values due to our aggregating pooling strategy.
On the other hand, Saxe et al. (2011) find that the distribution
of random weights such as uniform, Laplacian, or Gaussian
does not affect classification performances as long as the dis-
tribution is 0-centered. We refer readers to Rahimi and Recht
(2008) and Rudi and Rosasco (2017) for more insights and fur-
ther details on the properties of random features. Keeping in
mind that in order to obtain sufficient descriptive power from
the randomness, we need to generate enough samples from the
range. In Socher et al. (2012), it has been demonstrated ex-
perimentally that increasing the number of random RNNs up
to 64 improves performance and gives the best result with 128
RNNs. In Caglayan and Can (2018), it has also been verified
that K = 128 number of RNN weights can be generated for fea-
ture encoding with high performance in classification on both
of RGB and depth data. Therefore, as a standard usage in this
work, we do feature encoding on CNN features using 128 ran-
dom RNNs with 64 channel representations, leading us to 8192
dimensional feature vector at each level in a model.

The reason why random weights work well for object recog-
nition tasks seems to lie in the fact that particular convolutional
pooling architectures can naturally produce frequency selective
and translational invariant features (Saxe et al., 2011). As stated
before, in analogy to the convolutional-pooling architecture in
Jarrett et al. (2009), our approach intuitively incorporates both
selectivity due to the CNN stage and translational invariance
due to the RNN stage. Moreover, we have to point out that there
is biological plausibility lies in the use of randomness as well.
Rigotti et al. (2010) have shown that random connections be-
tween inter-layer neurons are needed to implement mixed selec-
tivity for optimal performance during complex cognitive tasks.
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Fig. 3: Illustration of random weighted pooling over number of maps (top) and
window size of maps (below).

Before concluding this section, we give details of our random
pooling approach, where we extend the idea of random RNN as
a downsampling mechanism.

3.2.1. Random Weighted Pooling
In our previous work (Caglayan and Can, 2018), we give

CNN outputs to RNNs after a reshaping process. However, due
to the high dimensional output size of the models used in this
study, it is necessary to process CNN activations further. In this
work, we propose a random pooling strategy to reduce the di-
mension in either size of the activation maps (s block size or
receptive field area of an RNN) or number of maps (K) at CNN
levels where reshaping is insufficient. In our random weighted
pooling approach, we aggregate the CNN activation maps by
sampling from a uniform distribution as in Eq. 2 from each
pooling area. More precisely, for l extraction level, the pooling
reduces Cl activations by mapping into A

′

l area as P : Cl 7→ A
′

l

where Cl ∈ RK×s×s and A
′

l ∈ R
K
′
×s
′
×s
′

in Eq. 3.

A
′

l =
∑
i∈Al

W (i)
l C(i)

l (3)

where Al is pooling area, Cl convolutional activations, i is the
index of each element within the pooling, and Wl is random
weights. K

′

< K and s
′

= s when pooling is over number of
maps whereas K

′

= K and s
′

< s when pooling is over size
of maps. Fig. 3 illustrates proposed random weighted pooling
for both of downsampling in number of maps and size of maps.
In this work, by extending the randomness in RNNs along the
pipeline with the proposed pooling strategy, we aim to show
that randomness can actually work quite effectively. In fact,
as we can see in the comparative results (see Sec. 4.4.3), this
randomness in our approach works generally better comparing
to the other common pooling methods such as max pooling and
average pooling, especially at the semantic levels.

3.3. Fusion and Classification
After obtaining encoded features from the RNN-Stage, we

investigate multi-level fusions to capture more distinctive infor-
mation at different levels for further recognition performance.
To minimize the cross entropy error between output predic-
tions and the target values, we could give multi-level outputs to
fully connected layers and back-propagate through them. How-
ever, following the success in our previous study (Caglayan
and Can, 2018), we perform classification by employing linear
SVM with the scikit-learn1 (Pedregosa et al., 2011) implemen-
tation. To this end, in our previous work (Caglayan and Can,
2018), we have performed the straightforward feature concate-
nation on various combinations of the best mid-level represen-
tations. In this work, in addition to the feature concatenation,
we also apply soft voting by averaging SVM confidence scores
on these best trio of levels. Finally, RGB and depth features are
fused to evaluate combined RGB-D accuracy performance.

