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Frequency Aware Face Hallucination
Generative Adversarial Network with Semantic
Structural Constraint

Shailza Sharma, Abhinav Dhall, and Vinay Kumar

Abstract—In this paper, we address the issue of face
hallucination. Most current face hallucination methods rely
on two-dimensional facial priors to generate high resolution
face images from low resolution face images. These methods
are only capable of assimilating global information into the
generated image. Still there exist some inherent problems
in these methods; such as, local features, subtle structural
details and missing depth information in final output image.
Present work proposes a Generative Adversarial Network
(GAN) based novel progressive Face Hallucination (FH)
network to address these issues present among current
methods. The generator of the proposed model comprises
of FH network and two sub-networks, assisting FH network
to generate high resolution images. The first sub-network
leverages on explicitly adding high frequency components
into the model. To explicitly encode the high frequency
components, an auto encoder is proposed to generate high
resolution coefficients of Discrete Cosine Transform (DCT).
To add three dimensional parametric information into the
network, second sub-network is proposed. This network
uses a shape model of 3D Morphable Models (3DMM) to
add structural constraint to the FH network. Extensive ex-
perimentation results in the paper shows that the proposed
model outperforms the state-of-the-art methods.

Index Terms—Super Resolution, Face Hallucination,
Generative Adversarial Networks, 3D Morphable Models,
Discrete Cosine Transform

I. INTRODUCTION

To obtain the high resolution image from its equivalent
low resolution counterpart is referred as Super Resolution
(SR). Particularly, applying super resolution on faces
is known as Face Hallucination (FH). High resolution
facial images are widely required in many image pro-
cessing applications, such as facial emotion detection [[1]],
pedestrian re-identification [2f], facial alignment [3], face
recognition [4] and face identification [J5].

Based on deep learning, researchers have effectively
applied numerous algorithms to solve face super resolu-
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tion problem [6]. However, the first drawback of majority
of these algorithms is that they rely on two dimensional
facial priors to recover structural details of facial images,
such as, Grm et al. [[7] proposed a face Super Resolution
(SR) algorithm, where the identity priors are incorporated
at multiple stages of Convolutional Neural Networks
(CNN) to perform image hallucination. Progressive facial
attention loss is proposed by Kim et al.[§] to incorporate
facial attributes in the generated SR face images. Yu et
al.[9] used coarse SR image from the intermediate stage
to extract heatmaps by passing that image in an UNet
architecture. Extracted heatmaps are then merged with
coarse SR image to generate final SR image. All the
above mentioned methods used 2D priors to guide the
deep learning models to generate the high resolution face
images. The information extracted from the 2D priors is
only capable of incorporating global features in an output
image. Still the local features or the subtle structural
details like skin irregularities, wrinkles and depth details
are missing in the final output image. To embed the above
mentioned features in the generated image, we have
proposed a progressive Face Hallucination (FH) network.
An auxiliary sub-network is employed in the proposed
FH network by using 3D Morphable Models (3DMMs)
[1O] to embed structural information in the output image.
3DMMs are the three dimensional meshes of face images
used to reconstruct a 3D image from its 2D counterpart
using shape and texture models of Principal Component
Analysis (PCA). To add the semantic structural constraint
to proposed FH model, we are utilizing the PCA shape
model of 3DMM [L1]]. The shape components of PCA
shape model constitute different face parameters, like, the
first shape component signifies the shape of face (slim,
chubby or round etc). And the secondary shape compo-
nents accounts for the more finer details (wrinkles, face
irregularities, face depth etc) of face images. These three
dimensional meshes with face parameters are rendered as
two dimensional points on the face image. The obtained
3D points fitted on 2D images act as a target images for
our auxiliary network. This auxiliary network act as a
supervision network to add structural constraint to our
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face hallucination network.

Second drawback of Super resolution methods based
on generative adversarial networks [12f], [13] is that
the quantitative results produced by these methods have
less values as compared to other deep learning based
methods due to missing frequency details. To overcome
this drawback, a sub-network comprised of an auto
encoder is added along with the proposed FH network
to explicitly add high frequency facial details from an
face image. Discrete Cosine Transform (DCT) based fea-
ture maps with high resolution are generated using this
network. Frequency domain loss is calculated between
the generated DCT feature maps and ground truth DCT
feature maps which is used to train the sub-network.
This loss function will guide our FH network to produce
output images with high quantitative values. To embed
high feature DCT maps in the FH network, we used an
Inverse Discrete Cosine Transform (IDCT) block. This
IDCT block converts the frequency domain feature maps
into the spatial domain feature maps. Then the converted
feature maps are merged with the output feature maps of
FH network, supervising our network to produce images
with high frequency details.

