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ABSTRACT

Cross-modal retrieval is generally performed by projecting and aligning the data from two different
modalities onto a shared representation space. This shared space often also acts as a bridge for
translating the modalities. We address the problem of learning such representation space by proposing
and exploiting the property of Discriminative Semantic Transitive Consistency—ensuring that the
data points are correctly classified even after being transferred to the other modality. Along with
semantic transitive consistency, we also enforce the traditional distance minimizing constraint which
makes the projections of the corresponding data points from both the modalities to come closer
in the representation space. We analyze and compare the contribution of both the loss terms and
their interaction, for the task. In addition, we incorporate semantic cycle-consistency for each of the
modality. We empirically demonstrate better performance owing to the different components with
clear ablation studies. We also provide qualitative results to support the proposals.

1 Introduction

With the rapid growth of digital devices and content, there is a plethora of data available today in many different
modalities, e.g. audio, video, text, NIR, 3D and so on. The immediate challenge is to enable search and retrieval of
appropriate content in all modalities given a query in any one modality. The methods for search and retrieval, when the
query and the gallery both come from same modality, have been studied extensively and are now widely used in day to
day life. However, the task of cross-modal retrieval, i.e. when the query and gallery are from different modalities, is
more challenging and farther from widespread adoption.

Cross modal retrieval involves a critical step of aligning different modalities in an intermediate space, after respective
projections. It has been studied as an interesting task for a very long time and many different approaches have been
proposed, e.g. canonical correlation analysis (CCA) [1] maximizes correlation between the modalities in the common
space [2], auto encoders [3] align both modalities by enforcing reconstruction of data in one modality given the other
modality as input.

Deep learning has been very successful in learning representations from raw input data, for different modalities alike,
e.g. videos [4], text [5], audio [6]—all of these are processed with deep neural networks to give state of the art
results in many uni-modal tasks. Approaches have also been proposed with deep learning for alignment of different
modalities. The most common approach for the alignment is to use initial independent layers for each of the modalities
followed by common layers [7, 8]. The independent layers act as non linear projections, for each modality into a
common representation space, and the following common layers act as the shared classifier working with the common
representation space for both modalities. The classifier learned in the common representation space with annotated
data from both modalities, aligns the modalities to enable cross-modal retrieval in this space. To further strengthen the
alignment, along with the classification loss, `2 distance or negative cosine similarity minimizing losses, between the
paired data in the different modalities are also used [9]. Such losses work with the projections in the common space and
enforce that data points which correspond in the two modalities, e.g. audio and video from the same clip, are closer to
each other either in absolute (`2, cosine loss) or in relative terms (triplet loss) wrt. the points which do not correspond,
e.g. a video from a different clip.
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We present a simple novel idea of discriminative semantic transitive consistency (DSTC), which is inspired by works
on cyclic consistency [10, 11] and is adapted for the task of cross modal (audio-visual or image-text) retrieval. We
argue that the loss functions used in earlier works of enforcing the data points to lie close together in the common
representation space might be too strict, given the final goal of semantic category-based retrieval. The case is similar
for loss functions enforcing cyclic consistency, i.e. enforcing the representations to go to the exact same point when
translated back to the originating modality. Instead, we propose to enforce a weaker form of correspondence using the
individual representation space, i.e. we deem it to be sufficient if the projected points, from one modality, belong to the
same class in the representation space of the other modality, as well as when translated back to representation space of
the originating modality. In effect, the DSTC loss and its cyclic sibling, are satisfied if the audio and video data from
the same clip do not necessarily coincide with each other, but do belong to the same class in both the representation
space, and also maintain their class membership when translated back.
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Figure 1: Block diagram showing the difference between
existing (left) [8, 7] and proposed (right) approaches. In
the existing approaches (left), there is a common representa-
tion space for both modality but in the proposed approach
(right) each modality has individual representation space
and the respective translators are used for aligning with the
representation space of the other modality.

The architecture we propose also differs from the pop-
ular existing architectures [8, 7]. While in the existing
architectures, a shared classifier is learned in the com-
mon representation space, we learn individual classifiers
for the modalities. Fig 1 compares the architecture we
use to the traditional architectures. Instead of learning
common representation space for both the modalities, we
learn discriminative feature space individually for each
of the modality first and then use translators for each
of the modality to separately align one modality to the
other. These translators create the bridges which enable
cross-modal retrieval. They give the discriminative and
transitive natures to the proposed semantic consistency,
i.e. if an input x :‘dog’ in the audio modality, and x : y
via translation to the video modality, then y :‘dog’ by
transitivity—the property preserved being that of seman-
tic class discrimination. While the usual distance based
losses act on the x : y step. The DSTC acts on the y :‘dog’
step. Even within our framework, both the (cyclic) DSTC
losses as well as pointwise correspondence based ones,
after translation to respective modality spaces, can be used together. We investigate such combinations and show
complementary strengths of both. We also give extensive empirical evaluations, quantitative and qualitative, to support
our proposals. We will release code and trained models upon acceptance.

2 Related Work

Our work is closely related to the topic of multimodal learning, cross-modal retrieval and the data and style trans-
fer/translation.

Multi-modal Learning. Multi-modal learning approaches can be broadly divided into two categories: (i) using already
learnt model in one modality to learn or perform a task in other modality, (ii) using both the modalities to improve task
performance cf. using a single modality.

In the first kind of approaches, many different tasks have been studied recently, such as learning audio representation
from image [6], learning image representation from audio [12], recognizing emotions in audio by transferring knowledge
from video [13], pre-training action classification network for video by getting the labels from audio [14], using video
pre-trained network to track vehicles from audio [15]. Cross-modal data is used in the framework of self-supervised
learning in [16, 17] as well to learn better representation in both the modalities by exploiting their correspondence in
the data.

In the second kind, a variety of different approaches have been proposed, such as domain adaptation [18], sound source
separation [19, 20], depth estimation and visual navigation [21, 22], binaural audio generation [23], zero-shot learning
[9, 24] and person identification [25], with the aim of improving performance using multiple modalities together. In
another line of work cross-modal generation is performed [26], where the goal is to reconstruct one modality given
other modality as input.