The motivation behind the need for a complementary multi-
modal fusion is twofold. The fact that shiny, transparent, or thin
surfaces may cause corruption in depth information since depth
sensors do not properly handle reflections from such surfaces,
resulting better performance in favor of RGB in such cases. On
the other hand, depth sensors work well in a certain range and
are insensitive to changes in lighting conditions. Therefore, to
take full advantage of both modalities in a complementary way,
a compact multi-modal combination based on the success of in-
put type is important in devising the best performing fusion. To
this end, we present a decision mechanism using weighted soft
voting based on the confidence scores obtained from RGB and
depth streams. Modality weighting in this way is used to com-
pensate imbalance and complement decision in different data
modalities. Once the modality-specific branches proceed, we
combine the predictions through the weighted SVM as follows.
Let S i represents SVM confidence scores of each category class
n = 0...N−1, where N is number of classes, and i ∈ {rgb, depth}
indicates RGB and depth modalities. Then, weights wi are com-
puted as in Eq. 4.

wi =

√√
emi∑

i
emi (4)

where mi is normalized squared magnitudes for each modality
and defined as:

mi =
‖S i‖

2

max(‖S rgb‖
2, ‖S depth‖

2)
(5)

Finally, multi-modal RGB-D predictions are estimated as fol-
lows, in Eq. 6:

ŷRGBD = arg max
n

∑
i

wiS i (6)

where n is a category class. Concretely, if RGB and depth re-
sults are balanced in confidence scores, then the final soft voting
decision is based on equal contribution from each stream simi-
lar to averaging.

1https://github.com/scikit-learn/scikit-learn

https://github.com/scikit-learn/scikit-learn
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4. Experimental Evaluation

The proposed framework has been evaluated on two chal-
lenging benchmarks for two tasks: (i) RGB-D object recogni-
tion (Sec. 4.2) using Washington RGB-D object dataset (Lai
et al., 2011) and (ii) RGB-D scene recognition (Sec. 4.3) using
SUN RGB-D scene dataset (Song et al., 2015). After introduc-
ing the datasets and setups, we first compare our results with
state-of-the-art results for both benchmarks. Results of other
methods are taken from the original papers. Then, we carry
out extensive experiments (Sec. 4.4) on the challenging Wash-
ington RGB-D object dataset, which is a larger-scale RGB-D
dataset comparing to other RGB-D benchmarks, to evaluate ef-
fects of various model parameters and setup properties in our
framework.

4.1. Dataset and Setup

4.1.1. Washington RGB-D Object Dataset
Washington RGB-D object dataset includes a total of 41, 877

images for each modality under 51 object categories and 300
category instances. Categories are commonly used household
objects such as cups, camera, keyboards, vegetables, fruits, etc.
Each instance of a category has images taken from 30◦, 45◦ and
60◦ elevation angles. The dataset provides 10 train/test splits
where in each split, one instance for each category is used for
testing and the remaining instances are for training. Thus, for a
single split run, a total of 51 category instances (roughly 7, 000
images) are used at testing and the remaining 249 instances
(roughly 35, 000 images) are used at training phase. We eval-
uate the proposed work on the provided cropped images with
the same setup in Lai et al. (2011) for the 10 splits and average
accuracy results are reported for the comparison to the related
works.

4.1.2. SUN RGB-D Scene Dataset
SUN RGB-D scene dataset is the largest real-world RGB-D

scene understanding benchmark to the date and contains RGB-
D images of indoor scenes. Following the publicly available
configuration of the dataset, we choose 19 scene categories with
a total of 4, 845 images for training and 4, 659 images for test-
ing. We use the same train/test split of Song et al. (2015) to
evaluate the proposed work for scene recognition.