Main contributions of presented work are as follows:

1) GAN based progressive face hallucination network
is proposed. The generator network in the proposed
network comprises of FH network and two sub-
networks, assisting FH network to generate high
resolution face image. The FH network consists
of Hierarchical Feature Extraction Module and
Computationally Efficient Channel based Attention
Module. The hierarchical feature extraction module
helps the model to learn hierarchical as well as
primitive information present in the image. Where
as channel based attention block is used to add
channel-wise attention in the network and reduce
the computational complexity of the network.

2) First sub-network produces high resolution DCT
feature maps. This network supervises FH network
to produce images with high frequency details.
Proposed frequency domain based loss, assists our
face hallucination network to reflect the quality of
resultant images. IDCT block is used at the end
of this network to convert the frequency domain
feature maps to spatial domain and merge them in
the FH network.

3) An auxiliary sub-network generates a high res-
olution 2D image with 3D parameters fitted on
it. This network adds, structural constraint to our
FH network, producing face images with semantic
facial details, like skin irregularities, wrinkles and
depth information etc.

4) Experiments on facial benchmark datasets reflect

superior performance over recent state-of-the-art
methods.

II. RELATED WORK

We have discussed the framework and some recent
works related to image super resolution, face hallucina-
tion and frequency domain based deep learning methods
in this section. High resolution images are the most
essential requirement in many computer vision applica-
tions. From the last few years, many approaches, includ-
ing frequency-domain methods [2l], Bayesian methods
[L4], [1S)], interpolation methods [16], regularization
based methods [17]], [L8]] and edge statistics methods [[15]]
have been proposed for image super resolution problem.
But in recent times, convolutional neural networks and
generative adversarial networks have captivated extensive
attention from researchers to perform the image super
resolution task.

SRCNN, the first CNN based implementation was
proposed by Dong et al. [19]. Based on this pioneer
work, more CNN based architectures are explored for
image super resolution [20], [21]. VDSR, a deep CNN
architecture, based on residual learning is proposed by
Kim et al. [22] to perform image super resolution. Batch
Normalization layers are removed from the residual
networks to increase the training accuracy of image super
resolution system by Lim et al. [23]. Deep recursive net-
work structure (DRCN) is proposed by Jiwon et al. [24]
to extract feature maps repetitively from the same filter
structure to reduce the count of parameters. Sometimes
recursive networks induce instability in the networks
due to vanishing gradient problem. Skip connections
are used by the author in the SR recursive network to
overcome this problem. For large upscaling factors, Lai
et al.[25] proposed a deep CNN, named LapSRN, where
features are upscaled using gradual upscaling technique.
This network contains two branches, where first branch
generate feature maps and the second branch is used
for reconstruction. Residual blocks and dense blocks are
combined by Zhang et al. [26]] to extract the hierarchical
features from each convolution layer along with the
channel attention layer. For better correlation between
the extracted features from the intermediate layers Dai
et al. [27]] proposed a network (SAN) based on second
order attention mechanism. This network consists of
three modules: 1) Adaptive channel-wise feature learn-
ing module, 2) NLRG- for long term memory, and 3)
LSRAG- for precise feature representation.

High frequency feature extraction capability of net-
works is diminished by using loss functions that depend
on pixel-wise differences [28]]. Therefore, SRGAN [12],
the first GAN based network, addresses this problem



by incorporating the loss function based on feature-
wise differences. SRGAN is modified by Wang et al.
[13] to generate more realistic images. The architecture
integrates the dense residual blocks in the generator
architecture with relativistic [29] discriminator. Feature
based discriminator is proposed by Park et al. [30] which
helps the model to reduce noisy artifacts and produces
SR images with high structural features.

