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Abstract

Visual 2.5D perception involves understanding the se-
mantics and geometry of a scene through reasoning about
object relationships with respect to the viewer in an envi-
ronment. However, existing works in visual recognition pri-
marily focus on the semantics. To bridge this gap, we study
2.5D visual relationship detection (2.5VRD), in which the
goal is to jointly detect objects and predict their relative
depth and occlusion relationships. Unlike general VRD,
2.5VRD is egocentric, using the camera’s viewpoint as a
common reference for all 2.5D relationships. Unlike depth
estimation, 2.5VRD is object-centric and not only focuses
on depth. To enable progress on this task, we create a
new dataset consisting of 220k human-annotated 2.5D re-
lationships among 512K objects from 11K images. We ana-
lyze this dataset and conduct extensive experiments includ-
ing benchmarking multiple state-of-the-art VRD models on
this task. Our results show that existing models largely rely
on semantic cues and simple heuristics to solve 2.5VRD,
motivating further research on models for 2.5D perception.
The new dataset is available at https://github.com/
google-research-datasets/2.5vrd.

1. Introduction

Visual 2.5D perception involves understanding the se-
mantics and geometry of a scene: the relationships between
objects with the viewer as the main reference point in an
environment [51]. For instance, we may refer to a chair
solely through semantics by its name and attributes (e.g.,
the wooden chair), through both semantics and geometry
by its spatial relationship to other objects (e.g., the chair
on the right of the table), or through the geometry only—
by distance to our viewpoint (e.g., the chair that is closer).
However, object recognition [10], detection [37, 29], and
segmentation [37], among other hallmark computer vision
tasks, primarily focus on the semantics component. As a
result, most visual perception models operate in a 2D world

*Work done during an internship at Google.

Predict relative depth
● Within-image: Man < Tree
● Across-image: Tree < Vehicle

Infer occlusion
● Man occludes Tree

Figure 1: 2.5D visual relationship detection (2.5VRD). We
consider two relationships, i.e., relative depth and occlu-
sion, both within an image and across images (best viewed
in color; showing not all, but three objects).

and lack 2.5D visual understanding.
Motivated by this, we introduce 2.5D visual relationship

detection (2.5VRD). The goal of 2.5VRD is to detect ob-
jects and predict their relative depth and occlusion relation-
ships as a unified task, as illustrated in Figure 1. We study
the relative depth in two settings: “within an image” and
“across images” (e.g., the depth of the tree with respect to
the man and to the vehicle.) Occlusion on the other hand
only applies to the “within an image” setting. Clearly, to be
able to perform well on this task, the geometry of a scene
cannot be ignored.

Our task is primarily motivated by the scientific ques-
tion “Do machines possess 2.5D visual understanding ca-
pability like humans do?” An answer to this question
would benefit our understanding of machine visual percep-
tion. Furthermore, we believe an effective model for the
core problem of 2.5D visual relationships can benefit a wide
range of applications, e.g., helping a self-driving vehicle
to understand scenes beyond its LiDAR range, assisting a
robot to navigate and manipulate objects, and improving
(amodal) instance detection [13, 20, 78, 25, 11] and seg-
mentation [34, 48, 21, 52, 23, 61, 7], to name a few.

2.5VRD shares similar high-level motivation as visual
relationship detection (VRD) and depth estimation, yet with
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important conceptual differences. Our task differs from
general VRD as it focuses on depth and occlusion. It
also differs from recent work on spatial VRD [53, 41, 68,
27, 28]. For example, the spatial relationships in Spa-
tialSense [68] are concerned with both locations and poses
of objects with respect to each other, while 2.5VRD is
egocentric, defining occlusion and depth orders from the
viewer’s perspective. Indeed, “a chair (in SpatialSense)
may be behind a person even if it appears to the left of
the person (depending on where that person faces)”. The
most similar work to ours is Rel3D [16] which also con-
sists of view-dependent relationships, but, unlike ours, they
are situated in synthetic environments. Finally, the depth in
2.5VRD is object-centric, unlike the pixel-wise depth stud-
ied in monocular depth estimation [54, 55, 38, 57, 30, 39,
12, 33, 18, 56, 64, 31, 65, 4].

To enable progress on our proposed 2.5VRD task, we
introduce a new large-scale dataset of 219,570 2.5D rela-
tionships among 511,545 objects from 11,084 images of
the Open Images [29]. Our dataset is an order-of-magnitude
larger than existing VRD datasets [41, 68]. It is also the first
large-scale human-annotated dataset with 2.5D visual rela-
tionships (in two settings) on natural images. Additionally,
unlike existing benchmarks, the annotations on our valida-
tion and test sets are exhaustive, allowing us to use both
precision and recall as the evaluation metrics.

We analyze our dataset and conduct extensive experi-
ments that shed light on the difficulty of 2.5VRD. First,
we use the rich annotations to analyze how humans and vi-
sual recognition models tackle 2.5VRD. We build a simple
baseline and find that our baseline’s performance and the
agreement among five raters are both correlated well with
the relative depth between two objects. Second, we study
the effect of various cues on the performance of our base-
line model. Our results show that the object sizes and lo-
cations are important at predicting the relative depth, sug-
gesting that high-quality object detection is key to 2.5VRD.
On the other hand, the appearance cue is more important for
occlusion prediction. Finally, we benchmark four state-of-
the-art VRD models on our 2.5VRD dataset. We find that
they do not significantly outperform our simple baseline and
that they do not generalize well from the within-image set-
ting to the across-image setting. These results suggest that
existing models designed for 2D VRD are not sufficient for
relative depth or occlusion reasoning.

