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Robust Kernel-based Feature Representation for
3D Point Cloud Analysis via
Circular Convolutional Network

Seunghwan Jung, Yeong-Gil Shin, and Minyoung Chung*

Abstract—Feature descriptors of point clouds are used in several applications, such as registration and part segmentation of 3D point
clouds. Learning representations of local geometric features is unquestionably the most important task for accurate point cloud
analyses. However, it is challenging to develop rotation or scale-invariant descriptors. Most previous studies have either ignored
rotations or empirically studied optimal scale parameters, which hinders the applicability of the methods for real-world datasets. In this
paper, we present a new local feature description method that is robust to rotation and scale variations. Moreover, we improved
representations based on a global aggregation method. First, we place kernels aligned around each point in the normal direction. To
avoid the sign problem of the normal vector, we use a symmetric kernel point distribution in the tangential plane. From each kernel
point, we first projected the points from the spatial space to the feature space, which is robust to multiple scales and rotation, based on
angles and distances. Subsequently, we perform convolutions by considering local kernel point structures and long-range global
context, obtained by a global aggregation method. We experimented with our proposed descriptors on benchmark datasets (i.e.,
ModelNet40 and ShapeNetPart) to evaluate the performance of registration, classification, and part segmentation on 3D point clouds.
Our method showed superior performances when compared to the state-of-the-art methods by reducing 70% of the rotation and
translation errors in the registration task. Our method also showed comparable performance in the classification and part-segmentation

tasks without any external data augmentation.

Index Terms—Angle-based kernel convolutions, global context aggregation, rotation-robust point descriptor, scale adaptation, 3D

point cloud analysis.

1 INTRODUCTION

OINT cloud analysis is becoming a popular research area
Powing to the growth in the capability of 3D sensors
to capture rich geometric 3D information. The applications
of point cloud analysis include robotics, autonomous driv-
ing, and augmented/mixed reality. Extracting salient local
geometric information is a fundamental task for analyzing
point clouds to match correspondences between two objects
[1] or to analyze the geometric information [2]. Recently,
end-to-end learning based on point or graph convolutional
networks has outperformed earlier works, which were pri-
marily developed using hand-crafted feature descriptors [3]
[4]. However, building rotation- or scale-invariant descrip-
tors remains a difficult task in the field of computer vision
research.

Descriptors of point cloud applications have been widely
researched for point cloud registration, model segmentation,
and classification. PointNet [5] shows a new paradigm for
point cloud analysis by introducing a permutation-invariant
method; however, it is difficult to encode the local geometric
information. The point pair feature network (PPFNet) [6]
encodes local features by employing PointNet [5] for local
regions and a deep graph convolutional neural network
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(DGCNN) [2] encodes the relative position of neighbors for
each point. However, these methods are limited to extract-
ing rotation-invariant features. In practice, it must be noted
that the point cloud is not aligned to the same frame, indi-
cating that random rotation of the input point cloud can sig-
nificantly affect the representation of the descriptors. Kernel
point convolution (KPConv) [7] uses kernel points around
each point to efficiently handle irregularly distributed point
clouds. KPConv has demonstrated groundbreaking per-
formance; however, this rotation-variant descriptor limits
the performance for randomly rotated objects, which are
obtained by multiview scans. 3DSmoothNet [1] extracts
local region points and aligns the local points to the local
reference frame of the center point. The primary limitation
of 3DSmoothNet is that the sign of a normal axis and the
directions of the other two axes are not unique in a planar
region. Descriptors that are aligned by an inaccurate local
reference frame may encode different geometric contexts. In
the example of point cloud registration, if the corresponding
points have different normal signs, descriptors from the
points may hamper the identification of correspondences.
Moreover, local descriptors only encode local geometric in-
formation, which results in difficulty in encoding the global
geometry. Consequently, local descriptors of monotonous
and repeating areas are typically considered to be nonsalient
descriptors, which indicates that global registration can be
mismatched.