Cross-modal Retrieval. Cross-modal retrieval approaches map data from both the modality onto a common represen-
tation to perform retrieval. Such approaches can be broadly divided into three types on the basis of training strategy: (i)
learning with full supervision [27, 28, 29, 8, 30, 31, 32, 33], (ii) zeros-shot retrieval (learning with limited supervision)
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Figure 2: Architecture, information flow, and losses. The architecture consists, two each, of encoders E which
project the modalities onto a feature space, translators T which can translate between modalities in this space, and
classifiers which predict the classes for each modality. The cross modal retrieval is done in the representation space of
the query modality using the translators, which is used to project the gallery examples onto the representation space of
query modality. We show all the losses with their information flows, originating from modality 1. All of the losses
shown (CE, DSTC, cDSTC, PT and cPT) have a symmetrical part originating from modality 2, and both parts are added
to get the corresponding full losses as detailed in section below.

[9, 24, 11, 34, 35], and (iii) self-supervised learning [17, 36, 37]. The proposed method is of the first kind, and requires
full supervision for training for performing audio-to-video and image-to-text cross modal retrieval.

Closely related approaches for the problem, use shared classifier along with point wise correspondence [7, 8] in the
common representation space. Whereas, the proposed method uses modality specific classifiers with translator networks
to bridge from one modality to the other for cross-modal retrieval. Our approach lends more flexibility to the projections
from individual modality into the corresponding representation space cf. the shared classifier approaches. The proposed
loss then enforces that even after translation to the other modality, the point retains its class membership, wrt. the
classifier of the other modality. The main motivation here is that enforcing point wise correspondence is too strong
condition for alignment, for the task of semantic cross-modal retrieval. For example, considering a ‘dog’ barking
audio/video sample—with pointwise correspondence the network will force the audio to be translated to that particular
video, however it should suffice that the audio is translated to a video which belongs to the class ‘dog’ as well. In one of
the existing approach for cross modal retrieval using hash codes [38], the authors have used a similar approach of cycle
consistency using pointwise correspondence to generate data from a common hash code.

Data Translation. Image translation has been a popular topic recently, where a particular type of image is converted into
a different type, e.g. day to night [39], gray to RGB [40] and summer to winter [41]. Along similar lines, video-to-video
synthesis [42, 43, 44] approaches have also been proposed, where photorealistic videos are generated from a sequence
of semantic segmented mask images. All these methods are trained in an adversarial fashion, however, most of them
exploit the pointwise correspondence between the two type of data.

A variety of different approaches [10, 45, 46] are also used for translation of data points without any explicit correspon-
dence annotated training data. These approaches uses the concept of cycle consistency to transfer the data from one
type to another, i.e. the original input and the double translated output (from original space to the other space and back)
should coincide with each other. Cycle consistency has been used in many tasks such as image-to-image translation
[10], canonical surface mapping [46], cross-modal retrieval [47], zero-shot learning [48] etc. It enforces point-wise
correspondence after double translation, i.e. to the other modality and back. Whereas, here we enforce semantic class
consistency after completing the cycle, i.e. the point need not coincide with originating point, it is sufficient if the class
membership is preserved, after double translation.

3 Approach

Notations and Problem We work with paired data for both the modality, D = {(xi,yi)}Ni=1, xi ∈ Rd1 ,yi ∈ Rd2 ,
N being the total number of data points. Further, each pair of data has a class zi = (zi1, . . . , ziC) ∈ {0, 1}C associated
with it encoded as a one-hot vector, with C being the total number of classes in the dataset. The problem of semantic
cross modal retrieval is, given a query from one modality, retrieve data from the other modality. A retrieval result is
valid when it has the same class label as the query, i.e. for the query xi, yj is a valid retrieval if zi = zj .
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Figure 3: Illustration of transfer of features from one modality to other

3.1 Network Architecture and Losses

The proposed network, Fig. 2, contains six different sub-networks, two encoders Ex and Ey for encoding each of the
individual modalities, two classification networks Cx and Cy for each of the modalities and two translation networks
Txy and Tyx for translating each of the modalities to the other respectively. Each of the sub-networks are MLPs
themselves, the details of the number of layers and their sizes is given in the Experiments section. The network takes a
pair of data points {(xi,yi)} as the input while training and uses the following losses.

Cross entropy losses. We use the standard cross-entropy losses for training the modality classifiers. In this loss, there
are no interactions between the modalities, and the networks for individual modality are trained separately to improve
the classification accuracy.

LCE = − 1

N

N∑
i=1

C∑
c=1

zic
[
log (Cx(Ex(xi)))+

log (Cy(Ey(yi)))
] (1)

Discriminative Semantic Transitive Consistency (DSTC) losses The DSTC losses enforce that once an input from
one modality is translated into the other modality, it maintains the same class, i.e. if x :‘dog’ and x : y by translation,
then y :‘dog’ as well, by transitivity of the property of discriminative class membership. Formally, the loss is given by

LDSTC = − 1

N

N∑
i=1

C∑
c=1

zic
[
log (Cy(Txy(Ex(xi))))

+ log (Cx(Tyx(Ey(yi))))
]
.

(2)

Cyclic DSTC (cDSTC) losses. The cyclic versions of the DSTC loss ensures that when an input is double translated
to the other modality and then back to the original modality, it maintains its class, i.e. if x :‘dog’ and x : y : x̂ by cyclic
translation, then x̂ :‘dog’ as well.

LcDSTC = − 1

N

N∑
i=1

C∑
c=1

zic
[
log (Cx(Tyx(Txy(Ex(xi))))

+ log (Cy(Txy(Tyx(Ey(yi))))
]
.

(3)

Pointwise consistency losses. Apart from the DSTC losses, we also use the paired data from both the modalities
to enforce that the projection from one modality lies close to that from other, after translation, in the respective
representation spaces, i.e.