To generate a high resolution face image, Cyang et
al. [31] integrated the image gradients obtained from
specific face components. Edges, smooth regions and
LR exemplar images, selected on the basis of pose
and landmark detection constitute the face components.
CNN based architecture, SICNN is proposed by Zhang
et al. [29], where identity enhanced high resolution
face images are generated using identity loss function.
Generated SR image and HR image are applied to the
face recognition CNN network and the features extracted
from this network are used to calculate the identity loss
function. Parsing maps and facial landmarks are used
with the high resolution face images to train GAN based
network for generating SR face images by Chen et al.
(6].

Supervised discriminator with two inputs (SR im-
age and the extracted features of SR image obtained
from pre-trained face recognition system) is proposed
by Zhang et al. [32] for face super resolution. This
face super resolution system is capable of generating
face images with very fine textural details. Two CNN
branches- one with the facial structural information (al-
ligned heatmaps of nose, eyes, skin and chin) and the
other for the face super resolution are aggregated by
Yu et al. [9]. Kalarot et al. [33] used a segmentation
network to obtain three facial features: hair, skin and
other parts of face. These facial feature heat maps are
merged with the input image and passed to two stage
image super resolution network to obtain SR images.
Image SR network based on spatial attention is proposed
by Chen et al. [34]]. This network permit the CNN layers
to learn more parameters from the high textural regions
using face attention units. SRGAN [12] is improved
by Wang et al. [35] by replacing the residual blocks
with dense blocks for face super resolution. In addition,
spectral normalization is introduced in the network to
improve its training efficiency.

Discrete Cosine Transform based methods represents
the feature maps in the frequency domain rather than
representing them in spatial domain. For various ap-
plications, CNNs are being trained in frequency do-
main, such as, Zhang et al. [36] extended the idea of
DCT coefficients and presented median filtering forensics
approach which was based on a convolutional neural
network (CNN) with an adaptive filtering layer (AFL)

built in the discrete cosine transform (DCT) domain.
Meanwhile, Verma et al. [37] addressed the problem
of classifying images based on the number of JPEG
compressions they have undergone, by utilizing deep
convolutional neural networks in DCT domain. For the
task of super resolution, Islam et al. [38]] used directional
fourier phase feature components to adaptively learn the
regression kernel based on local covariance to estimate
the high-resolution image. [39] presented a frequency
domain neural network where convolutions in the spatial
domain was cast as products in the frequency domain
and nonlinearity was cast as convolution in the frequency
domain. Guo et al. [40] integrated DCT into the network
structure as a Convolutional DCT (CDCT) layer and
formed DCT Deep SR (DCT-DSR) network.

Our approach presents a novel way to integrate spatial
and frequency domain components and add structural
constraint to the resultant image by using 3D parametric
information. Detailed explanation of proposed method-
ology is present in next section.

III. METHODOLOGY

As depicted in the figure [1l generator network of the
proposed architecture consist of three branches:

i) Progressive Face Hallucination Branch (PFH-B),
powerfully built with a combination of cascaded hier-
archical feature extraction module and channel based
attention module,

i) Semantic Structural Constraint Branch (SSC-B),
serves as a supervision network by constraining PFH-
B to generate resultant images with three dimensional
parametric feature information, and

iii) DCT based Auto Encoder Branch (DCTAE-B),
compelling PFH-B to produce images with high fre-
quency details.

Basically, the objective of proposed face hallucination
model is to find the mapping function Fy,, (refer eq.
to obtain a high resolution face image (H Ry;) from its
low resolution counterpart (LR ;).

Fo;n = LRy —» HRy; )

where, ¢, are the parameters learned throughout the
mapping process. To minimize the distance between
HRy; and its counter LI?y;, proposed face hallucination
network employs the combination of pixel based loss,
feature based loss, structured parametric loss and DCT
based loss and updates the learnable parameters during
the training process. The output face images generated
by face hallucination network is fed to discriminator
network [[12]] along with the high resolution face images.
In the proposed architecture, discriminator is acting as
a binary classifier, and trained in such a way that it



classifies the ground-truth face images as label 1 and
generated face images as label 0. On the contrary,
generator is trained to trick discriminator by generating
the face images similar to high resolution face images.
Comprehensive training of both these networks will lead
to the generation of high resolution face images.

Detailed explanation of components employed in the
generator network are discussed next.