To overcome this limitation, we propose a rotation-
and scale-robust descriptor-generation method. Inspired by



KPConv [7] and 3DSmoothNet [1]], our proposed method
aligns the kernels to the normal vector and extracts rotation-
robust features. Owing to the nonuniqueness of the local
reference frame in the planar region, we distributed kernels
in the form of a cylindrical shape. This shape is symmetrical
around a tangent plane to handle the sign problem and has
a circular cross section to handle the other undefined refer-
ence axes. By employing this kernel structure, we applied
convolution with adjacent kernels combined together such
that the descriptor is not affected by rotation. To make the
descriptor robust to the scale of the local frame, we analyzed
the geometric information and rebuilt the descriptor with a
modified kernel size. In addition, to improve representa-
tions of the descriptor from the monotonous and repeating
areas, we aggregated all features based on the distances
from each point to encode discriminative global features.

The major contributions of this work can be summarized
as follows:

o The rotation-robust descriptor is developed based on
the kernel alignment.

o The sign problem, which is caused by the normal
direction of the vector, is resolved by the proposed
angle-based convolution.

e The scale factor, which is derived from the size of a
kernel, is automatically defined for each point using
a scale adaptation module.

o Global context is effectively extracted by the pro-
posed aggregation method with each local context.

We analyzed the working of our proposed method on
three types of tasks: registration, classification, and part
segmentation. We trained and tested our proposed method
on ModelNet40 dataset [8] for classification and registration
and on ShapeNet dataset [9] for segmentation.

The remainder of this paper is organized as follows. In
Section II, several hand-crafted and deep-learning-based 3D
features are reviewed. The proposed method is described in
Section III. The experimental results, discussion, and con-
clusion are presented in Sections IV, V, and VI, respectively.

2 RELATED WORKS
2.1 Hand-crafted 3D features

Before the advance of deep learning, a 3D feature descriptor
was developed based on hand-crafted methods. Local de-
scriptors were generated based on the relationship between
a point and the spatial neighborhoods around the point. In
addition, certain methods built a rotation-invariant descrip-
tor based on a local reference frame. Spin-images [10] align
neighbors using the surface normal of the interest point
and represent aligned neighbors to the cylindrical support
region using radial and elevation coordinates. The 3D Shape
Context descriptor [11] represents neighbors in the support
region with grid bins divided along the azimuth, elevation,
and radial values. The Unique Shape Context method [12]
extends the 3D Shape Context method by applying a local
reference frame based on the covariance matrix. Similarly,
the signature of histograms of orientations algorithm [3] also
calculates the local reference frame and builds a histogram
using angles between point normal vectors. Point feature
histograms [13]] and fast point feature histograms [4] select

neighbors for each point and build a histogram using pair-
wise geometric differences between neighbors and the point
of interest, such as relative distance and angles. Recently,
with the advent of deep neural networks for point cloud
data (e.g., PointNet [5] and DGCNN [2])), feature descriptors
have shown groundbreaking results when compared to
hand-crafted methods in several vision tasks.

2.2 Deep learning based 3D features
2.2.1 Volumetric based Methods

The conversion of the point cloud to a volumetric data
representation has been widely used to employ grid-based
convolutions [14], [15]. However, the quantification of the
floating-point data results in an approximation, such that
the input data intrinsically contains discretized artifacts. Be-
cause the voxelization process severely consumes memory,
these methods typically approximate the input data into a
coarse grid of volumetric representation. To overcome this
problem, certain methods represent point cloud data by
optimizing the memory consumption. OctNet [16] divides
the space by employing a set of unbalanced octrees based on
density. Certain methods use a sparse tensor that only saves
the nonempty space coordinates and features [17], [[18], [19].