4.2. Object Recognition Performance

Table 1 shows average accuracy performance of our ap-
proach along with the state-of-the-art methods for object recog-
nition on Washington RGB-D object benchmark. Our approach
greatly improves the previous state-of-the-art results for both of
RGB and depth modalities with a margin of 2.4% and 1.3%, re-
spectively. As for the combined RGB-D results, our approach
surpasses all the other methods except that of Loghmani et al.
(2019), which is slightly better than ours (0.3%). As stated be-
fore (see Sec. 2), their approach is based on a gated recurrent
unit with a set of memory neurons and is powered by a multi-
modal fusion learning schema. On the other hand, in this paper,
we focus on a simple yet effective multi-modal feature extrac-
tion framework with a soft voting SVM classification. These

results emphasize the importance of deep features in a unified
framework based on the incorporation of CNNs and random
RNNs. What is interesting here is that even a simple model
like AlexNet can yield quite successful results. Concretely, our
previous work (Caglayan and Can, 2018) with AlexNet archi-
tecture, called VGG f in MatConvNet toolbox, gives impressive
results as the models used in this work.

Table 1: Average accuracy comparison of our approach with the related meth-
ods on Washington RGB-D Object dataset (%). Red: Best result, Blue: Second
best result, Green: Third best result.

Method RGB Depth RGB-D

Kernel SVM (Lai et al., 2011) 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5
KDES (Bo et al., 2011c) 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1
CNN-RNN (Socher et al., 2012) 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3
CaRFs (Asif et al., 2015) - - 88.1 ± 2.4
MMDL (Wang et al., 2015) 74.6 ± 2.9 75.5 ± 2.7 86.9 ± 2.6
Subset-RNN (Bai et al., 2015) 82.8 ± 3.4 81.8 ± 2.6 88.5 ± 3.1
CNN Features (Schwarz et al., 2015) 83.1 ± 2.0 - 89.4 ± 1.3
CNN-SPM-RNN (Cheng et al., 2015b) 85.2 ± 1.2 83.6 ± 2.3 90.7 ± 1.1
CFK (Cheng et al., 2015a) 86.8 ± 2.7 85.8 ± 2.3 91.2 ± 1.4
Fus-CNN (Eitel et al., 2015) 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4
AlexNet-RNN (Bui et al., 2016) 89.7 ± 1.7 - -
Fusion 2D/3D CNNs (Zia et al., 2017) 89.0 ± 2.1 78.4 ± 2.4 91.8 ± 0.9
STEM-CaRFs (Asif et al., 2017) 88.8 ± 2.0 80.8 ± 2.1 92.2 ± 1.3
MM-LRF-ELM (Liu et al., 2018) 84.3 ± 3.2 82.9 ± 2.5 89.6 ± 2.5
VGG f-RNN (Caglayan and Can, 2018) 89.9 ± 1.6 84.0 ± 1.8 92.5 ± 1.2
DECO (Carlucci et al., 2018) 89.5 ± 1.6 84.0 ± 2.3 93.6 ± 0.9
MDSI-CNN (Asif et al., 2018) 89.9 ± 1.8 84.9 ± 1.7 92.8 ± 1.2
HP-CNN (Zaki et al., 2019) 87.6 ± 2.2 85.0 ± 2.1 91.1 ± 1.4
RCFusion (Loghmani et al., 2019) 89.6 ± 2.2 85.9 ± 2.7 94.4 ± 1.4
MMFLAN (Qiao et al., 2021) 83.9 ± 2.2 84.0 ± 2.6 93.1 ± 1.3
This work - AlexNet-RNN 83.0 ± 1.9 84.1 ± 2.3 90.9 ± 1.3
This work - DenseNet121-RNN 91.5 ± 1.1 86.9 ± 2.1 93.5 ± 1.0
This work - ResNet101-RNN 92.3 ± 1.0 87.2 ± 2.5 94.1 ± 1.0

We also present average accuracy performance of individ-
ual object categories on the 10 evaluation splits of Washin-
ton RGB-D Object dataset using the best-performing structure,
ResNet101-RNN. As shown in Fig. 4, our approach is highly
accurate in recognition of the most of the object categories. Cat-
egories with lower accuray results are mushroom, peach, and
pitcher. The common reason that leads to the lower perfor-
mance in these categories seems to be due to their less num-
ber of instances. In particular, these categories have only 3
instances, which is the minimum number for any category in
the dataset. Considering the other categories with up to 14 in-
stances, this imbalance of the data may have biased the learning
to favor of categories with more examples. Moreover, the accu-
racy of our combined RGB and depth based on weighted confi-
dences of modalities reflects that the fusion of RGB and depth
data in this way can provide strong discrimination capability for
object categories.