In summary, our main contributions are as follows. We
propose the 2.5VRD task, promoting the object-centric
depth and occlusion reasoning as the first-class citizen.
We concretize the task with an extensively labeled dataset,
which is an order-of-magnitude larger than existing VRD
datasets and unique in the exhaustive annotations on the val-
idation and test sets. We propose a model to study various
factors that may come into play, and we hope the findings

A occludes B

B occludes A

A is closer to the camera than B

B is closer to the camera than A

A and B are about at the same distance

Else, please explain below

A is closer to the 
camera than B

B is closer to the 
camera than A

Unsure, please 
explain below

Figure 2: Annotation interface for within-image (top) and
across-image (bottom) 2.5VRD.

will help design improved models in future. Finally, we
evaluate four state-of-the-art VRD methods for 2.5VRD.
Results show that their performance is comparable to the
baseline model, highlighting the new challenges in 2.5VRD
of which are not taken into account by these methods yet.

2. Visual Relationships in 2.5D
This section first formalizes the 2.5VRD task, followed

by a detailed strategy for data and label collection. Next,
we analyze the resulting dataset and study how humans ap-
proach 2.5VRD. Finally, we compare 2.5VRD with related
datasets and work.

2.1. Problem Formulation

We formalize our task as follows. Given two input im-
ages (Ia, Ib), the 2.5VRD task is to predict a set of 2.5D
relationships. Each 2.5D relationship consists of a triplet
〈oa, predicate, ob〉, where ox is an object in Ix specified by
a tight bounding box and its class name and predicate is
the relationship between oa and ob. By treating Ia and Ib as
separate input, this formulation is applicable to both within-
image and across-image setting. For the within-image set-
ting, i.e., Ia and Ib are identical, we consider both relative
depth and occlusion relationships. For the across-image set-
ting, only the relative depth relationship is relevant. Possi-
ble values for the predicate include {is closer than, is far-
ther than, is at the same depth as} for relative depth, where
the predicate “is at the same depth as” is on only in the
within-image setting since we find it too challenging to label
across images. For occlusion, predicate∈{occludes, does
not occlude, mutual occlusion}. Note that there could be no
occlusion between two objects, and they could be mutually
occluded. Because the relationships are defined between
any two objects, there should be Na×(Na−1) and Na×Nb

relationships in within-image and across-image setting re-
spectively, where Nx is the number of objects in Ix.
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Table 1: Overview of the 2.5VRD dataset.
Training Validation Test

Images 105,694 1,200 4,000
Objects 493,498 4,063 13,893

Within Pairs of objects 105,694 6,339 23,724
image A is closer 39.1% 39.9% 38.7%

B is closer 39.9% 39.6% 38.9%
Same depth 10.1% 6.3% 7.5%
A occludes B 10.9% 10.3% 9.3%
B occludes A 11.0% 10.0% 9.1%
Mutual occlusion 3.5% 1.9% 2.1%

Across Pairs of images 52,484 600 2,000
image Pairs of objects 52,484 6,868 24,461

A is closer 43.5% 40.9% 43.8%
B is closer 45.2% 48.0% 44.5%

One may alternatively formulate the problem for relative
depth relationship as ranking of objects, but we find that
some difficult pairs of objects often invalidate the ranking
lists. It becomes especially troublesome when we merge the
ranking lists from different raters. Hence, we instead use the
〈oa, predicate, ob〉 triplets considering their flexibility and
the annotation cost.

2.2. Data and Label Collection

We construct the 2.5VRD dataset on top of the Open Im-
age Dataset (OID) [28]. OID mostly consists of scenery
images from Flickr, where each image may contain mul-
tiple objects and/or people. We maintain the original
train/validation/test split of the images. We use the anno-
tated bounding boxes and 600 class names of objects in the
OID images. As the annotations in OID are over-complete
(i.e., multiple bounding boxes for an object), we filter the
boxes before collecting 2.5VRD labels. We also ignore ex-
tremely small or large boxes (occupying less than 2% or
more than 70% area of the image) to avoid ill-defined cases.
Finally, we remove boxes containing group of objects. See
supp. for details.

Labeling 2.5VRD within an image. For each training
image, we have a rater to label one randomly formed pair
of objects. The label consists of both relative depth and oc-
clusion relationships (see the top panel in Figure 2, which is
a screenshot of the annotation UI). We also include an “un-
sure” option for ambiguous cases in light of the difficulty of
the problem. For each validation or test image, we collect
five 2.5VRD labels for every pair of objects from five raters
respectively. We then use majority voting to determine the
final labels. This strategy ensures that the labels for the vali-
dation and test set are of high quality. It also results in com-
prehensive annotations for all pairs of objects in a validation
or test image, allowing us to evaluate model performance in
terms of precision and recall. Note that we annotate only

Table 2: Distributions of difficulty scales for within-image
and across-image object depth ordering, respectively.

Easy Moderate Difficult Infeasible Ambiguous

Within-image 55.8% 16.4% 13.1% 10.5% 4.3%
Across-image 50.0% 21.6% 16.9% 6.7% 4.8%

one pair of objects in the training set to maximize the num-
ber of training samples under the budget constraint, based
on the hypothesis that higher diversity in the training data is
important for model performance.

Labeling 2.5VRD across images. We split the training
images into two groups and then construct pairs by select-
ing one image from either group. Given a pair of images,
we randomly choose an object from each of them. A rater
ranks the two objects by their depths using the annotation
UI illustrated by the bottom panel in Figure 2. We pair
up validation and test images in the same way, but provide
dense labels for all across-image object pairs. In addition,
we assign each of them to five raters to secure high-quality
labels for the validation and test sets.