A. Progressive Face Hallucination Branch

As illustrated in figure [1, PFH-B uses a progressive
upscaling technique where at every stage the input image
is upscaled by the factor of 2. Further, each stage is
divided into three phases. First phase is Elementary
Characteristic Extraction Phase (ECE-P), where a low
resolution face image is passed through a convolution
layer to extract the elementary characteristics of an
image. The feature maps obtained from the first phase
are applied to the second phase which is Hierarchical
Feature Extraction with Channel Attention Mechanism
(HEF-CA). This is the most crucial component of PFH-
B. HEF-CA is composed of two main blocks - Hier-
archical Feature Extraction Block and Computationally
Efficient Channel based Attention module, which are
explained in detail in the following subsection. Output
feature maps obtained from the HEF-CA are applied to
the reconstruction phase, where the features maps are
upsampled by the factor x2 using subpixel convolution
layer [21] to get the final output image.

1) Hierarchical Feature Extraction Module: Hierar-
chical Feature Extraction Module (HFE-M) is shown in
figure 2l Hierarchical Feature Extraction Block (HFE-
B) is the building block of HFE-M. To sustain the long
term memory dependency, residual connections are used
between the HFE-Ms. Total five HFE-Bs are used in each
HEF-CA phase, where the output feature maps of first
HFE-B are applied to the second block and so on.

The motivation of Hierarchical Feature Extraction
Module (HFE-M) is taken from the inception architecture
[41]. As depicted in the figure 2h, the same input is
applied across three different convolution layers with
different kernel sizes. Notion for utilizing this complex
filter structure across the input is to acquire local as
well as global features of an input face image. Salient
attributes like nose, eyes, lips, ears and wrinkles of face
images have distinct sizes across an image. Therefore,
to extract local attributes from an image, HFE-M uses
convolution layers with small kernel sizes (1 x 1, 3 x 3).
While the hierarchical and the global features are ex-
tracted using larger kernel sizes (5 x 5). Before the
convolution layer with large kernel sizes (3 x 3, 5 X 5),
convolution layer with 1 x 1 kernel size is used to curb
the input channels and hence reducing the computational

parameters of the architecture. All the convolution layers
are followed by LeakyReLU activation function in order
to introduce non-linearity in the model. The final feature
maps are obtained by concatenating the individual feature
maps obtained from each convolution layer with different
kernel size.

2) Computationally Efficient Channel based Attention
module: As depicted in figure Bl the motivation for
Computationally Efficient Channel based Attention Mod-
ule (CEC-AM) is taken from mobilenet V3 model [42].
Rather than using regular convolution layer, depthwise
separable convolution layers (combination of depthwise
convolution layer and pointwise convolution layer) are
used in this block. In depthwise convolution, for each
channel in the feature space a single filter is applied
and followed by 1 x 1 convolution using pointwise
convolution layer to amalgamate the feature maps of
depthwise convolution layer. This layer is preferred over
the regular convolution layer due to its ability to use
lesser number of computational parameters without af-
fecting the functionality of traditional convolution layer.
Second fundamental component used in this module is
squeeze and excitation block [43]. The essence for using
this block is to explicitly model the mutuality present
between the channels of convolution feature maps, guid-
ing the network to enhance the representational quality
of output features. Thus, CEC-AM is used to incline the
architecture’s ability to assign the accessible processing
resources to the most essential information present in the
input feature maps.

B. DCT based Auto Encoder Branch (DCTAE-B)

As shown in figure (sub-network1), a Discrete
Cosine Transform based Auto Encoder is employed in
parallel with PFH-B to incorporate frequency details in
our super resolution network. Basically, following two
contributions are proposed in this sub-network: 1) an auto
encoder is employed in parallel with PFH-B to generate
high resolution DCT coefficients from low resolution
DCT coefficients. 2) DCT and IDCT blocks are defined
in the network to transform data from spatial domain to
frequency domain and vice versa.