4.3. Scene Recognition Performance

To test the generalization ability of our approach, we also
carry out comparative analysis of our best-performing model,
namely ResNet101-RNN, on SUN RGB-D Scene (Song et al.,
2015) dataset for scene recognition as a more challenging task
of scene understanding. To this end, we first apply ResNet101
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Fig. 4: Per-category average accuracy performances of ResNet101-RNN on Washington RGB-D Object dataset.

pretrained model without finetuning, namely Fix ResNet101-
RNN, for both of RGB and depth modalities. Then, we finetune
the pretrained CNN model on SUN RGB-D Scene dataset us-
ing the same hyper-parameters of object recognition task (see
Sec. 4.4.4). The results of these experiments together with
the-state-of-the-art results on this dataset are reported in Table
2. Our best system greatly improves the-state-of-the-art meth-
ods not only for RGB-D final result but also for individual data
modalities. It is worth mentioning that we use the pretrained
CNN model on object-centric dataset of ImageNet (Deng et al.,
2009), which is less commonly used for scene recognition task
than the pretrained models on scene-centric datasets such as
Places (Zhou et al., 2014). Nevertheless, our approach produces
superior results compared to existing state-of-the-art methods
for RGB-D scene recognition task. Moreoever, it is interesting
that our system even with fixed pretrained CNN model is al-
ready discriminative enough and achieves impressive accuracy
performances. Contrary to our findings on Washington RGB-
D Object dataset, finetuning provides much better results not
only for depth domain but also for the RGB domain as well.
This is what we expect as scene recognition is a cross-domain
task for our approach that has the pretrained CNN model of the
object-centric ImageNet as the backbone. Specifically, finetun-
ing on depth data boosts the accuracy greatly by providing both
domain and modality adaptation.

Fig. 5 shows the confusion matrix of our approach with fine-
tuning over the 19 categories of SUN RGB-D Scene dataset
for RGB-D. The matrix demonstrates the degree of confusion
between pairs of scene categories and implies the similarity be-
tween scenes on this dataset. The largest misclassification er-
rors happen to be between extremely similar scene categories
such as computer room - office, conference room-classroom,
discussion area-rest space, lecture theatre-classroom, study
space-classroom, lab-office, etc. In addition to the inter-class
similarity, other reasons for poor performance might be intra-
class variations of the scenes and lack of getting enough rep-

Table 2: Accuracy comparison of our approach with the related methods on
SUN RGB-D Scene dataset (%). Red: Best result, Blue: Second best result,
Green: Third best result.