2.3. Dataset Statistics and Analyses

Table 1 shows the statistics for the proposed 2.5VRD
dataset. Note that the within-image and across-image set-
ting share the common sets of images and objects within
each split. Out of the within-image object pairs, about 80%
have apparent depth disparities (rows of “A is closer” and
“B is closer”), and approximately 10% are at about the same
depth. Furthermore, one object occludes the other (but not
vice versa) in about 20% of the pairs (rows of “A occludes
B” and “B occludes A”), and about 3% are mutually oc-
cluded. For across-image 2.5VRD, the raters managed to
tell the difference between two objects’ depths for approx-
imately 88% of all the pairs (see the last two rows in the
table). The dataset preserves the object pairs for which the
raters selected the unsure option, as learning models may
make sense of them in the future.

Human perception of 2.5VRD. The annotations on each
validation or test example by five raters allow us to analyze
how humans approach the 2.5VRD task. We define five dif-
ficulty scales for depth ordering:

Easy: Five raters all agreed on a relative depth label and
did not choose the unsure option.

Moderate: Four out of five raters agreed with each other.

Difficult: Three out of five agreed on a relative depth label.

Infeasible: A majority of the raters chose “unsure”.

Ambiguous: There is no majority agreement on any label.
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Figure 3: Examples of within-image 2.5VRD with different difficulties. A<B means that A is closer to the viewpoint than B.

Table 2 shows the distribution of validation and test exam-
ples over the five difficulty scales. For the proposed dataset,
more than 50% of the object pairs belong to the “easy”
scale. Moreover, more within-image object pairs fall into
the “easy” scale than the across-image object pairs, likely
because the latter requires the raters to estimate metric
depths to some extent. In contrast, relative depths are suffi-
cient to rank two objects in the same scenery image. There
are 7% and 10% infeasible object pairs for across-image and
within-image 2.5VRD, respectively, meaning that a major-
ity of the raters were “unsure” how to rank them by depth.
Finally, less than 5% of the object pairs received no label
because there was no majority winner. Overall, the 2.5VRD
task is more difficult for humans than we expected, consid-
ering that a notable proportion of examples are “infeasible”
or “ambiguous” for human raters to reach a consensus.

Figure 3 and Figure 4 show some examples and their la-
bels (more in the supplementary materials). There is a high
(negative) correlation between the difficulty scales and the
object pairs’ depth differences. The raters chose “unsure”
or became ambiguous about some object pairs mainly for
the following reasons. Two objects could appear at about
the same depth. One or both lack backgrounds for the raters
to infer depths. The images may not be natural scenes (e.g.,
edited images, paintings, cartoons, etc.).

Potential bias. We visually inspect each object class and
its relative depth label distribution, as well as each object
pair and its relative depth label distribution. For simplicity,
we focus on the within-image setting (and ignore the across-
image examples). Figure 5 shows the top six object classes
(and object pairs) with the highest percentage for each la-
bel. Take the left panel in the figure for example. The first
six rows correspond to the most frequent six classes that

are “closer than B”, the next six rows are the most frequent
classes which “B are closer than”, and so on. We observe
a natural bias. For example, big and background objects
such as swimming pool, bookcase, and tree tend to be fur-
ther than the other objects. Further, many object pairs of the
same class (e.g., dolls, doors, and posters) are of the same
distance, with man and guitar being two exceptions. Finally,
clothes, person-like objects, and body parts are ambiguous
categories. We do not attempt to correct the natural bias
as it is a reflection of our daily scenes. The supplementary
materials contain a similar study about the occlusion labels.

2.4. Related Datasets and Work

VRD. Sadeghi and Farhadi studied VRD using 17 unique
relationships [53]. Lu et al. scaled up the study by a new
benchmark with 37,993 relations over 5,000 images [41].
They showed that language prior was effective for detecting
the visual relations with few to no training examples. Peyre
et al. collected 76 unusual relationships to evaluate model
generalization for VRD [46]. SpatialSense curated 17,498
spatial relationships over 11,569 images [68]. The Visual
Genome (VG) [27] and OID [28] provide VRD labels albeit
sparse per image.

Table 3 contrasts our 2.5VRD dataset with the related,
representative datasets. VRD and SpatialSense are arguably
the most widely-used benchmarks for VRD. Our dataset
is an order of magnitude larger than them in the numbers
of images, objects, and relations. While 2.5VRD makes
depth and occlusion the first-class citizen, almost all rela-
tionships in the existing VRD datasets are 2D. Only 5,132
relations in SpatialSense have “behind” or “front” in their
predicates, and yet a cell phone could be “in front of” a
person as long as the person faces to the phone even if the
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Table 3: 2.5VRD vs. existing datasets (*2.5D relations for existing datasets have “behind” or “front” in their predicates)
Images Objects Classes Predicates Relations 2.5D relations* Occlusion Across-img relations

VRD [41] 5,000 32,901 100 70 37,993 4,780 0 0
SpatialSense [68] 11,569 33,861 3,679 9 17,498 5,132 0 0
VG (relationship) [27] 108,077 2,254,357 65,405 4,016 2,316,104 66,660 0 0
OID (relationship) [28] 596,308 1,478,971 303 31 3,284,282 0 0 0
2.5VRD (ours) 110,894 511,454 600 5 219,570 219,570 29,105 83,813

�

�

�

"

Figure 4: Examples of across-image 2.5VRD. The difficulty
is easy, moderate, difficult, infeasible, and ambiguous from
top to bottom.

phone is farther to the viewpoint. The same issue occurs
in the VG dataset, where the “behind” relationship mostly
refers to an object’s orientation, rather than depth. Across-
image 2.5VRD is unique in our dataset, made possible due
to the relative depth predicates between objects.