LPC =
1

N

N∑
i=1

[
‖Ex(xi)−Tyx(Ey(yi))‖22

+ ‖Ey(yi)−Txy(Ex(xi))‖22
] (4)
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Figure 4: Illustration of discriminative vs. point wise loss. Let x, y be a paired data point from class-1 where x is
from modality-1 and y from modality-2 respectively. y

′

dstc and y
′

pt represents the translation of x from modality-1
to modality-2 using DSTC and point-wise consistency respectively. The green dotted line (- - -) represents the class
boundaries for different class in both modalities. The red dotted line (- - -) represents the area where margin of point
wise distance is minimum. It can be observed that the area within the green dotted line (- - -) are potentially correct
region for translation using DSTC loss only. Similarly, the area within red dotted line (- - -) are potentially correct
regions for translation using pointwise loss only. Note here that using point wise loss only, doesn’t respect the class
boundaries which affects negatively for the task of semantic cross modal retrieval.

Cyclic Pointwise consistency losses. Similar to the cyclic DSTC loss, we enforce the pointwise consistency after
double translation of a data point from one modality to the other and then back to the original modality, i.e.

LcPC =
1

N

N∑
i=1

[
‖Ex(xi)−Tyx(Txy(Ex(xi))‖22

+ ‖Ey(yi)−Txy(Tyx(Ey(yi))‖22
] (5)

In order to have an interpretable visual understanding of the pointwise loss functions, we give a schematic diagram
in Fig. 3. We also experiment with Cosine distance instead of Euclidean distance for both the losses LPC and LcPC

in eq. 4 and eq. 5 respectively. We do this by simply `2 normalizing the vectors before the computing the Euclidean
distance.

3.2 Motivation of DSTC Loss

We argue that point wise correspondence between data points, i.e. forcing paired data points from both modalities to
be close to each other, from two different modalities is not optimal for the task of semantic cross-modal retrieval cf.
DSTC. We provide a schematic diagram of this translation in Fig.4, where (x, y) represents the data points from first
and second modalities respectively, and the green dotted line (−−−) represents the boundaries of different classes
in both modalities. In the figure, we point out that using discriminative loss only, gives translated data point (y

′

dstc)
the flexibility to lie on the region of the same class in other modality. Similarly, using point wise loss only forces the
translated data point (y

′

pt) to be within the small region around the original data in other modality (as mentioned with
red dotted line in Fig.4). As using DSTC loss has potentially larger area for correct translation, it is a weaker form of
translation. It can also be seen in Fig.4 that enforcing only the pointwise loss only does not necessarily respect the class
annotation in other modality.

3.3 Information Flow and Training and Inference

The final loss for training is given by a weighted average of the above losses, i.e.

L = LCE + αLPC + βLDSTC + γLcPC + δLcDSTC (6)

where α, β, γ, δ are the hyperparameters used to control the relative weight of individual losses.
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To train the network, we follow a 2-step approach, with the information flow for the different losses shown with different
colors in Fig. 2. In the first step, we individually train both the modalities for the task of classification by turning off the
weights for the transfer module (i.e. using α, β, γ, δ = 0 ). In the second step, we learn to translate the modalities by
jointly training the encoder and translator networks. The motivation of the architecture as well as the two step training
procedure are closely connected to each other. While in previous works, e.g. [7, 8] the training forces both, alignment of
two modalities in the common representation space as well as good classification with a shared classifier simultaneously,
we factorize it into two steps in the hope of making learning easier. Learning and freezing the classifiers in the first
step, gives us a good individual representation space which is discriminative for the two modalities individually. In this
step there is no alignment between the modalities and we achieve the alignment in the subsequent step by freezing the
classifier and training the translators and encoders. We utilize the translator networks’ capacity to do the alignment,
such that the classification boundaries defined by the frozen classifier network are respected. The architecture and the
training procedure allows us to separate the two aspects of learning alignment between the representations, and keeping
them discriminative as well.

At test time, cross modal retrieval from one modality to the other is done using distance based scoring and sorting, for
query x and gallery {yj} as,

sj = score(Ex(x),Tyx(Ey(yj))),

output = argsort({sj})
(7)

where, scoring function can be score(a, b) = −‖a− b‖2 or cos(a, b).

4 Experiments

Sl. Losses Cos., Cos. Cos., Euc. Euc., Euc. Euc., Cos. Class Average (Cos. dist)
No. CE PT DSTC. cPT cDSTC A2V V2A Both A2V V2A Both A2V V2A Both A2V V2A Both A2V V2A Both
1 7 3 7 7 7 27.92 27.57 27.75 20.29 23.90 22.09 30.24 32.81 31.53 32.07 34.38 33.23 25.14 25.73 25.43
2 7 7 3 7 7 50.13 51.84 50.98 29.82 46.79 38.31 28.67 47.39 38.03 49.65 51.67 50.66 35.43 37.56 36.49
3 3 3 7 7 7 27.22 26.15 26.68 23.83 20.37 22.10 49.30 47.87 48.59 50.65 49.33 49.99 41.00 41.21 41.10
4 3 7 3 7 7 51.71 52.07 51.89 49.38 43.61 46.49 48.71 44.40 46.55 51.50 52.12 51.81 36.17 36.98 36.57
5 3 3 3 7 7 51.73 51.97 51.85 50.07 44.11 47.09 54.59 50.04 52.31 55.30 54.12 54.71 43.51 42.53 43.02
6 3 3 7 3 7 28.21 26.85 27.53 25.73 24.11 24.92 48.23 45.50 46.86 49.36 46.96 48.16 39.77 39.83 39.80
7 3 7 3 7 3 52.93 51.38 52.16 50.23 42.33 46.28 49.35 43.38 46.36 52.56 51.61 52.09 37.62 36.31 36.96
8 3 3 3 3 7 51.66 51.90 51.78 50.74 44.82 47.78 54.15 50.15 52.15 55.33 53.86 54.59 43.27 42.63 42.95
9 3 3 3 7 3 53.13 51.31 52.22 50.70 42.97 46.83 55.10 50.43 52.76 56.72 54.30 55.51 44.55 42.68 43.61
10 3 3 3 3 3 53.28 51.27 52.27 51.10 43.67 47.38 55.48 51.50 53.49 56.88 54.75 55.82 44.33 43.03 43.68

Table 1: Contribution of different loss terms on retrieval performance (mAP) for ‘val’ set of AudioSetZSL using
various distance methods at training and testing time. E.g. heading Euclidean, Cosine means that Euclidean distance
was used during training and Cosine distance was used during testing.