Method RGB Depth RGB-D

Places CNN-Lin SVM (Zhou et al., 2014) 35.6 25.5 37.2
Places CNN-RBF SVM (Zhou et al., 2014) 38.1 27.7 39.0
SS-CNN-R6 (Liao et al., 2016) 36.1 - 41.3
DMFF (Zhu et al., 2016) 37.0 - 41.5
Places CNN-RCNN (Wang et al., 2016) 40.4 36.3 48.1
MSMM (Song et al., 2017b) 41.5 40.1 52.3
RGB-D-CNN (Song et al., 2017a) 42.7 42.4 52.4
MDSI-CNN (Asif et al., 2018) 39.6 35.2 45.2
DF2Net (Li et al., 2018) - - 54.6
HP-CNN-T (Zaki et al., 2019) 38.8 28.5 42.2
LM-CNN (Cai and Shao, 2019) 44.3 34.6 48.7
RGB-D-OB (Song et al., 2019) - 42.4 53.8
Cross-Modal Graph (Yuan et al., 2019) 45.7 - 55.1
RAGC (Mosella-Montoro and Ruiz-Hidalgo, 2019) - - 42.1
MAPNet (Li et al., 2019) - - 56.2
TRecgNet Aug (Du et al., 2019) 50.6 47.9 56.7
G-L-SOOR (Song et al., 2020) 50.5 44.1 55.5
MSN (Xiong et al., 2020) - - 56.2
CBCL (Ayub and Wagner, 2020) 48.8 37.3 59.5
ASK (Xiong et al., 2021) - - 57.3
2D-3D FusionNet (Mosella-Montoro and Ruiz-Hidalgo, 2021) 56.4 44.1 58.6
TRecgNet Aug - ResNet18 (Du et al., 2021) 53.8 49.3 58.5
TRecgNet Aug - ResNet101 (Du et al., 2021) 54.2 49.3 59.8
This work - Fix ResNet101-RNN 50.8 38.6 53.1
This work - Finetuned ResNet101-RNN 58.5 50.1 60.7

resentative knowledge transfer from the ImageNet models. To
further analyse the performance of our system, we give top-
3 and top-5 classification accuracy together with top-1 results
as in Table 3. While the top-1 accuracy shows the percentage
of test images that exactly matches with the predicted classes,
the top-3 and top-5 indicates the percentage of test images that
are among the top ranked 3 and 5 predictions, respectively. The
top-3 and top-5 results demonstrate the effectiveness of our sys-
tem more closely by overcoming ambiguity among scene cat-
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Fig. 5: RGB-D confusion matrix of ResNet101-RNN on SUN RGB-D Scene
dataset (best viewed with magnification).

egories greatly. Fig. 6 depicts some test examples of scene
categories confused with each other frequently on SUN RGB-
D Scene dataset. As shown in the figure, these scene categories
have similar appearances that make them hard to distinguish
even for a human expert without sufficient context knowledge
in the evaluation. Nevertheless, our approach is able to identify
scene category labels among the top-3 and top-5 predictions
with high accuracy.

Table 3: Scene recognition accuracy of top-1, top-3, and top-5 on SUN RGB-D
Scene dataset (%).

Accuracy RGB Depth RGB-D

top-1 58.5 50.1 60.7
top-3 81.0 71.5 83.5
top-5 88.5 80.9 89.9

4.4. Model Ablation
We have analyzed and validated the proposed framework

with extensive experiments using a variety of architectural con-
figurations on the popular benchmark of Washington RGB-D
dataset, which is more than 4 times larger than the SUN RGB-
D scene dataset. In this section, the analysis and evaluations of
the model ablative investigations are presented. Further exper-
iments and analysis are given in the supplementary material.
The developmental experiments are carried out on two splits of
Washington RGB-D Object dataset for both modalities in order
to evaluate on more stable results. The average results are an-
alyzed. However, in some experiments, more runs have been
carried out, which are clearly stated in the related sections. In
Sec. 4.2 and Sec. 4.3, the best performing models are com-
pared with the state-of-the-art methods with the exact provided
evaluation setups. We assess the proposed framework on a PC
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Fig. 6: Top-5 RGB-D predictions of our system using sample test images of
frequently confused scene categories on SUN RGB-D Scene dataset.

with AMD Ryzen 9 3900X 12-Core Processor, 3.8 GHz Base,
128 GB DDR4 RAM 2666 MHz, and NVIDIA GeForce GTX
1080 Ti graphics card with 11 GB memory.

4.4.1. Empirical Evaluation of the Effect of Randomness
The use of random weights both in pooling and RNN struc-

tures leads to the question of how stable are the results. Thus,
we experimentally investigate to see whether there is a deci-
sive difference between different runs that generate and use new
random weights. We run the pipeline with different random
weights on two splits, 5 times for each. Fig. 7 reports average
results with their standard deviations for each level. The figure
clearly shows that randomness does not cause any instability in
the model and produces similar results with very small devia-
tions.