Besides the existing VRD datasets, our work is also
closely related to the rich line of VRD methods and mod-
els [36, 75, 76, 81, 35, 47, 74, 43, 8, 70, 67, 77, 63, 72, 46,
71], which will speed up tackling 2.5VRD. We leave the ex-
ploration into them to future work. Instead, our experiments
aim to help readers gain more insights into 2.5VRD, espe-
cially about how different visual cues interplay in the 2.5D
visual relationships. Our work is also related to human-
object interactions [17, 69, 9, 26, 15, 3, 49, 2, 82], which
may be viewed as human-centric VRD. In contrast, 2.5VRD
is egocentric, using the viewpoint as the reference for the
relationships between two arbitrary objects.

2.5D perception. Monocular depth estimation [54, 55,
38, 57, 30, 39, 12, 33, 18, 56, 4, 64, 31, 65] infers a dense,
pixel-wise depth map from an image, and thus not object-
centric. Our empirical results show that, while dense depth
maps provide informative cues to 2.5VRD, it is far from
solving depth ordering for objects and does not account for
occlusion. Unlike depth, existing works mostly do not con-
sider occlusion as an independent task, but a latent factor to
improve object detection [13, 20, 78], semantic and instance
segmentation [52, 23, 61, 7], and other applications [24, 73].
Instead, 2.5VRD directly deals with occlusion.

Some works study occlusion and depth ordering between
image regions instead of objects [59, 19, 79, 23, 42, 80, 48].
Because they define occlusion along the object or scene
boundaries, the relationship is always binary. Also, most
of them couple the two relationships and define depth order
based on occlusion [23, 42, 80, 48], so the relative depth is
only defined within a connected component where the re-
gions overlap. While some works define depth order glob-
ally, they rely on the existence of the ground [19] or 3D ob-
ject bounding boxes [79] and consider only objects on the
ground or cars. In contrast, we consider the 2.5D relation-
ships between arbitrary objects, leading to a more general
relationships definition and a larger dataset.

Our work is also broadly related to amodal instance
segmentation [34, 80, 48, 21] and amodal object detec-
tion [25, 11]. We envision that detecting depth and oc-
clusion relationships between objects can facilitate amodal
tasks and vice versa. Finally, single-view 3D object detec-
tion [62, 14, 66, 58, 6, 45, 44, 40, 32, 22, 1, 5] is related
but requires labor-intensive data collection, limiting exist-
ing work to mainly indoor and self-driving environments.
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Figure 5: Distributions of depth labels given object classes (Y-axis: Object A) or object pairs (Y-axis: (Object A, Object B)).

3. Experiments and Analyses

In this section, we evaluate the performance of visual
recognition models on 2.5VRD. The goal of our experi-
ments is to understand the effect of different visual signals
and models on the 2.5VRD performance and establish the
baseline results for future work. To this end, we develop two
baselines and benchmark them along with four state-of-the-
art VRD methods on our proposed 2.5VRD task. Code and
data will be made publicly available.

3.1. Approaches to 2.5VRD

In our experiments, we explore a two-stage approach for
this task. The first stage leverages an oracle/off-the-shelf
object detectors to provide/infer multiple (oa, ob) pairs.
Then, given (Ia, oa, Ib, ob) as input, we infer 2.5D relation-
ships between oa and ob by predicting the predicate for
each relationship. Our baseline and state-of-the-art models
will operate in this second stage. Because 2.5D relation-
ships are directional, we treat 〈oa, occludes, ob〉 and 〈ob,
occludes, oa〉 as two different labels for (oa, ob). We also
include the “unsure” label for the relative depth relation-
ship. This leads to four possible values for each 2.5D rela-
tionship.

Overview of visual cues All baselines and state-of-the-
art models explored in this paper employ a subset of the
following four types of visual cues. The first one is direct
semantics in the form of object class labels. For example, a
person is often closer to the viewpoint than trees and build-
ings; more examples are provided in Figure 5. The second
cue is the geometric cue in the form of box size and loca-
tion. For example, an overlap implies a probable occlusion
relation. The third cue is appearance, both in term of ob-
ject and its context. The forth cue is depth, both in terms of
object and its context.

3.1.1 Rule-Based Baselines

We explore the following rule-based baselines, each of
which relies on a specific visual cue.

• Object class predicts the most frequent predicate for the
pair of object classes in the training set.

• Size predicts oa is closer to the camera than ob if oa’s
box size is larger by a margin ∆s (based on the fact that
an object’s size in an image is inversely proportional to its
depth.) For occlusion prediction, if the size of the overlap
area is larger than a threshold, the object that is closer
occludes the other; otherwise, no occlusion.

• Location predicts oa is closer to the camera than ob if
oa’s Y-coordinate is larger by by a margin ∆l. For oc-
clusion prediction, we couple the rule with relative depth
prediction as in Size.

• Depth For depth prediction, we assume a depth map pro-
duced by a monocular depth estimator MiDaS [31] and
compute a depth estimate Da for each object by averag-
ing the depth values inside its bounding box1. oa is closer
to the camera than ob if Da is smaller than Db by a mar-
gin ∆d For occlusion prediction, we again couple the rule
with relative depth prediction as in Size and Location.

The margins are set to ∆s=0.0, ∆l=0.02, and ∆d=0.02,
respectively, by a grid search on the validation set.

3.1.2 Simple MLP Baselines

We explore a two-layer multi-layer perceptron (MLP) fol-
lowed by two heads, treating depth and occlusion predic-
tions as two multi-class classification problems. This model
takes in up to four types of visual signals, as detailed below.