The autoencoder takes the DCT coefficients of LR
image as input and upsample it to the DCT coefficients
of HR scale. The use of skip-connections ensure long
passage of information in the network. We do not use
any form of normalization in the network as it tends
to produce artifacts in the image. The DCT to IDCT
block helps in transforming the DCT coefficients back
to spatial domain, and thus provides a common link
between frequency and spatial domains. The output of
AE is merged with the output of PFH-B. This serves
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Fig. 1. Proposed Generator architecture with three branches: 1) FH network- progressive face hallucination branch from where resultant output
image is generated, 2) Sub-network1- a DCT based encoder network to add high frequency components in the output image, and 3) Sub-network2-
semantic structural constraint branch to add 3D parametric information in the generated image.

the purpose of using DCT coefficients which have high
frequency explicitly embedded in it.

1) DCT and IDCT module: To operate in the fre-
quency domain, firstly the face images are converted
from the spatial domain to frequency domain using DCT.
For a single block, DCT is calculated by the formula
given in equation [2| and DCT of ground-truth image is
shown in figure @

M M

o . 2z +1)ar
Dyyp = \/ﬁﬁ (a) B (b) ZZ ba,y COS [T]

r=0y=0
cos [(Qy +1) bﬂ]
2M
)

here, block size is represented by M, image is denoted
by ¢ and pixel coordinates as = and y. a and b represents
indexes of spatial frequency. Scale factor S (refer eq.
MT=BI)is used for transform to be orthogonal.
vz, ifv=1.
s ={ ¢

0, otherwise.
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In order to establish a connection between the DCT
based encoder network and main SR network, IDCT is
used. IDCT transforms the frequency domain coefficients
back to the spatial domain. The transformed values are
then fused with the main SR network to get output
images with high frequency details. The formula to
calculate IDCT for single block is given by equation

......

x i onibias S et
HR Face Image DCT of HR Face Image
Fig. 4. Figure shows (from left to right) ground truth face image and
corresponding Discrete Cosine Transform

.1 M (2z+ 1) ar
T ng 8 (a) B (b) Dy cos [T]
cos [Ly ;—]\;) bw]
(3)

here, i,,,, represents spatial domain image coefficients.

C. Semantic Structural Constraint Branch

As shown in figure [ (subnetwork-2) is SSC-B. This
auxiliary branch guides the our PFH-B to generate im-
ages with three dimensional parametric feature informa-
tion. This branch consists of consecutive five HFE-Bs
followed by a reconstruction module to achieve image
size same as of the final output image.

To add structural semantic constraint in the proposed
face super resolution, we use 3D facial parameters fitted
on a 2D image. In the following subsection, we have
explained the procedure to obtain the target 2D image
fitted with 3D parametric information.

1) 3D model fitting to 2D images: To obtain this
image following steps are followed:

1) Firstly, facial landmarks of 2D facial image are
extracted through dlib library [44].

2) We used PCA shape model of Surrey Face 3D
Morphable model to obtain a 3D face mesh con-
stituting global and local face parameters . Novel



a. 2D Face Image

Fig. 5. Generation of training data for SSC-B. Figure shows (from left
to right) a ground-truth 2D image, landmarks extraction on 2D images
and then 3D parameters fitting on 2D image.

faces using PCA shape model are generated by
using formula mentioned in equation [4]

K
S =m+ Z Yioim; “)

here, m - mean of example meshes,M =
[mq,ma,....my_1] - set of principal components
and K denotes the total number of scans utilized
to make a model, v - PCA shape coefficients and
o - Standard deviation

3) Using EOS library, the face mesh obtained above
is fitted to the extracted landmarks [[11]]. Four steps
are followed to perform this shape-to-landmark fit-
ting: Estimate the pose of the facial image, shape-
specific identity fitting, linear expression fitting,
and contour (which includes front facial contour
and occluding contour) fitting.

4) The last step is to render the obtained 3D face
mesh parameters as 2D points on the face image
as shown in figure

D. Loss Functions

To obtain the final output face image, loss func-
tion L/" is optimized over M training samples. Loss
Function L/" is weighted combination of loss functions
explained in this section.

1) DCT based loss function: For subnetwork-1 i.e.
autoencoder, L loss between the generated coefficients
from subnetwork-1 and HR DCT coefficients of high
resolution face image is calculated. This loss function
as this loss function is trying to penalizes the proposed
network for not predicting the high frequency detalls cor-
rectly. The proposed DCT based loss function (L dct Ji. J)
is defined in eq. ()

Wi, Hi ;

Wi 2 2 Ao

a=1b=1

(SNS,, (A ;(i)))ap (5

where, W and H represents the dimensions of DCT
based HR coefficients. A; ;(i"") and A, ;(i'") are the
DCT coefficients extracted from the ground truth HR
face image and low resolution face image, respectively.
S’N(l)grepresents the subnetwork-1 and its parameters.