4.4.2. Level-wise Performance of Different Models
Fig. 8 shows level-wise average accuracy performances of all

the baseline models for both of RGB and depth modalities on all
the 10 evaluation splits. The graphs show a similar performance
trend line with an upward at the beginning and a downward at
the end. Although the levels at which optimum performance is
obtained vary according to the model, what is common to all
models in general is that instead of final level representations,
intermediate level representations present the optimal results.
These experiments also verify that while deep models transform
attributes from general to specific through the network even-
tually (Sharif Razavian et al., 2014; Zeiler and Fergus, 2014),
intermediate layers present the optimal representations. This
makes sense because while early layers response to low-level
raw features such as corners and edges, late layers extract more
object-specific features of the trained datasets. This is more
clear on the depth plot in Fig. 8, where the dataset difference
is obvious due to the domain difference. We should state that
RNN encoding on features extracted from FC layers with less
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Fig. 7: Effect of randomness on the accuracy results for each level (L1 to L7). Values indicate standard deviations.

than 8192 dimension might not be efficient since they are al-
ready compact enough. Therefore, encoding outputs of these
layers to a larger feature space through RNNs might lead to re-
dundancy in representations. This might be another reason why
there is a drop in accuracy of these layers (e.g. see L7 in Fig. 8).
In addition, depth plot contains more fluctuations and irregular-
ities comparing to the RGB plot, since the pretrained models of
the RGB ImageNet are used as fixed extractors without finetun-
ing. As for the different baseline model comparison, ResNet-
101 and DenseNet-121 models perform similarly in terms of
accuracy and are better than others.

4.4.3. Comparative Results of Random Weighted Pooling
In our approach, we extend the idea of randomness into a

pooling strategy to cope with the high dimensionality of CNN
activations, which could not be only applied to map/window
size but also can be used to reduce the number of maps. We
particularly employ random pooling to confirm that random-
ness works greatly in overall RNN-Stage even in such a pooling
strategy together with random RNNs. To this end, we investi-
gate the comparative accuracy performances of random pool-
ing together with average pooling and max pooling. We use
the DenseNet-121 model, where pooling is used extensively on
each level (except in level 4), and we conduct experiments us-
ing the same RNN weights for fair comparison. Fig. 10 shows

average accuracy results of two splits for each pooling on both
RGB and depth data. As seen from the figure, random weighted
pooling generally performs similar to average pooling, while its
performance in average is better than max pooling. Moreover, it
is seen that random pooling acquires better results especially in
middle/late levels(L4-L7), which presents more stable and se-
mantically meaningful representations comparing to the early
levels. The results also show that the proposed random pool-
ing and average pooling can be used interchangeably as their
performances are similar.

We further investigate the comparative accuracy performance
of the proposed random pooling in our final ResNet-101 based
pipeline. As it can be seen in Table 4, when the proposed
pipeline is set to use random weighted pooling, it produces bet-
ter or similar accuracy than max pooling and average pooling-
based pipelines. This validates the power of randomness in a
pooling strategy and the use of random pooling as an alterna-
tive way for down-sampling.

4.4.4. Contribution of Finetuning
We have not used any training or finetuning in our ap-

proach to feature extraction in the ablative experiments so
far (except Table 4, where depth modality-based ResNet101
is finetuned). Although impressive results are obtained on
RGB data, the same success is not achieved on depth data.
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Fig. 8: Level-wise average accuracy performance of different baseline models on all the 10-splits of Washington RGB-D dataset.
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p

Fig. 10: Average accuracy performance of different pooling methods on RGB
and depth data for the baseline model of DenseNet-121 on two splits of Wash-
ington RGB-D dataset.

Table 4: Average accuracy performance of different pooling methods in the best
performing ResNet101-RNN pipeline on Washington RGB-D dataset (%).