1We explored different methods for combining the inferred depth val-
ues but did not observe significant differences.
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• Object class feature represents an object’s class using a
one-hot vector.

• Bounding box feature uses the bounding boxes’ coor-
dinates, concatenated with the overlap region’s height,
width, and area.

• Appearance feature extracts the appearance feature for
an object from the bounding box locally and from the
image globally using a Faster-RCNN [50] pre-trained
on OID [28] with an Inception-ResNet [60] backbone.
Given an image, we first obtain a feature map from
Faster-RCNN’s last convolutional layer. We then perform
average pooling over the feature map to obtain the im-
age appearance feature and ROI pooling over a bounding
box to reap the corresponding object’s appearance fea-
ture. Concatenating the image feature and the object fea-
ture provides information about the object’s surroundings
and the object itself.

• Depth feature extracts depth information using Mi-
DaS [31]. Given the depth map (without per-image nor-
malization), we compute the mean, standard deviation,
minimum, and maximum of the depth values within the
bounding box of an object as the depth feature. Further,
we also compute the depth feature for the entire image
and concatenate it with the object’s depth feature.

Implementation details We use concatenation to com-
bine features from a pair of objects and to combine fea-
tures of different types. We use a hidden layer of size
1024. We use the sum of cross-entropy losses over the two
classification heads. We augment each training input with
(Ia, oa, Ib, ob) with (Ib, ob, Ia, oa), and also randomly per-
turb the center, width, and height of bounding boxes by 10%
in addition to other standard perturbation to the images’ sat-
uration, contrast, brightness, and hue during training. The
model is trained using Adam for 60,000 steps with a base
learning rate of 2×10−4 and a batch size of 32. We add
an L2 regularization with weight 1×10−4 and use dropout
with ratio 0.5.

3.1.3 State-of-the-art VRD Methods

We explore the following state-of-the-art VRD models.
• ViP-CNN [35] predicts predicates using visual features

from three bounding boxes, including the two object
bounding boxes and a tight bounding boxes covering the
union of the two objects.

• PPR-FCN [81] is similar to ViP-CNN but adopts a dif-
ferent architecture to combine the information.

• DRNet [8] takes as input the appearance feature, loca-
tion, and word vector embedding of two objects. The
model architecture is designed by unrolling a conditional
random field model.

Table 4: 2.5VRD results of rule-based (top), MLP (middle),
state-of-the-art visual relationship detection (bottom) mod-
els. Both rule-based and MLP use different visual cues. For
MLP, B: bounding box feature, C: object class feature, D:
depth feature, A: appearance feature. Best numbers in bold
and second-best in underlined and italic.

Within-image Occlusion Across-image Average

Rule: Object class 0.011 0.133 0.025 0.056
Rule: Location 0.286 0.303 0.214 0.268
Rule: Size 0.232 0.303 0.240 0.258
Rule: Depth 0.292 0.303 0.303 0.299

MLP: B 0.232 0.308 0.243 0.261
MLP: B+C 0.280 0.317 0.314 0.304
MLP: B+D 0.301 0.308 0.326 0.312
MLP: B+A 0.307 0.320 0.367 0.331
MLP: B+C+D+A 0.310 0.324 0.370 0.335

ViP-CNN [35] 0.336 0.342 - -
PPR-FCN [81] 0.335 0.339 - -
DRNet [8] 0.338 0.344 0.366 0.349
VTransE [74] 0.324 0.329 0.365 0.339

• VTransE [74] predicts predicates from the feature vector
difference between two objets, where the features involve
appearance, location, and word vector embedding.

See supp. for details. Note that ViP-CNN and PPR-FCN
take the union of two boxes as input and are therefore not
applicable for the cross-image task.

3.2. Evaluation Metrics

We can evaluate a model’s performance by precision and
recall since we exhaustively label all pairs of objects in an
image or between images of the validation and test sets. We
report F1-scores in the main text and all metrics in the sup-
plementary materials.

A 2.5VRD model detects objects and predicts predicate
between any pair of them. We first use the same filtering
procedure in data collection (see Section 2.2) to discard
extremely small or big box and ill-defined relations. Sup-
posing that N objects in an image survive this procedure,
there will be N×(N − 1) 2.5D visual relationships—for
each pair of objects, we predict two predicates for both di-
rections, respectively, because the depth and occlusion re-
lationships are directional. To compute precision and re-
call, we find true positive 2.5D visual relations as follows.
A detected relationship, 〈oa, predicate, ob〉, is considered
correct if it satisfies two conditions. 1) Both objects oa
and ob are detected correctly. We consider oa as correct
detection if it has greater than 0.5 intersection-over-union
with the groundtruth box. 2) The predicted predicate is
correct. Similarly, we use the F1-score to evaluate across-
image 2.5VRD, where the object pairs are between images.

We shift the evaluation metrics toward the quality of the
predicate, not the object detection, by making no require-
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(a) Within-image (b) Across-image

(c) Within-image (d) Across-image
Figure 6: Model performance w.r.t. object size and location
for the 〈oa, is closer than, ob〉 relationship.

ment over the predicted class for a detected bounding box.
We further “leak” some information to the detector so that
it keeps N , the number of bounding boxes after the filter-
ing procedure, the same as the number of groundtruth ob-
jects in an image. Compared with the commonly used av-
erage precision metric in object detection, F1-score allows
us to evaluate a model’s 2.5VRD performance using either
groundtruth or detected objects, facilitating us to analyze
the sources of error in the 2.5VRD models.