To build a rotation-invariant descriptor, 3DsmoothNet
[1] was used to calculate the local reference frame based
on the covariance of points and to transform neighbor
points within the spherical support area of the interest point
using the local reference frame before voxelizing the points.
However, the sign of a normal axis and the directions of
the other two axes are not unique in the planar region. De-
scriptors that are aligned using an inaccurate local reference
frame may encode different geometric contexts. Therefore,
we assume that the sign of the normal vector is not unique
and uses a customized kernel similar to the KPConv [7]
method to overcome the sign issue. SpinNet [20] aligned
each point and neighbors of the point (i.e., patch) with the
z-axis and mapped the point patch to the cylindrical volume
to build rotation-invariant descriptors. However, since the
method used the volumetric-based method for each point
patch, it required a lot of computational memory to build
descriptors. Moreover, since each volume contained only
one point patch, the user has to determine the optimal
patch size to be trained (i.e., fixed scale). On the contrary,
our proposed method consumed a relatively small amount
of computational memory when compared to SpinNet [20]
and automatically determined the kernel size using the scale
adaptation module.

2.2.2 Point based Methods

PointNet [5] and PointNet++ [21] are pioneering works for
point cloud analysis, which are based on deep neural net-
works. These methods encode unstructured point clouds us-
ing a shared multilayer perceptron and build a permutation-
invariant descriptor using a global max-pooling layer. Based
on PointNet, various methods have been developed to im-
prove performance. PPFNet [6] extended PointNet [5] to
learn local geometric features. PPFNet built local features
by employing PointNet and subsequently fused global in-
formation based on the local features by employing max-
pooling. PPF-FoldNet [22] used rotation-invariant features



Fig. 1: Visualization of normal vectors. The signs for each
point on a planar surface are not determined uniquely.

such as angles and distances between the interest point and
its neighbor and trained the descriptor by using folding-
based auto-encoding in an unsupervised fashion. DGCNN
[2] selected k-nearest neighbors for each point and encoded
the relative locations of the neighbors to encapsulate the
geometric information. ShellNet [23] partitioned the neigh-
bors of each point into shells based on the distances from
the point to resolve the point order ambiguity. KPConv
[7] proposed a kernel-based point convolution method that
placed kernel points around each point to effectively handle
irregularly distributed point clouds, and further, aggregated
the geometric information from the kernel points. We ex-
tended the KPConv method by employing normal kernel
alignment and angle-based convolution. As described in
KPConv, a normal vector is available for artificial data [7]. In
the real-world dataset, a local reference frame is inaccurate
because of the sign problem (i.e., the uncertain direction of
the normal vector; Fig.[T). To overcome the inaccuracy of the
local reference frame, we aligned the kernels and extracted
features based on the unsigned normal axis, and subse-
quently applied convolution operations that are invariant to
the sign problem. Various rotation-invariant methods have
been studied based on the rotation-invariant features, such
as relative distance, angle [24] [25], and quaternion [26]. RIF
[27] represented neighbors of the interest point by using
rotation-invariant features and constructed a point relation
matrix to supplement insufficient global information. The
method showed better performances when compared to
the other methods under rotations, but showed inferior
performances under non-rotation environments when com-
pared to non-rotation-invariant methods. It is challenging to
develop a rotation-robust descriptor with a good benchmark
accuracy because of two reasons: 1) It is hard to repre-
sent the accurate relationship between points with rotation-
invariant features. 2) Convolution with more than one point
in rotation-invariant-order is a challenging problem. In that
aspect, our proposed method represented neighbors with
not only the rotation-invariant features, but the kernels
to supplement the relationship representation. Further, we
used the circular convolution method, which processed the
adjacent kernels simultaneously to capture the relationships
between the points.

Scale
analysis
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Feature
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CNN

5 Classification
encoding

Input:

3D point cloud Segmentation

Fig. 2: Overview of the proposed architecture. First, features
are extracted using multiple kernel sizes. Subsequently,
scale analysis is employed based on the interpolation be-
tween the kernel sizes. Finally, the feature descriptor is
encoded using the adjusted scale for the downstream tasks.