Accuracy RGB Depth RGB-D

Max 91.1 ± 1.4 87.1 ± 2.5 93.8 ± 0.9
Average 91.6 ± 1.6 87.2 ± 2.5 94.0 ± 1.0
Random 92.3 ± 1.0 87.2 ± 2.5 94.1 ± 1.0

The reason for this difference is that the baseline CNN mod-
els are pretrained models on RGB dataset of the ImageNet.
Therefore, as the next step, we analyze the changes in accu-
racy performance of RGB and depth data modalities by fine-
tuning the baseline CNN models in our approach. To this
end, we first carry out a systematic inquiry to find optimal
finetuning hyper-parameters on a predefined set of values us-
ing only one split of Washington RGB-D dataset as a val-
idation set for AlexNet and DenseNet-121 models. Then,
finetuning of the models are performed by stochastic gradi-
ent descent (SGD) with momentum. The hyper-parameters
of momentum, learning rate, batch size, learning rate decay
factor and decay step size, and number of epochs, respec-
tively are used as following; (0.9, 0.001, 32, 0.01, 10, 40) and

(0.9, 0.0001, 8, 0.1, 10, 40) are used for AlexNet on RGB and
depth data, respectively, whereas (0.95, 0.0001, 16, 0.1, 10, 40)
and (0.95, 0.001, 8, 0.1, 10, 40) are used for DenseNet-121.
Apart from these two models, we also perform finetuning on
the ResNet-101 model. We use the same finetuning hyperpa-
rameters of DenseNet-121 for ResNet-101, since they are in
a similar architectural structure. Fig. 9 shows average accu-
racy performance of finetuned CNN models together with fixed
models on all the 10 evaluation splits of Washington RGB-D
object dataset. The plot shows a clear upward in performance
on depth data as expected. However, there is a loss of accu-
racy in general, when finetuning is performed on RGB data.
Washington RGB-D object dataset contains a subset of the cat-
egories in ImageNet. Accordingly, pretrained models of Im-
ageNet already satisfy highly correlated distribution on RGB
data. Therefore, there is no need for finetuning on RGB data.
In contrast, in order to ensure coherence and relevance, finetun-
ing is required for depth data due to domain difference of the
inputs with the pretrained models.

4.4.5. Weighted Voting based RGB-D Fusion Performance
Finally, we provide RGB-D combined results for AlexNet,

DenseNet-121, and ResNet-101 models as shown in Table 5
based on the SVM confidences. The table reports average re-
sults for fusion of the best levels of RGB and depth, and the
best trio levels (see the supplementary material). We evalu-
ate two types of soft voting, our proposed weighted vote and
average vote. The proposed weighted vote increases accuracy
comparing to the average vote for all the models both on the
multi-modal fusion of the best single and best trio levels of
RGB and depth streams. The results also confirm the strength
of our multi-modal voting approach that combines RGB and
depth modalities effectively. On the other hand, the reason
why RGB-D fusion improves the individual RGB and depth re-
sults lies in the fact that these different data modalities support
each other towards a more accurate representation by captur-
ing different aspects of the data with a strong complementary
approach. RGB data are rich in terms of texture and color in-
formation. Depth data have additional geometric information to
depict object shapes. Moreover, depth sensors are more insen-
sitive to changes in lighting conditions. Therefore, multi-modal

f

Fig. 9: Level-wise average accuracy performance of finetuned CNN models together with fixed models on all the 10-splits of Washington RGB-D dataset.
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data combination is useful not only for its integrative character-
istic, but also for its complementarity when one modality data
is lacking such as RGB data in dark environment or depth data
on shiny surfaces.

Table 5: Average accuracy performance of RGB-D (RGB + Depth) with differ-
ent fusion combinations on Washington RGB-D dataset (%).

AlexNet DenseNet-121 ResNet-101

Avg Vote RGBLB1 + DepthLB1 90.2 ± 1.3 92.9 ± 1.4 92.7 ± 1.6
Weighted Vote RGBLB1 + DepthLB1 90.2 ± 1.2 93.5 ± 1.0 93.8 ± 1.1
Avg Vote RGBLB1+LB2+LB3 + DepthLB1+LB2+LB3 90.6 ± 1.6 92.6 ± 1.4 93.0 ± 1.3
Weighted Vote RGBLB1+LB2+LB3 + DepthLB1+LB2+LB3 90.9 ± 1.3 93.5 ± 1.0 94.1 ± 1.0
LB1: Best performing level LB2: Second best performing level LB3: Third best performing level