3.3. Results and Analyses

We use the Faster-RCNN detector pre-trained on OID
to detect objects for all the experiments except in Table 5,
where we employ the groundtruth bounding boxes. We
present more experiments and analysis in the supp.

Overall results. The top part of Table 4 shows the re-
sults of different rule-based methods. The estimated depth
performs best on all the three 2.5VRD sub-tasks (within-
image depth, occlusion, and across-image depth). The ob-
ject location-based rule is also strong, and especially useful
for the sub-task of within-image depth. In contrast, the ob-
ject size matters more in the across-image depth sub-task.
Finally, we see relatively low performance using the object
classes. This suggests that 2.5VRD is more dependent on
geometry than the semantic class prior.

The results of our MLP baseline model are in the mid-
dle part of Table 4. We explore using multiple combinations
of visual cues, starting from the bounding box (B) feature
only and then adding object class (C), depth (D), and ap-
pearance (A) features. We again observe that the estimated
depth is a strong cue but others are also useful, with the ap-
pearance feature being most complementary, especially in
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Figure 7: Class-wise results of the baseline model.

the occlusion and across-image depth sub-tasks, implying
the potential of the appearance cue for future work.

Since the bounding box (B) feature couples the object
location and size cues, we use Figure 6 to dive deep into the
results. We discretize the objects’ (normalized) sizes and
vertical positions and focus on the 〈oa, is closer than, ob〉
relations. There are high F1-scores in panels (a) and (c)
when oa is larger than ob in size or the vertical position, im-
plying that the model heeds the geometric prior for within-
image 2.5VRD. For the same reason, the F1-scores are low
when oa is closer than ob and yet oa is smaller than ob in
size (or vertical position). There is no obvious pattern for
the cross-image depth relations (see (b) and (d)).

The bottom part of Table 4 shows the results of state-
of-the-art VRD models. On the within-image sub-task,
these sophisticated models perform comparably to our base-
lines. However, they are either inapplicable or perform
worse than ours in the across-image setting. Besides, the
differences between these methods are subtle. These results
highlight the fact that existing VRD models cannot capture
the geometry-oriented relationships in 2.5VRD as well as in
general VRD tasks.

Class-wise results. Figure 7 categorizes the results of
the baseline model (with B+C+D+A features) into differ-
ent predicates in each sub-task. We see that the relation-
ship 〈oa, is at the same depth as, ob〉 is the most challeng-
ing among the within-image 2.5D relationships, probably
because it happens less frequently in the real world and in
our training set (see Table 1). The model’s performance on
occlusion is the lowest.

Model consistency. It is interesting to note in Fig-
ure 7 that the model’s results on 〈oa, is closer than, ob〉
and 〈ob, is closer than, oa〉 are different, indicating that the
model is not symmetric although we have augmented the
training data by swapping all pairs of objects. We can an-
alyze how the model meets the symmetric property more
formally. Denote by < and = the predicates of “is closer
than” and “is at the same depth as”, respectively. If the
model predicts oa≤ob, then it is supposed to return ob≥oa.
We examine all pairs of objects and find that the model vio-
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Table 5: Sources of error in the baseline model to 2.5VRD.
2.5VRD Predicate Prediction Object Detection

Average 0.335 0.782 0.492

lates the symmetric property in 8.9% of the test cases. Sim-
ilarly, we also check the model’s transitive property, i.e., if
it predicts oa≤ob and ob≤oc, then it is supposed to predict
oa≥oc. The model fails the transitive property test in 1.7%
of cases. For comparison, the groundtruth labels aggregated
from five raters break the transitive property in only 0.5% of
all cases. It would be interesting to design some inductive
bias into the model architecture to make its prediction sym-
metric and transitive in future work.

Sources of error. Finally, we provide two “upper bounds”
for the baseline model, through which we hope to under-
stand the sources of error in 2.5VRD. Our approach takes
two stages to tackle 2.5VRD, first detecting objects and
then predicting predicates for all pairs of the detected ob-
jects. We investigate from which stage the final error mainly
comes from by using the following approach variations:
• predicate prediction, which supplies the model with

groundtruth bounding boxes and classes to study how the
predicate prediction performs,

• object detection, singling out the object detection module
by assuming a perfect predicate predictor, and

• 2.5VRD, which performs both object detection and
predicate prediction by the full model.

Table 5 reports the results of the three variations. Assuming
perfect object detection, 2.5VRD degenerates to the task of
predicate prediction, which boosts our method’s F1-score
from 0.335 to 0.782. This drastic change indicates there is
a big room for the object detection module to improve for
tackling 2.5VRD. When we use an ideal predicate predic-
tor, we only need object detection for 2.5VRD and observe
a performance increase from 0.335 to 0.492. It is clear that
the object detection module is the primary source of our
model’s error, but both “upper bounds” are virtually high.
Tackling 2.5VRD requires advancing not only object detec-
tion but also 2.5D predicate prediction.

4. Conclusion

We introduce 2.5VRD, a new task for studying the re-
lationships between objects via depth and occlusion. We
collect a large-scale dataset with rich human annotations,
through which we conduct extensive analyses to gain in-
sights into 2.5VRD. Experiments reveal that 2.5VRD de-
sires progress on both object detection and predicate pre-
diction, and the latter may benefit from a model’s inductive
bias that satisfies symmetric and transitive properties.
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Appendices
We supplement the main text by the following materials.

Appendix A provides dataset construction details.

Appendix B provides the distributions of object classes in
our dataset.
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Appendix C analyzes the dataset’s potential bias in terms
of the occlusion relationships.

Appendix D describes the implementation details of state-
of-the-art VRD methods.

Appendix E presents more results evaluated by precision,
recall, and F1-score.