In our experiments we use two kinds of cross-modal dataset. The first kind of dataset contains audio and video
modalities whereas the second kind contains image and text modalities. For audio-video, we use one of the recently
proposed dataset, namely AudiosetZSL [9] for the task of multi-modal zero-shot learning involving both the audio and
video modality. It is a multiclass extension of AudioSet dataset [49] and is also large scale with around 130k samples.
We consider 23 seen classes out of total 33 classes available in the dataset as the unseen class is not available during the
training or the pre-training of the network and this might affect the quality of the features and hence the performance of
the network.

For image-text dataset, we use two most popular dataset, Wikipedia [50] and Pascal Sentence [51] with 10 and 20
classes respectively.

4.1 Datasets and Implementation Details

Audio-Video Dataset AudiosetZSL [9] has both audio and video modalities and is provided with train, val and test
splits. We use the same same split for the ‘seen‘ classes’ images. We use the features provided by the authors in [9].
The features for both audio and video are 1024 dimensional each and are extracted using pre-trained networks. We
also perform weighted random sampling for training as the dataset is highly imbalanced and follows a long-tailed
distribution. We use 2 layer multilayer perceptrons (MLPs) for both encoders, single layer MLPs for classifiers, and
symmetric hour glass type network for transfer modules with 3 hidden layers (see supplementary for details).

We set all the losses to have equal weights, i.e. α, β, γ, δ = 1.0 by validation. We train the network with Adam
optimizer and initial learning rate of 10−4 and subsequently changed to 10−10 after classifier training.
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Image-Text Datasets. We use Wikipedia [50] and Pascal Sentence [51] dataset. The former has 2866 image-
text pairs from 10 classes while the latter has 1000 pairs from 20 classes. We extract the features (described in
supplementary) following [8]. We also fix the encoder and classifier architectures for both the modality following [8]
for a fair comparison. The encoders and classifiers are both single hidden layer MLPs, the translators are hour glass
type networks with a single hidden layer as well.

We set the hyperparameters α = 101, β = 1.0, γ = 103, δ = 102 for Wikipedia and α = 101, β = 1.0, γ = 10−2,
δ = 1.0 for Pascal Sentence dataset. We use the learning rate of 10−4 for both the dataset.

We set the hyperparameters using the performance on the val set. We also observe that the performance does not vary
significantly with the change of values, i.e. sensitivity of the parameters are relatively low. We provide the performance
of the method on the Sentence Pascal dataset for wide range of hyperparameters in the supplementary material to
demonstrate the low sensitivity.

4.2 Ablation Experiments

We show the contribution of individual losses in the training of the network for the task of cross-modal retrieval for
AudiosetZSL in Tab. 1. We report the mean average precision (mAP) score used to evaluate the retrieval performance
using two distance functions, Euclidean and Cosine at train and test time. Each column in Tab. 1 refers to one of
the combinations used for distance calculation at train and test time respectively, e.g. Euclidean, Cosine means that
Euclidean distance was used during training and Cosine distance was used during evaluation/testing.

Since the AudiosetZSL dataset is highly imbalanced, we also report the class averaged mAP (AP is averaged for each
query in the class to get mAP per class which is then averaged over all classes to get the class averaged mAP).

We observe that the retrieval performance is better when using Cosine distance at test time even if the training was done
using Euclidean distance (eq. 4, eq. 5). Similar observations have been reported in earlier works [11, 35] but potential
explanations are missing. We analyze this behaviour at the end of this section.

DSTC vs. PT (rows 1 and 2): We observe that the DSTC loss consistently outperforms the PT loss in all the five metric
(27.75 vs. 50.98, 22.09 vs. 38.31, 31.53 vs. 38.03, 33.23 vs. 50.66, 25.43 vs. 36.49 row 1 and 2). This shows that the
discriminative loss is more suitable than the pointwise loss for this task and also this observation is intuitive as there is
no semantic information in case of pointwise loss but the discriminative loss enforces the semantic relationship between
both the modality.

DSTC vs. PT with CE loss (rows 3, 4 and 5): We now add CE loss individually to PT (row 3), DSTC (row 4)
respectively, and also combine all three together (row 5). We observe that CE+DSTC (row 4) consistently outperforms
CE+PT (row 3) while using cosine distance either in training or testing (col. 1, col. 2, col. 4) (51.89 vs. 26.68, 46.49 vs.
22.10, 51.81 vs. 49.99) except when using euclidean distance both for training and testing (col. 3) (46.55 vs. 48.59).
This discrepancy is similar to that of Euclidean/Cosine difference mentioned earlier and discussed at the end of this
section. We further observe that CE+DSTC (row 4) performs better than CE+PT (row 3) in individual cosine distance
mAP (51.81 vs. 49.99) but not in class average mAP (36.57 vs. 41.10). The observed performance can be attributed to
the fact that some examples are affected relatively more by the pointwise loss whereas some other examples are affected
more by the discriminative loss. This observation is further reinforced by the fact that adding all the three losses (row
5) improves the performance significantly in almost all the cases (51.85 vs. 51.89, 46.49 vs. 47.09, 46.55 vs. 52.31,
51.81 vs. 54.71, 36.57 vs. 43.02). The difference in performance from the global average to class average case for
losses in rows 3 and 4 can be explained: as the dataset is highly imbalanced, possibly some larger class data are more
dominated by the pointwise loss as compared to the discriminative loss.

CE + PT + cPT vs. CE + DSTC + cDSTC (rows 6 and 7): The performance of pointwise loss with the disrciminative
loss along with the cycle terms shows similar trend as the similar loss combinations without the cycle losses (rows 3
and 4); the discriminative loss performs better in the individual case where as the pointwise loss performs better in the
class average case.