3 METHOD

Figure [2|illustrates an overview of the proposed descriptor-
generation framework. The point descriptor is built by using
information obtained from the kernels around the point. To
build rotation-invariant kernels, we use the normal vectors
of each point to align the kernels (Section A). Local infor-
mation is extracted from the kernels to encode the feature
descriptors (Section B). Subsequently, circular convolution
is applied, which is invariant to the sign problem (Section
C). A scale adaptation module is employed in the network
to resolve the scale issues (Section D). Various convolutional
neural network (CNN) encoder architectures are presented
in Section E, which were used for downstream tasks in this
study. Finally, the global context estimation is demonstrated,
which is employed in the encoder architectures (Section F).

3.1 Kernel alignment

To build a rotation-robust descriptor, we aligned the kernels
around each point using the local reference axis, i.e., normal
vector. Inspired by the 3DsmoothNet [1]], we estimated the
normal vector using the eigenvector of the neighbor point
covariance matrix. However, the sign of the normal vector
and the remaining local reference axes are not unique if
a point is located on a planar surface. To resolve these
ambiguities, we used cylinder-shaped kernels in which the
cylinder column is aligned to the normal vector.

Figure a) illustrates the kernel distribution. The cross
section of the cylinder is a circle along the normal direction.
We placed the kernels for each circle (i.e., four to six num-
bers of kernels), and grouped them as one layer. In total, we
used three layers for the cylinder (i.e., additional upper and
lower regions of the tangent plane).

3.2 Rotation robust feature projection

Once all the kernels are aligned for each point, the k-
nearest neighbor points from each kernel are extracted. The
averaged location is then calculated based on their distance
from the kernel:
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Fig. 3: (a) Kernel points are aligned using the normal vector of the target point; (b) Neighbors are selected for each kernel
point; (c) Weighted-average location is estimated based on the distance from the kernel point to the neighbors; (d) For each
kernel, the relative location of the averaged neighbor is estimated using distances and angles; (e) After convolution, kernel

features are aggregated by summation and maximum value selection to represent the interest point.
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Fig. 4: Candidates of the neighbor points corresponding to extracted features. Green regions of (a), (b), (c), and (d) illustrate
the candidates corresponding to the features (f1), (f1, £2), (f1, {2, £3), and (f1, 2, {3, f4), respectively.

where #F € RV®3 is the weighted-average location of the
k-th kernel point of x; and d indicates the distance from the
center point to the kernel point. For the weighting term, i.e.,
w; we used the Gaussian function to reduce the influence of
outliers in (T).

For rotation-robust representations, we estimated four
types of features. We first estimated the angles between
two vectors: one is from the center point of the kernels to
the weighted-average point and the other is the normal
vector (the angle f1 in Fig. B3(d)). However, because the
normal vector has a normal orientation problem (i.e., sign
ambiguity), a negative sign is multiplied with the normal
vector if the kernel is located below the tangent plane, as
shown below:

f1F = @)

—
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where v; indicates the normal vector of x; and sign(k)
returns a negative sign if the kernel is located below the tan-
gent plane. This term determines the angle value, regardless
of the normal sign.

Next, we estimated the distances from the point to the
averaged neighbors and from the center of the kernels to
the averaged neighbors (distances f2 and f3 in Fig. d)):
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To provide direction to the closest adjacent kernel points, we
estimated the distance ratio from two adjacent kernel points
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Fig. 5: (a) Channel-wise convolution and (b) circular con-
volution. The red transparent region indicates the receptive
field. S indicates the kernel size of the convolution.

to the averaged point (ratio f4 in Fig. 3(d)):
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The relative location of the averaged neighbor points can
be successfully encoded based on the presented angle- and
distance-based descriptions. Figure (3| illustrates the entire
process of feature extraction, and figure [4] illustrates can-
didates of the neighbor points corresponding to extracted
features. By using our features, we can represent the relative
positions of neighbors accurately.