Appendix F studies the models’ transferability between
the within-image 2.5VRD and across-image 2.5VRD.

Appendix G analyzes model performance against different
difficulty scales.

Appendix H analyzes model performance against the ob-
jects’ locations in an image.

Appendix I qualitatively compares the model’s predictions
with the groundtruth labels.

If not mentioned specifically, we use the MLP baseline with
all features in the analysis.

A. Dataset construction

This section provides the extended description of the
dataset construction process presented in Section 2.2. In
particular, we describe the data filtering process in more de-
tail.

We randomly sample 110,894 images from the Open Im-
age Dataset (OID) V4. These images all have a Creative
Commons Attribution license. Most of them are scenery
images from Flickr, each containing multiple objects and/or
people. We maintain the original train/validation/test split
of the images and use the annotated bounding boxes and
600 class names in the OID images.

As the annotations in OID are over-complete (i.e., multi-
ple bounding boxes for an object), we filter the boxes be-
fore collecting 2.5VRD labels. We remove the boxes of
human body parts and clothing if the person box is avail-
able. Next, we discard the object pairs whose two boxes are
highly overlapped (intersection-over-union is greater than
0.7). In addition, we exclude the pairs of one object being
part of the other (e.g., auto part and vehicle). To avoid ill-
defined cases, we ignore extremely small or big boxes (oc-
cupying less than 2% or more than 70% area of the image).
Finally, we remove any box that contains not one object, but
a group of objects using the original OID label.

B. Object class distribution

Figure 8 and Figure 9 show the sizes of top-100 single
object classes and the distribution of top-100 pairs of ob-
ject classes, respectively. See Section 2.2 on how we pro-
cess bounding boxes of object classes to arrive at these dis-
tributions. The most frequent object classes and pairs are
human-centric — they are about people or the objects with

which people interact the most, indicating that the dataset is
a fair representation of our daily scenes.

C. Potential bias of occlusion relationships

In Section 2.3, we discuss the dataset’s potential bias of
the depth relationships between objects. Similarly, we focus
on the within-image scenario and investigate occlusion la-
bels. Figure 10 shows the top six object classes (and object
pairs) with the highest percentage for each label. We also
observe a bias. For instance, objects that “interact” with hu-
man body parts, such as musical instruments (guitar, cello),
vehicles (motorcycle, bike), rifle, or camera, tend to be part
of “Mutual occlusion.” We also observe that salient, often
small objects (keyboard, laptop, camera, coffee cup, but-
terfly, bee, elephant, sculpture, elephant, train) tend to be
occluded by less salient, bigger objects or stuff (couch, bed,
tree, boat, airplane, building), or human/body parts (face,
man). Finally, objects that are likely to be part of “No oc-
clusion” are window, door, picture frame, face, and tie. We
keep them as is, rather than correct them, as they are a result
of the natural prior of the visual world and daily scenes.

D. State-of-the-art VRD methods

We implement state-of-the-art VRD methods based
on the implementation released with the SpatialSense
dataset2 [68]. For fair comparison, we use the same appear-
ance feature as the MLP baselines, i.e., a Faster-RCNN pre-
trained on OID. For location features, we encode the object
bounding boxes using binary masks following DRNet [8].
For word vector embedding, we learn the word embed-
ding for OID classes end-to-end without pre-training. The
appearance feature is used in all four methods, i.e., ViP-
CNN [35], PPR-FCN [81], DRNet [8], and VTransE [74],
and the location and word vector embedding features are
used in DRNet and VTransE. All methods are trained us-
ing the same setup as the MLP baselines. We verify our im-
plementations on the SpatialSense dataset and achieve com-
parable accuracy as that reported in the SpatialSense paper
(e.g., 71.3% vs. 71.0% for DRNet).

E. Overall results

In this section, we show additional results expanded
from Table 4. We first show the corresponding precision and
recall in Table 6. The results show that combining multi-
ple features improves both precision and recall consistently.
Next, we show the F1-score for each predicate in Table 7.
The results show that the models are not fully symmetric,
i.e., oa is closer than ob does not always imply ob is further
than oa. Also, we can see that the appearance feature is
important for occlusion prediction, especially for mutually
occluded cases.

2https://github.com/princeton-vl/SpatialSense
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Figure 8: The distribution of top-100 object class labels, sorted by the log of frequency.
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Figure 10: Distributions of occlusion labels with respect to object classes (Y-axis: Object A) and object pairs (Y-axis: (Object
A, Object B)), respectively.

Table 6: Precision and recall of rule-based models (top part of the table), our approach with different visual cues (middle of
the table; B: bounding box feature, C: object class feature, D: depth feature, A: appearance feature), and existing methods
(bottom part of the table).

Within Image Occlusion Across Images Average

Rule: Object class 0.191 / 0.006 0.133 / 0.134 0.335 / 0.013 0.219 / 0.051
Rule Location 0.264 / 0.312 0.302 / 0.304 0.205 / 0.225 0.257 / 0.280
Rule: Size 0.214 / 0.253 0.302 / 0.304 0.229 / 0.251 0.248 / 0.269
Rule: Depth 0.270 / 0.319 0.302 / 0.304 0.289 / 0.317 0.287 / 0.313

MLP: B 0.237 / 0.226 0.307 / 0.309 0.232 / 0.255 0.259 / 0.263
MLP: B+C 0.282 / 0.278 0.316 / 0.318 0.300 / 0.330 0.300 / 0.309
MLP: B+D 0.293 / 0.310 0.306 / 0.309 0.312 / 0.342 0.304 / 0.320
MLP: B+A 0.298 / 0.316 0.319 / 0.321 0.353 / 0.383 0.323 / 0.340
MLP: B+C+D+A 0.301 / 0.321 0.322 / 0.325 0.356 / 0.384 0.326 / 0.343