2) Semantic Structural Constraint Loss: To add three
dimensional parametric information to obtain the final
output image, we proposes semantic structural constraint
loss. Lj loss is calculated between the generated image
from the subnetwork-2 and its corresponding ground-
truth image (2D HR face image fitted with 3D parametric
information) and is given by eq.

fh —
det/z] -

1 Wl,]HZ,]
L DD N (i )an -
sscfij WJHJ ‘£ 1|§z,J(Z )a,b r
a=1b=

(SNG,, (1" )ap  (6)

here, ¢; ;(i"") represents the 2D HR face image fitted
with 3D parametric information. i'" is the low resolution
face image which is passed to subnetwork-2 (SNg)gz) to
update its parameters.

3) Final loss function: Final loss function is the com-
bination of dct based loss function, semantic structural
constraint loss, feature based L loss and adversarial loss.
Feature based loss L] and adversarial losses Lt d are
explained it detail by Ledig et al. [12]. So, final loss
function (L") is the combination of four loss functions
as mentioned in eq. [7]

L th + CYLadv + Bdet + ’yLssc (7)

vgg9

here, a, 8 and ~ are the weight parameters used to
balance the impact of individual loss functions.

IV. EXPERIMENTS
A. Datasets

From CelebA dataset [45], 108,640 images are se-
lected for the training purpose, 5000 images for valida-
tion and 5000 for testing purpose. To validate the per-
formance of proposed architecture, we have performed
experiments on benchmark face hallucination datasets-
Menpo dataset (left, right and semi-frontal profile) [46]
and Helen dataset [47].



B. Implementation details

The performance evaluation for the proposed archi-
tecture is performed for upscaling factors of x4 and
x8 between the high resolution face image and low
resolution face image. For an upscaling factor of x4,
the high resolution images are of size 128 x 128. These
images are downsampled using bicubic kernel with a
factor of x4 to generate a low resolution face images
with size 32 x 32. For an upscaling factor of X8, the
high resolution face images (128 x 128) are downsampled
with a factor of x8 to generate low resolution images
(16 x 16).

For every stage in progressive face hallucination
branch, five HFE-Ms are used with fixed channel size
(64) followed by a CEC-AM. In CEC-AM, the number of
input channels are 256 and number of output channels are
64 with an expansion factor of 3. To reduce the number
of parameters in fully connected layer, total channels
present is a layer are divided by a factor R having
value 24. The LeakyReLU hyper parameter o is 0.2.
Batch size is 8; optimizer used is Adam with parameters
B1 = 0.9 and By = 0.999. Initial learning rate is set
to 0.0001. To minimize the distance between the high
resolution face image and generated face image, /" [ is
used. To fully train the model, alternate training between
the generator and discriminator is done to update their
weights. Proposed model is evaluated using two com-
monly used metrics: SSIM (Structural Similarity Index
Measurement) and PSNR (Peak Signal to Noise Ratio).
For equitable comparison with the previous works, these
metrics are computed on Y-channel.

C. Ablation study

In order to understand the importance of individual
sub-modules of the proposed architecture, ablation study
is conducted as summarized in [Il

Firstly, we studied the effect of using upsampling layer
at different positions in the architecture i.e. a single stage
upsampling model vs a progressive stage upsampling
model. From the results obtained after employing up-
sampling layer at end of the architecture (refer figure [6h)
and at progressive stages (refer figure [@b), it is clear that
multi-stage upsampling performs better than single stage
upsampling model. As progressive upscaling approach
allows the network to mimic the fine details present in
an input image and increases its ability to learn.

The proposed architecture is compared with or without
using CEC-AM. There is significant improvement in the
results after adding this module in the architecture (refer
figure [6b and [6k). This module is basically used to
slant the network’s ability to provide access of available
resources to the most important information present in
the feature maps.