CE + PT + DSTC + cPT vs. CE + PT + DSTC + cDSTC (rows 8, 9 and 10): We now show the impact of the two
cycle loss terms on the overall performance. We observe that the addition of cPT decreases the performance or is at
par with the baseline of previous three losses (row 8 vs. 5) for all the three distance metric (51.78 vs. 51.85, 47.78 vs.
47.09, 52.15 vs. 52.31, 54.59 vs. 54.71, 42.95 vs. 43.02). The decreases in performance can be explained by the fact
that the pointwise loss becomes too strict in matching the data point by point, i.e. it tries to match a particular ’dog’
barking sound back to exactly the sound when double translated to video and back, as explained in related work section.
We observe finally that adding all the losses improves the performance only marginally in all the case and class average
distance (43.68 vs. 43.61). This marginal improvement shows that the cyclic pointwise loss does not have much impact
on the performance of the system.
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Since the method with Euclidean distance for training and Cosine distance for evaluation outperforms all other methods,
we report all the following results with this setting.

4.3 Euclidean vs. Cosine Loss
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Figure 5: (left) Training loss (right) Retrieval mAP.

Similar to [11, 35], we observe that Cosine distance performs better even if the training was done using Euclidean
distance. We observe from Fig. 5 that the training loss using Cosine distance is lower cf. Euclidean distance. But the
validation mAP using Cosine distance is better than using Euclidean with the same model, irrespective of the training
distance used. This indicates Cosine loss in inherently better, but that training with Cosine loss overfits easily and
degrades the performance. In practice using a model trained with Euclidean distance with Cosine distance during testing
achieves a favorable balance.The cosine loss is equivalent to normalized euclidean distance with a scaling factor. We
suspect normalization leads to better regularization and in turns provides a better generalization. This has only been
empirically observed in earlier works [11, 35] as well and there is no theoretical insights for the same.

4.4 Comparison with State-of-the-art Methods

Method Aud2Vid Vid2Aud Both
pre-trained [9] 3.61 4.22 3.91
GCCA [9, 52] 22.12 26.68 24.4

CCA [53] 33.55 32.60 33.07
CJME [9] 26.87 29.83 27.95

AVGZSLNet [24] 26.63 29.56 28.10
MTFH(32) [54] 54.48 52.52 53.50
MTFH(64) [54] 57.20 55.93 56.56
DSCMR+ [8] 54.95 52.41 53.68

DSCMR+( w/ class avg.)[8] 40.21 40.10 40.15
Ours 57.81 55.09 56.45

Ours(w/ class. avg.) 41.21 40.26 40.73

Figure 6: Retrieval performance (mAP) comparison of AudiosetZSL
with existing methods

We now compare the proposed method with
the existing state-of-the-art methods.

Audio-Video Dataset: Tab. 6 shows the re-
sults for AudioSetZSL dataset. We compare
our approach to two baseline methods Canon-
ical Correlation Analysis (CCA) and General-
ized Canonical Correlation Analysis (GCCA).
CCA learns a projection which maximizes
the correlation of the two modalities in the
common space. GCCA is the multi-set ex-
tenison of CCA where the correlation is max-
imized between all the sets. We report the
numbers for these baselines from [9]. We also
report the performance of two recently pro-
posed zero-shot learning approaches [9, 24]
that uses variant of triplet loss to align differ-
ent modalities. All the results are reported on
comparable experimental setup (i.e. on ‘seen’
classes in the dataset).

We also show the result using one of the best performing text to image cross-modal retrieval method, DSCMR [8].
As the original DSCMR has a different network structure, we modify it to match with that of ours which is tailored
for the dataset (details in supplementary) to have a fair evaluation. We also compare our approach with a recently
proposed hash code approach using matrix factorization, i.e. MTFH. In this approach binary hash codes are learnt for
each modalities and then the same hash codes are used for retrieval. We show the results for two different length of
hash codes, 32 and 64.
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We observe that the proposed method with cosine distance for evaluation outperforms the pre-trained baseline, CCA,
GCCA and the other methods by a convincing margin (56.45 vs 28.10, 27.95, 24.4, 3.91). We also observe that the
proposed method outperforms DSCMR (56.45 vs 53.68) which is the state of the art in text-image cross modal retrieval.
Similarly, for the hashing based approach, MTFH, we observe that our approach outperforms it (53.50 vs. 5645) for the
hash code length of 32. For hash code with length 64, our approach almost similar to that of MTFH (56.45 vs. 56.56).
Finally, we also report the class average performance where the proposed method marginally outperforms DSCMR
(40.73 vs. 40.15).

Image-text Datasets: We report the comparison results for both Pascal Sentence and Wikipedia dataset with prior
approaches, in Tab. 2 and Tab. 3 respectively. We report the mAP score for prior methods as provided by the authors in
[8]. Since there is no fixed split provided on the dataset, we perform the experiment with 10 random train/test splits, and
report the mean and standard deviation. We did the same for the state of the art DSCMR [8] and MTFH [54] methods
with the same random splits as well.

Method Img2Txt Txt2Img Both
CCA [53] 22.5 22.7 22.6
JRL [55] 52.7 53.4 53.1

CMDN [56] 54.4 52.6 53.5
CCL [57] 57.6 56.1 56.9

MvDA-VC [58] 64.8 67.3 66.1
ACMR [29] 67.1 67.6 67.3
DCCAE [59] 68.0 67.1 67.5
DCCA [60] 67.8 67.7 67.8
DSCMR [8] 71.0 72.2 71.6

MTFH(32)+ [54] 58.07±2.93 62.85±1.00 60.46±1.75
MTFH(64)+ [54] 64.52±1.11 67.27±0.92 65.89±0.70

DSCMR + 69.77±0.43 70.63±0.64 70.22±0.41
Ours + 70.54±0.26 69.21±0.28 69.88±0.21

DSCMR 60.82±3.19 60.25±3.50 60.54±3.09
Ours 60.12±2.90 60.62±2.99 60.87±2.90

Table 2: Comparison of retrieval performance (mAP) for
Pascal Sentence Dataset with existing methods. + de-
notes the method using features provided by the authors of
[8].

Method Img2Txt Txt2Img Both
CCA [53] 13.4 13.3 13.4

MCCA [61] 34.1 30.7 32.4
MvDA [58] 33.7 30.8 32.3

MvDA-VC [58] 38.8 35.8 37.3
JRL [55] 44.9 41.8 43.4

CMDN [56] 48.7 42.7 45.7
DCCA [60] 44.4 39.6 42.0

DCCAE [59] 43.5 38.5 41.0
ACMR [29] 47.7 43.4 45.6
CCL [57] 50.4 45.7 48.1

DSCMR [8] 52.1 47.8 49.9
MTFH(32)+ [54] 45.27±1.40 42.40±1.12 43.83±0.79
MTFH(64)+ [54] 45.72±0.88 43.88±1.86 44.80±1.22

DSCMR 44.68±1.57 45.30±1.38 45.00±1.42
Ours 47.74±0.94 44.41±1.05 46.08±0.95

Table 3: Comparison of retrieval performance (mAP) for
Wikipedia Dataset with existing methods.