3.3 Circular convolution

Because the kernels are not aligned to the unique local refer-
ence frames, the order of the kernels may change depending
on the point distribution. However, the adjacent kernels
within the cylinder layer are invariant to rotation. Therefore,
we extended 1 x 1 x 1 channel-wise convolution based on

() to (7):
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where c(k,+1) and ¢(k,—1) indicate the clockwise and
counterclockwise adjacent kernels of the k-th kernel in the
cylinder layer. Subsequently, to avoid the sign problem,
kernels are divided into two groups: the collection of kernels
above the tangent plane and the collection of kernels below
the tangent plane. If the kernel belongs to the first group,
we select the clockwise adjacent kernel in a clockwise order.
Otherwise, we select the kernel in a counterclockwise order.

v

In addition, we processed convolution with multiple
layers if the layers belong to the same group, i.e., @) is
extended to

Li= Zf(g(if),g(i%g)jeadj(k)), 8)

where adj (k) indicates a set of adjacent kernel points of the
k-th kernel point in the same group. A circular padding
convolution operation was used to implement (8). Figure
illustrates the convolution process using the kernels. After
convolution, the kernel features around the interest point
are aggregated by the summation and maximum value
selection.

3.4 Scale adaptation module

If a target object has an unusual shape when compared to
the training data, the normalization process might fail to
resolve the scale problem. Because performing normaliza-
tion cannot resolve the scale problem completely, we first
normalized the target objects, and subsequently performed
the scale adaptation module on the normalized objects to
supplement scale-robustness.

To develop a scale-robust descriptor, we adjusted the
kernel size based on an analysis of the multiscaled features
(d in (T)). We first extracted multiple features using multiple
kernel sizes (feature extraction in Fig. [2). Subsequently, we
concatenated the multiscaled features and estimated the
interpolation weights between the kernel sizes. Simple con-
volution operations were employed for the scale analysis, as
illustrated in Fig.|2| Finally, the output size of the kernel was
used to encode the proposed descriptor for CNN encoding

(Fig. ).

3.5 CNN encoder architectures

The designed CNN encoders are illustrated in Fig.[6] For the
registration task, four feature-extraction layers are initially
used. Using a shortcut connection, the multiscale features
are concatenated. Subsequently, global contexts from the
concatenated features are estimated to improve the repre-
sentations (as described in the following subsection, Section
F). Inspired by the deep closest point (DCP) method [28], the
singular value decomposition (SVD) module is used to es-
timate the transformation matrix. For the classification and
segmentation tasks, we used the downsampling and upsam-
pling operations which reduces and increase the number
of points by using subsampling. Subsequently, Additional
fully connected layers (multi-layered perceptron) are used
to estimate the scores.

3.6 Aggregating global context

Local descriptors of monotonous and repeating areas are
typically considered as nonsalient descriptors. To improve
representations of the descriptor, we estimated the global
context from local features (global context module in Fig.
[6). Rather than estimating a single global context for all
points using max-pooling, we estimated the adaptive global
contexts for each point by using distance-based weights.

To estimate the global feature for the i-th point, weights
w;; are calculated based on the Gaussian distance between
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Fig. 7: Colors of point cloud indicate global context weights
of the interest point. Red indicates a weight value of one
and blue indicates a weight value of zero.

the i-th and j-th points (weights for an interest point in Fig.
[7). Subsequently, the averaged local features are estimated
using the weights w;; for all j.
wij f;
9i = -, .
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Once the global contexts are estimated for each point, the
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where w;; = exp(

global contexts are concatenated to each local feature. Fi-
nally, a convolution operation is performed on concatenated
features.

4 RESULT

We implemented three tasks: registration, classification, and
segmentation. For the registration and classification tasks,
we used the ModelNet40 database [8]. For the segmentation
task, we used the ShapeNetPart database [9]. For the reg-
istration task, we compared our methods with PointNetLK
[29] and DCP [28]. In the case of classification and part-
segmentation tasks, we compared our methods with several
methods, such as PointNet [5], DGCNN |[2], and KPConv
[7].

We analyzed our method on the registration task using
the ModelNet40 database [8]. ModelNet40 contains 12,311
meshed computer-aided design models from 40 categories.
ModelNet40 is split by category into training and test sets;
the first 20 categories among the 40 categories were used for
training. For each model, 1,024 points were used for training
and testing.