TABLE 1
CONTRIBUTION OF DIFFERENT COMPONENTS UTILIZED IN THE
PROPOSED ARCHITECTURE
[ Components [ a [b]c[d]e]T]
Single stage
Multiple stages VIV M
HFE-M Va4 V4
CEC-AM V4 V4
Sub-network1
Sub-network?2 V4

In order to further improve the quality of the gener-
ated image, we embed sub-network] in the architecture
(refer [d). Results obtained (refer figure [6) after adding
sub-network1 in the proposed architecture supports our
claim that DCT based auto encoder is able to add high
frequency information in the architecture.

Still some facial details like skin irregularities and
depth information is missing in the generated image.
So, we tried to add these facial details using sub-
network?2 (refer Tabldlke). In this experiment we used the
progressive upscaling and sub-network2 and excluded
the sub-networkl. Results obtained shows substantial
improvement in the generated images perceptually. As
facial details and skin irregularities are more prominent
in these images. But there is little mismatch in the color
as compare to the ground-truth images (refer figure [G
and [6). So, for the final architecture we combined
both the approaches i.e. DCT based auto encoder and
2D images with 3D parametric information to get the
final output images (refer figure [6F), performs better
quantitatively and qualitatively.

D. Comparison with the state-of-the-art method

We compared our proposed architecture with seven
state-of-the-art methods: SRCNN [19], VDSR [22f], SR-
GAN [12], ESRGAN [13], ImprovedFSR [35], SICNN
[29], SAM3D [48] and bicubic interpolation to show
the efficacy of our network. For fair comparison, we
trained all these models on our training dataset with same
parameters.

Menpo dataset- We evaluated the performance of
our model and other state-of-the-art methods on Menpo
dataset (left, right and semi-frontal profiles) [46] qual-
itatively and quantitatively. For left profile, our model
has achieved second highest PSNR and highest SSIM
for both x4 and x8 scaling factors (refer Table [I).
For right profile our model has achieved highest PSNR
and SSIM for x4 scale. For x8 scale, our model has
achieved second highest PSNR and highest SSIM values.
For semi-frontal profile x4 scale, our model has second
highest PSNR and highest SSIM values and highest
PSNR and SSIM numbers for x8 scale.
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Perceptual results for Menpo dataset are represented
in figures [7] [8] and Bl In figure [7l although the image
generated by ImprovedFSR has highest PSNR, still there
are artifacts present in the eyes and mouth region. In
SAM3D model, the generated image has blemished skin
with noise present in the mouth region. Only the image
generated by proposed model is able to mimic the
ground-truth image. As shown in figure [8 the image
generated by SRGAN model has some artifacts in the
hair region. And none of the competing GAN methods
are able to generate a mole present on the face. Our
method is recovering small details or textures present in
the face image. In figure Bl competing GAN methods
are unable to recover the details of the nose region. And
CNN based methods are producing smooth faces with
very less textural details. Image generated by our model
is looking perceptually better than all other methods.

Helen dataset- For Helen test dataset [47], quantita-
tive results (PSNR/SSIM) are shown in Table [IIIl for an
upscaling factor of x4. Our method is able to achieve
hightest PSNR and SSIM values as compare to state-
of-the-art methods. Perceptual analysis with the PSNR
and SSIM values is presented in figure CNN based
methods like SRCNN and VDSR are generating output
images with blurriness. SRGAN and ESRGAN are also
producing images with some artifacts at the eyes and
cheeks. Other competing methods like ImprovedFSR and
SAM3D are unable to generate better images perceptu-
ally. Only the proposed method is able to recover fine
textural details like eye brows and depth details similar
to the ground-truth image.

Proposed model has achieved highest SSIM and sec-
ond highest PSNR for x8 factor (refer Table [II).
Qualitative analysis with their quantitative numbers are
presented in figures [T1] and From the figures, it is
clear that perceptually our model is performing better

LR Image
PSNR/SSIM

HR Image

28.92/0.864

ESRGAN
27.88/0.797

VDSR
28.92/0.864

SRGAN
28.92/0.864

ImproveFSR
32.37/0.896

SAM3D
28.99/0.851

Ours
31.25/0.896

Fig. 7. Perceptual and quantitative (PSNR/SSIM) result comparison
with state-of-the-art methods for the magnification factor of x4 on
Menpo test dataset.

than the other competing methods. ImprovedFSR has
highest PSNR value but visually our model is able to
recover more finer details and textures.