The authors of DSCMR [8] have also provided the features for train and test split for Pascal Sentence dataset. We
also report the mean and standard deviation of mAP score for the available features (marked with +) in Tab. 2 for both
the method (ours, DSCMR and MTFH). While we do not finetune our feature extraction networks on the target datasets,
DSCMR [8] seems to do that before training the main method. Hence we also compare with the finetuned features
provided directly by them. We observe here that our approach performs marginally better than the best performing
previous approach using extracted features both in the Pascal Sentence dataset (60.87 vs. 60.54) and Wikipedia
dataset (46.08 vs. 45.00). We also observe that the proposed approach also significantly outperforms the hashing based
approach for both the lengths of 32 and 64 for both Wikipedia (43.83 vs. 46.08 and 44.80 vs. 46.08) and Pascal
Sentence (60.46 vs. 69.88 and 65.89 vs. 69.88).

The published numbers by other methods on Wikipedia dataset are higher, eg. DSCMR reports 49.9 (while it obtains
45.00 in our implementation). We believe that this is due to stronger features used by the previous approaches, which
are unfortunately not publicly available for us to compare on.

4.5 Qualitative Results

In Fig. 7, we show some qualitative results for the AudioSetZSL dataset. We use a representative frame from the video
to show the results for both audio and video. We observe that our model makes understandable mistakes in a few cases,
e.g. in the second audio to video retrieval example, for the dog audio query a cat video is retrieved which looks similar
in shape to that of a dog. In the video to audio retrieval, we find an interesting incorrect retrieval, the second query
example of train video contains a retrieval audio example from the class car which is actually a train audio and
is incorrectly labeled in the dataset. The same train video query also has an incorrect retrieval of truck, which is
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Figure 7: Top-5 retrieval results for AudioSetZSL dataset. The first two rows are the results for audio to video retrieval
and the next two are the results for video to audio retrieval, modality of the example is indicated by the icon in the top
left of the image. The correct retrieval examples are marked by the green border where as the wrong ones with red. We
note that the proposed method is able to perform retrieval with large amount of diversity in the data. See supplementary
material for more results.

incorrect but is very similar (in audio modality). Due to space constraint, we provide the retrieval results for image to
text and text to image in the supplementary material.

5 Conclusion

We proposed a novel framework for the task of cross-modal retrieval by aligning data from two different modalities.
We proposed a Discriminative Semantic Transitive Consistency (DSTC) loss which ensures that the class label of the
data remains the same even after transferring it to other modality, and after a second successive translation bringing
it back to the original modality. The methods projects the modalities onto a representation space with individual
modality classifiers, and has modality translator networks to enable cross-modal retrieval. We provided extensive
ablation experiments to understand the contributions of the different components. We also compared quantitatively on
three challenging public benchmarks with existing methods, and showed qualitatively that the method is capable of
achieving diverse retrievals. We will release code and trained models upon acceptance.
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A Datasets and Features

In our experiments we used 2 different kinds of cross-modal datasets. The first kind contains audio and video modality
where as the second kind contains image and text modality.

Audio-video Dataset: We use one of the recently proposed dataset, namely AudiosetZSL [9] involving both the audio
and video modality for the task of multi-modal zero-shot learning. The features provided by the authors [9], were
extracted using a neural network with the I3D architecture for the videos pre-trained on the kinetics dataset [4], and a
recently proposed audio classification network [62] for audio. The audio network is not pre-trained with an auxiliary
large dataset and is directly trained on the train set of AudiosetZSL. We use the 23 ‘seen‘ classes out of total 33
classes available in the dataset, which was split into ‘seen‘ and ‘unseen‘ classes for the zero-shot task. We use the same
train, validation and test split, within the ‘seen‘ classes’ images as proposed in [9] and also perform weighted random
sampling for training as the dataset is highly imbalanced and follows a long-tailed distribution. The portion of the
dataset used contains 79795, 26587, 26593 audio-video pairs in the train, val and test split respectively.

Image-Text Datasets: We use two popular datasets, Wikipedia [50] and Pascal Sentence [51] involving image
and text modalities. We obtain the image features from the fc7 layer of VGG19 [63] and the text features from the
Sentence CNN [5] following [8]. We average the sentence features over all the sentences as there were multiple
sentence for a single input image example. The extracted features for image and text are of 4096 and 300 dimensions
respectively.

The Pascal Sentence dataset contains 1000 image-text pairs from 20 different classes with 50 examples per class.
All the prior works using the dataset have randomly split the data into 800, 100 and 100 (with equal number of data
points from each class) for train, val and test set respectively following [64]. As there is no unique split for all the three
sets, the numbers reported with different methods can vary depending upon the random split of the dataset. In order to
have a fair comparison we perform random split k(= 10) times and report the mean and standard deviations over all the
runs for the test set. Apart from this, we also used the features for a fixed train and test split provided by the authors of
[8] (See Sec. 4.3 in the main paper).

The Wikipedia dataset, has a total of 2866 images from 10 different classes of which 2173, 693 image-text pairs
belong to train and test sets respectively. In this case also there is no validation data, all the prior works follow [64] to
split the original test data further randomly into test and validation set consisting of 462 and 231 data points respectively.
Similar to the previous dataset, as there is no fixed val set, we randomly split the original test set k(= 10) times into
test and validation sets and report the mean and standard deviations over all the runs, for the obtained test set.