ViP-CNN 0.333 / 0.339 0.341 / 0.343 - -
PPR-FCN 0.330 / 0.341 0.338 / 0.340 - -
DRNet 0.339 / 0.337 0.343 / 0.345 0.354 / 0.380 0.345 / 0.354
VTransE 0.315 / 0.332 0.328 / 0.330 0.353 / 0.379 0.332 / 0.347

F. Model transferability

In our previous experiments, we train separate models
for within-image and across-image 2.5VRD, though the
models share exactly the same architecture. However, we
can unify them into one. To evaluate how well a model gen-
eralizes across the two settings, we test the models’ trans-
ferability across within-image and across-image depth rela-
tionships.

Table 8 shows the results. Not surprisingly, the model
performance degrades when it transfers from the within-
image sub-task to the across-image sub-task, and vice versa.
The unified model, which is trained by pooling the in-image
and across-image training examples, is in between of the
other models. The results show that 2.5VRD models do not
fulfill the desired property of transferability, which raises

(a) Within Image (b) Across Images

Figure 11: Model performance w.r.t. objects’ hotizontal lo-
cations for the 〈oa, is closer than, ob〉 relationship.

the need for further development of models and/or learning
algorithms.
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Table 7: Predicate-wise 2.5VRD results of rule-based models (top part of the table), our approach with different visual cues
(middle; B: bounding box feature, C: object class feature, D: depth feature, A: appearance feature), and existing method
(bottom).

Within Image Occlusion Across Images

A closer B closer Same distance No occl. A occludes B B occludes A Mutual A closer B closer

Rule: Object class 0.011 0.010 0.015 0.178 0.100 0.064 0.005 0.023 0.027
Rule: Location 0.306 0.305 0.129 0.371 0.172 0.171 0.000 0.225 0.218
Rule: Size 0.250 0.250 0.101 0.371 0.172 0.171 0.000 0.256 0.243
Rule: Depth 0.324 0.324 0.103 0.371 0.172 0.171 0.000 0.320 0.311

MLP: B 0.217 0.261 0.000 0.343 0.000 0.000 0.000 0.235 0.249
MLP: B+C 0.298 0.287 0.000 0.349 0.101 0.099 0.012 0.319 0.310
MLP: B+D 0.326 0.306 0.000 0.343 0.001 0.001 0.000 0.328 0.325
MLP: B+A 0.320 0.316 0.093 0.364 0.203 0.199 0.186 0.371 0.364
MLP: B+C+D+A 0.317 0.327 0.094 0.364 0.211 0.215 0.187 0.372 0.368

ViP-CNN 0.343 0.341 0.246 0.360 0.239 0.245 0.339 - -
PPR-FCN 0.344 0.344 0.208 0.369 0.228 0.224 0.266 - -
DRNet 0.342 0.356 0.175 0.365 0.259 0.274 0.190 0.369 0.364
VTransE 0.332 0.335 0.199 0.352 0.224 0.228 0.266 0.367 0.364

Table 8: Model transferability across 2.5VRD sub-tasks.
−→ Within-Image Across-Image

Within-Image 0.322 0.308
Across-Image 0.304 0.370
Joint 0.318 0.354

Table 9: 2.5VRD results of various difficulty scales.
Within Image Occlusion Across Images Average

Easy 0.886 0.821 0.950 0.886
Moderate 0.644 0.781 0.833 0.753
Difficult 0.483 0.781 0.668 0.644

G. Results of various difficulty scales

This section shows the model performance at different
difficulty scales. The results are in Table 9. Note that the
difficulties are defined only on annotated objects, so we use
the groundtruth objects in this experiment (i.e., predicate
prediction in Table 5). The model’s performance aligns very
well with the human raters’ assessments about the exam-
ples’ difficulty scales.

H. Object location distribution

Figure 6 shows that the model’s accuracy correlates with
the objects’ vertical positions in an image. In contrast, Fig-
ure 11 shows that the model performance is not sensitive to
the objects’ horizontal position. The results are consistent
with our observation that an object’s depth is highly corre-
lated with the Y-coordinate of the object center.

I. Qualitative results

In this section, we present qualitative results of the MLP
baseline. Figure 12 shows examples for within-image depth
relationships with different difficulty scales, and Figure 13
and Figure 14 are about examples for within-image occlu-
sion and across-image depth, respectively. We can clearly
see the increasing ambiguity in different difficulty levels.
The models manage to differentiate the objects’ relative
depths for these examples. We also show failure examples
in Figure 15, Figure 16, Figure 17, and Figure 18. We can
see that the labels may depend on minor differences in ob-
jects’ depths, and the models’ predictions are reasonable de-
spite that they do not match the groundtruth labels, e.g., the
last two examples in Figure 15.
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(a) Easy

(b) Moderate

(c) Hard

Figure 12: Qualitative examples for within-image depth prediction with different difficulties (groundtruth = predicted labels).
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Figure 13: Qualitative examples for within-image occlusion prediction (groundtruth = predicted labels).
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Figure 14: Qualitative examples for across-image depth prediction (groundtruth = predicted labels).
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Figure 15: Failure cases for within-image depth prediction. This figure show examples where the model correctly detects the
objects but predicts wrong predicates.

Figure 16: Failure cases for within-image depth prediction. This figure show examples where the model fails to detect the
objects.

20



Figure 17: Failure examples for occlusion prediction.

Figure 18: Failure examples for across-image depth prediction.
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