V. CONCLUSION

Current work presents a novel GAN based progressive
face hallucination network. To generate the final output
image with 3D parametric information, proposed model
uses a auxiliary supervision network which is compelled
to generate 2D images with 3D parametric information
using shape model of 3DMM. To incorporate high fre-
quency components in the image, an auto encoder is
proposed which generates high resolution coefficients of
DCT. To embed high resolution DCT information into



TABLE II
QUANTITATIVE RESULT COMPARISON ON THE BASIS OF AVERAGE PSNR (DB) AND AVERAGE SSIM ON DIFFERENT FACIAL POSES (LEFT,
RIGHT AND SEMI-FRONTAL) OF MENPO DATASET.

Scale x4 X8
Left Right Semi-frontal Left Right Semi-frontal
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 27.32 0.794 26.28 0.772 24.89 0.763 22.01 0.634 21.07 0.602 20.31 0.501
SRCNNII9] 26.99 0.811 26.59 0.794 25.15 0.772 22.14 0.663 21.16 0.623 20.99 0.509
VDSR[22] 27.45 0.831 26.78 0.793 25.32 0.769 22.56 0.671 21.12 0.625 20.61 0.512
SRGAN[12] 29.34 0.873 29.51 0.871 28.94 0.868 22.34 0.681 22.31 0.661 21.02 0.557
ESRGANJ[13] 28.99 0.821 28.83 0.813 28.43 0.813 21.04 0.662 21.06 0.621 20.19 0.532
SICNNI29] 28.09 0.812 28.12 0.803 27.02 0.799 22.45 0.679 22.69 0.659 21.21 0.613
ImprovedFSR[35]] 30.85 0.887 30.78 0.884 30.25 0.877 23.90 0.713 23.56 0.676 21.28 0.623
SAM3D[48] 28.23 0.842 28.91 0.848 27.92 0.838 23.71 0.692 23.01 0.654 21.11 0.601
Ours 30.36 0.924 30.81 0.925 29.80 0.922 23.73 0.723 23.52 0.689 21.34 0.641
. S -
= - - LR Image SRCNN
[ S .
LR Image HR Image SRCNN PSNR/SSIM 23.22/0.738
PSNR/SSIM 26.43/0.803
- o - |
- - - VDSR SRGAN ~ ESRGAN
. 23.33/0.764 24.44/0.816 24.02/0.758
- |
VDSR SRGAN ESRGAN
26.71/0.819 27.76/0.901 27.73/0.815
-
' ImproveFSR SAM3D Ours
- 25.09/0.829 23.08/0.775 25.40/0.841
< > » Fig. 9. P ] and itati PSNR/SSIM 1 i
ImprovedFSR SAM3D Our Method ig. 9. Perceptual and quantitative ( / . ) result comparison
30.85/0.918 28.95/0.891 32.49/0.933 with state-of-the-art methods for the magnification factor of x4 on

Fig. 8. Perceptual and quantitative (PSNR/SSIM) result comparison
with state-of-the-art methods for the magnification factor of x4 on

Menpo test dataset.

TABLE III

QUANTITATIVE RESULT COMPARISON ON THE BASIS OF AVERAGE

PSNR (DB) AND AVERAGE SSIM OF HELEN DATASET.

| Scale | x4 X8
PSNR | SSIM | PSNR | SSIM
Bicubic 25.06 0.692 21.67 0.612
SRCNN[19] 26.45 0.712 22.04 0.634
VDSR[22] 26.89 0.734 22.14 0.639
SRGAN[12] 28.45 0.851 22.31 0.689
ESRGAN[13] 27.86 0.790 21.99 0.674
SICNN[29] 26.43 0.757 22.76 0.681
ImprovedFSR[35] 28.83 0.856 23.99 0.701
SAM3D[48] 27.32 0.834 22.16 0.712
Ours 28.86 0.911 23.83 0.741

Menpo test dataset.

the face hallucination network IDCT block is introduced
within the network to convert the frequency domain
coefficients to spatial domain. Output images generated
by the proposed model have subtle structural details
with depth information, outperforming the state-of-the-
art methods.
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