B Implementation Details

Audio-Video Network. We use a two-layered network each, for both the encoder (audio, video) networks (Ex,Ey)
with input and output node of size 1024 and 256 respectively. The hidden unit sizes are fixed to be 256 and 512 for
the audio and video network respectively. We use a single layer neural network as the classifier for each modality
(Cx, Cy) with input of size 256 and output of size 23. We use a symmetric hour-glass type network for the transfer
modules (Txy, Tyx). We use the same network structure for transfer module of both the modality, i.e. a MLP with 3
layers. having same input and output dimension of 256, 3 hidden units of sizes 128, 64 and 128 respectively. We use
Batchnorm and ReLU non-linearity after each hidden layer for all the modules of the network.

Image-Text Network. Similar to the audio-video network, the encoders and classifiers are both single hidden layer
MLPs, the translators are hour glass type networks with a single hidden layer as well. We fix the encoder and classifier
architectures for both the modality following [8]. The encoder architectures (Ex, Ey) are single layered neural network
with 2048 hidden units and 1024 output units. The classifiers (Cx, Cy) are single layered neural network with 1024
input units and 10 output units. We use an hour-glass network for both the transfer modules (Txy, Tyx) with input and
output units of size 1024 and single hidden layer of size 512, and use BatchNorm and ReLU after each hidden layer.

C Qualitative Results

We provide here some additional qualitative results in Fig. 8.

In addition, we request the readers to look at the videos available at https://krantiparida.github.io/projects/
dstc.html for a better understanding of the retrieval results. The discussion below refers to the videos available in the
above link.
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Figure 8: Top-5 retrieval results for AudioSetZSL dataset. The first three rows are the results for audio to video retrieval
and the next three are the results for video to audio retrieval, modality of the example is indicated by the icon in the top
left of the image. The correct retrieval examples are marked by the green border where as the wrong ones with red. We
note that the proposed method is able to perform retrieval with large amount of diversity in the data.
We provide four example video results each for audio-to-video and video-to-audio retrieval in separate files, as part of
the supplementary material. The name of the files are self-explanatory. As our method performs cross-modal retrieval,
we have switched off the other modality which was not used respectively in the query and the retrieved examples, i.e.
audio is muted for all the retrieved examples in case of audio-to-video retrieval and for all the query examples in case of
video-to-audio retrieval. Similarly, video modality is turned off for the other case, where for illustration we show a
random frame from the video as a representative image for the entire duration (the selected frame appearance is not
used for retrieval and is shown in the result just for illustration).

We mention some interesting observations from retrieval results below.

Audio-to-Video Retrieval:

− In audio_to_video_exp2.mp4, the wrong retrieval results are from the class truck but looking at the video
result, it can be seen that in one case there is actually a car along with the truck in the scene and in the other
case the retrieval result is a ‘pickup truck‘ which is annotated as truck class in the dataset.

− In audio_to_video_exp3.mp4, the final retrieval result is from the class car instead of camera. But looking
at the retrieval result we find out that the video contains only a car logo and it appears to be quite similar to
that of a camera lens.
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− Similarly in audio_to_video_exp4.mp4, the wrong retrieval example is from the class sawing where as
the query is from hammer class. Again looking at the results we find out that the act of performing sawing in
the video is quite similar to that of hammering.

Video-to-Audio Retrieval:

− In video_to_audio_exp2.mp4, the incorrect retrieval is from the class truck whereas the query is from
Ambulance. But listening to the retrieval result we find out that it contains the ambulance siren as well—the
retrieval result is semantically correct and the annotation is incorrect for that example.

− Similarly for video_to_audio_exp3.mp4, the query video is from the class sewing and the incorrect
retrieval is from car. Again listening to the audio we find that it contains the sound of car engine, which in
this particular case sounds similar to a sewing machine.

− In video_to_audio_exp4.mp4, all the retrieval results are correct and listening to them we find that they
contain variety of train sounds, i.e. sound of horn blowing, sound of speeding train etc. This demonstrates that
the method is able to generalize well enough to capture the variation in data within a class.

With these qualitative results we conclude that the method makes semantically sensible mistakes which are either due to
the examples being very similar in the modality in question, or in rare case they have mistakes in annotations.

We provide here some qualitative results for Image-to-Text and Text-to-Image retrieval for Sentence Pascal dataset.

Image-to-Text Retrieval:
We provide the results for image-to-text retrieval in Fig. 9. The semantically correct retrieval are marked with green
borders where as the incorrect ones are marked with red. From the results we observe that for most of the cases
it produces semantically correct retrieval results and. For the incorrect ones although the retrieval results are not
semantically correct but they individually have a high similarity with the query. For example, for the last retrieval
results, the query is labelled as tvmonitor but the image contains sofa and dog as well. So the retrieval for this case
contains text from those classes. Although the retrieval result can be considered as incorrect but this is a sensible
mistake.

Text-to-Image Retrieval:
We also provide some qualitative results for the case of Text-to-Image retrieval in Fig. 10. Similar to Text-to-Image we
mark the correct retrieval results with green boundary and the incorrect one with red. In this case also the failure cases
retrieve meaningful results that are aligned with the query even though the class labels are different. In the last retrieval
example, the query is from the class chair where as the retrieval results are mostly from the class diningtable,
which is very similar to the class of chair.
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A grey and white tabby cat is sleeping on 
purple fabric.
A sleeping cat rests on the coach.
A sleeping gray cat curled up while lying 
on a purple surface.
A striped cat asleep and curled up.
Gray cat curled up asleep on pink blanket.

A black and grey striped cay lying on a 
comforter looking toward the camera.
A cat curled up on a comforter.
A tabby cat laying on a bed.
Gray domestic cat lying down on comforter.
The cat is laying on an animal print 
blanket.

a close up of a gray cat with a yellow 
collar
A close-up of a gray cat with green eyes.
A gray cat wearing a yellow collar.
A gray cat with green eyes looks at the 
camera.
A grey cat with green eyes looking into 
the camera.

A gray and white cat sits on a table.
A wide-eyed striped cat lays in front of 
folders.
Grey and white domestic kitten lying down 
on a desk.
The alert kitten looks on curiously.
The black, grey, and white striped cat is 
looking at the camera.

A cat stretching by a wall on patterned 
fabric.
A gray cat stretched out on a patterned 
green surface.
A gray tabby cat lays up side down in a 
green comforter.
A grey striped cat with white paws and 
belly atop a green patterned spread.
A striped cat asleep on a green patterned 
material.