4.5. Discussion

Our framework presents an effective solution for deep fea-
ture extraction in an efficient way by integrating a pretrained
CNN model with random weights based RNNs. Randomiza-
tion throughout our RNN-Stage raises the question of whether
the results are stable enough. The carefully implemented exper-
iments in Sec. 4.4.1 are an empirical justification for the stabil-
ity of random weights. On the other hand, our multi-level anal-
ysis shows that the optimum performance gain from a single
level always comes from an intermediate level for all the mod-
els with/without finetuning for both of RGB and depth modal-
ities. The only exception is in the use of finetuned DenseNet-
121 model on depth data. This is an interesting finding, because
one expects better representation capabilities of final layers, es-
pecially in the use of finetuned models. Yet, as expected, per-
formance generally increases from the first level to the last level
throughout the networks when the underlying CNN models are
finetuned. Since Washington RGB-D Object (Lai et al., 2011)
dataset includes a subset of object categories in the ImageNet
(Deng et al., 2009), finetuning does not improve accuracy suc-
cess on RGB data. In contrast, accuracy gain is significant due
to the need for domain adaptation in depth data. This also shows
that using an appropriate technique to handle depth data as in
our approach (see the supplementary material), leads impres-
sive performance improvement by knowledge transfer between
modalities.

In this study, although we have explored different techniques
to fuse representations of multiple levels to further increase the
classification success, a single optimum level may actually be
sufficient enough for many tasks. In this way, especially for
tasks where computational time is more critical, results can be
obtained much faster without sacrificing accuracy success. An-
other point of interest is that the data imbalance in Washington
RGB-D Object dataset results in poor performance for the indi-
vidual categories with less instances and consequently leads to
a drop in the overall success of the system. Hence, this imbal-
ance might be overcome by applying data augmentation on the
categories with less instances.

The success of our approach for RGB-D scene recognition
confirms the generalization ability of the proposed framework.
Unlike object recognition, when the underlying CNN models
are finetuned, success in both RGB and depth modalities in-
creases significantly in scene recognition task. This is due to the
need for cross-domain task adaptation of object-centric based

pretrained models. Therefore, similar findings in object recog-
nition could be observed if scene-centric based pretrained mod-
els are employed for scene recognition (e. g. Places (Zhou
et al., 2014)). Moreover, such pretrained models could improve
the results further within our framework. Another potential that
could improve the success for scene recognition is embedding
contextual knowledge by jointly employing attention mecha-
nism such as Fukui et al. (2019) in our structure.

This work has been implemented as the extension of our pre-
vious work (Caglayan and Can, 2018). Therefore, we have not
explored further multimodal architectures. However, instead of
SVM, combining level-wise outputs through a multilayer per-
ceptron (MLP) might be more convenient for RGB-D multi-
modal design. In particular, it would be interesting to use the
soft voting approach proposed in this study with MLP. In the fu-
ture, we plan to investigate such an approach for a better RGB-
D multimodal tasks, such that success is focused on the ulti-
mate RGB-D fusion rather than the individual accuracy success
of the RGB and depth modalities.

5. Conclusion

In this paper, we have presented a framework that incorpo-
rates pretrained CNN models together with multiple random
recursive neural networks. The proposed approach greatly im-
proves RGB-D object and scene recognition performances over
the-state-of-the-art results in the literature on the widely used
Washington RGB-D Object and SUN RGB-D Scene datasets.
The proposed randomized pooling schema allows us to deal
with high-dimensional activations of CNN models effectively.
The extensive experimental analysis of various parameters and
setup properties show that the incorporation of multiple ran-
dom RNNs with a pretrained CNN model provides a robust
and effective general solution for both of RGB-D object and
scene recognition tasks. Utilizing depth data by mapping it
into RGB-like image domain allows knowledge transfer from
RGB pretrained CNN models effectively. The generic design
and the generalization capability of the proposed framework al-
low to utilize it for other visual recognition tasks. Thus, we
have opened our code along with models to the community in
order to help future studies.
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