A living room with a beige sofa and love seat, television, 
and coffee table.
A living room with two sofas and a large TV along with a 
palm in the corner.
Cream furniture and a television in a living room with 
palm tree decorations.
Living room with tan furniture and flat screen television.
The model home allows a comfortable seating arrangement to 
watch television,

A living room decorated with contemporary furnishings.
A living room scene with couches and coffee table.
A living room with large sofas and a dining table in the 
background.
A living room with two leather sofas, a chair and a coffee 
table with the dining room in the back ground.
Two tan leather sofas in a cream colored living room with 
a bookcase and table behind.

sofacat

chair

A decorated room with blue carpeting, a cream sofa and 
chair, and a patio door.
A living room with a sofa, chair, coffee table, and a 
sliding glass door.
Living room with white couch and blue carpeting.
The living room in the apartment gets some afternoon sun.
There is a living room with blue carpet, white furniture, 
and coffee table.

A decorated room with blue carpeting, a cream sofa and 
chair, and a patio door.
A living room with a sofa, chair, coffee table, and a 
sliding glass door.
Living room with white couch and blue carpeting.
The living room in the apartment gets some afternoon sun.
There is a living room with blue carpet, white furniture, 
and coffee table.

A decorated room with blue carpeting, a cream sofa and 
chair, and a patio door.
A living room with a sofa, chair, coffee table, and a 
sliding glass door.
Living room with white couch and blue carpeting.
The living room in the apartment gets some afternoon sun.
There is a living room with blue carpet, white furniture, 
and coffee table.

A baby sits in a car seat looking upward
A baby strapped into a car seat.
A small baby is buckled into a plaid car 
seat.
A small baby sitting in a car seat.
A small infant dressed in yellow and white 
strapped into a car seat carrier.

A dark haired woman with green eyes and a 
blue sweater is smiling.
Close up head shot of a woman.
Close up of a brunette woman with brown 
eyes in a gray shirt.
The smiling lady takes a picture of 
herself.
Woman with brown hair smiling.

A female child in a pink skirt and pink 
and white shirt is riding a toy that looks 
like a duck.
A girl sitting on a large yellow duck.
a little girls is happy, riding a toy duck
A young girl smiles while riding a duck.
Young girl sitting on yellow duck statue.

A lady and two children look at papers.
An Asian lady with a boy a girl reading a 
newspaper.
Asian and two children poring over a 
paper.
A woman and two children are looking at a 
piece of paper.
Two children and a woman look at a sheet 
of paper.

A baby is sitting in the grass.
A baby with blonde hair wearing lavender 
and a bib is sitting in the grass and 
looking down.
A small blonde child wearing a bib and a 
purple outfit sits in the grass.
Baby in pink outfit sitting on grass 
looking down.
Baby sitting in grass wearing a bib.

person

A dark brown dog on a blue loveseat and a light 
brown puppy on a cream rug.
An adult basset hound lays on a blue couch while a 
basset hound puppy lays on a rug on the floor.
There are two dogs, one laying on a couch, one 
laying on the floor.
Two basset hounds lying down in room.
Two dogs in a living room sitting on the couch and 
on the floor.

Two women and a black dog are near a sofa and 
chair.
Two women in a room with a large black dog.
Two women reluctantly look at the camera in their 
home as a black dog looks on.
Two women stand in a living room with a black dog.
Two women standing in a living room with a black 
dog looking towards the camera.

A woman and her dog watch the cameraman in their 
living with wooden floors.
A woman sitting on the couch while a black faced 
dog runs across the floor.
A woman wearing a backpack sits on a couch while a 
small dog runs on the hardwood floor next to her.
A women sitting on a sofa while a small Jack 
Russell walks towards the camera.
White and black small dog walks toward the camera 
while woman sits on couch, desk and computer seen 
in the background as well as a pillow, teddy bear 
and moggie toy on the wood floor.

A small boy laying on a sofa with a dog.
A young boy laying on a sofa with a dog
Boy laying on couch with dog
Boy lying on couch with small white dog.
The boy is lying on a couch with a puppy.

dog

tvmonitor

sofa

sofa

A brown dog resting on a white sofa cushion.
A tan dog is lying on a couch and has its head on 
a white pillow.
Brown dog with head on pillow on white sofa.
The brown dog is resting his head on a white 
pillow.
This is a picture of a dog resting its head on a 
white sofa.

sofa

Figure 9: Image to Text Retrieval. Top 5 retrieval results for image to text retrieval for Pascal Sentence dataset.
The top row represents the query image and the text in the five rows below represent the retrieval results. The correct
retrieval results are marked with green border where as the incorrect ones are marked with red border. We observe
that the results are semantically correct for most of the cases. For the incorrect ones, although the retrieval is not
semantically correct, but the retrieval results are very similar to correct ones from other class.
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A computer on a desk
A computer with a cat screen saver at an office 
desk.
A desktop pc with a close up picture of a cat on 
the monitor.
A picture of cat is displayed on a desktop 
computer.
Worker has a cat as a screen saver at the office.

cat

A moving train in a suburban area
A train is railing between a dead end street and a 
stand of evergreens.
Black train on train tracks.
The locomotive is visible just beyond the guardrail 
and in front of the telephone pole.
Train engine with trees in the background.

train

A calico cat seated on the doorstep surrounded by 
bikes and junk.
A cat is sitting in between two bikes.
Calico cat sitting on step in front of a door.
Multi colored cat sitting on a step between two 
bicycles.
The cat is sitting between two bicycles in front of 
a door.

potted plant
cat

A group of people having a drink.
Four males and two females seated around a table 
with beverage.
Group of people sitting at table with drinks.
Six people drinking at a long table at night.
The people are sitting down to the table and they 
are drinking alcohol.

chair
dinning table dinning table dinning table dinning table

Figure 10: Text to Image Retrieval.Top 5 retrieval results for text to image retrieval for Pascal Sentence dataset.
The left column represents the query text and the next five columns shows the retrieved image in decreasing order of
similarity with the query. The correct retrieval results are marked with green border where as the incorrect ones are
marked with red border. Similarly to that of image to text retrieval, we observe that the results our approach produces
semantically correct results for most of the cases and also produces sensible failure cases.
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