The DCP method [28] presented an end-to-end network
for a rigid registration. Inspired by this method, we used the
SVD module to compute a rigid transformation. Figure [6{(a)



illustrates the registration architecture. As evaluation met-
rics, the mean squared error, root mean squared error, and
mean absolute error were used for rotation and translation.

4.1 Registration

As listed in Table [I} our method significantly reduced the
registration errors when compared to the other methods
since the methods used translation-invariant features, not
rotation-invariant features. Even when compared to the re-
sults trained with all categories, our method showed better
performance.

We conducted the partial registration task by using the
sampled point clouds from ModelNet40 inspired by PRNet
[32]. The overall architecture is similar to the registration
architecture. One difference is that we computed a rigid
transformation using a RANSAC [53]] with the generated
descriptors. Table2lists the partial registration results. Spin-
Net [20] aligned and mapped the point patch to the cylin-
drical volume to capture detailed geometric information.
Subsequently, the method used the continuous convolution
method to capture the geometric structure in a rotation-
invariance manner. However, there are three drawbacks: 1)
Severe memory consumption, 2) the optimal patch size, and
3) the sign problem. On the contrary, our proposed method
consumed relatively a small amount of computational mem-
ory when compared to SpinNet [20] and automatically de-
termined the kernel size using the scale adaptation module.
Moreover, our method concerned the sign problem by using
the symmetric circular convolution method. As a result, our
method significantly reduced the registration errors with
simple architecture and less computation memory.

Figureillustrates the registration results of the DCP [28]
and proposed methods. The results of the DCP method [28]
showed a small error between the two point clouds. Con-
versely, the results of our method showed superior match-
ing performance. These results indicate that the proposed
descriptor matches the feature-based correspondences be-
tween the source and target points in a superior manner
when compared to the DCP [28].

4.2 Classification and Segmentation

We analyzed the classification and part-segmentation per-
formances of our method using ModelNet40 [8] and
ShapeNetPart [9] databases, respectively. ModelNet40 con-
tains 12,311 models. Among the models, 9,843 models were
used for training, and the remaining 2,468 models were
used for testing. For each model, 1,024 points were used for
training and testing. ShapeNetPart contains 16,681 models
from 16 categories. Each point is annotated using part labels.
For each model, we used 2,048 points for training and
testing.

Figures @b) and (c) illustrate the classification and
part-segmentation architectures, respectively. Table [3| lists
the classification and part-segmentation results. While con-
sidering the evaluation metrics, the overall accuracy was
used for Modelnet40 classification and mean intersection
over union was used for ShapeNetPart segmentation. We
compared our methods with the non-rotation-invariant
methods and rotation-invariant methods. The non-rotation-
invariant methods typically represented the relationship
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between points based on point coordinates. Unlike the non-
rotation-invariant methods, the rotation-invariant methods
used rotation-invariant features (e.g. relative distance and
angle) to achieve rotation-invariant property. However, it is
hard to represent the accurate relationship between points
with rotation-invariant features, and convolution with more
than one point in rotation-invariant-order is a challenging
problem. Therefore, as listed in Table |3} the non-rotation-
invariant methods showed better performances when com-
pared to the rotation-invariant methods under non-rotation
environments.

To address the problems, our proposed method rep-
resented neighbors with not only the rotation-invariant
features, but the kernels to supplement the relationship
representation. Further, we used the circular convolution
method, which processed the adjacent kernels simultane-
ously to capture the relationships between the points. There-
fore, as clearly demonstrated in Table [3] our proposed de-
scriptor outperformed the rotation-invariant methods and
achieved comparable performance when compared to the
non-rotation-invariant methods. Because the non-rotation-
invariant methods typically used point coordinates as the
features, it was easy to learn geometric information based
on each point location. On the contrary, to develop a
rotation-robust descriptor, we used rotation-invariant fea-
tures. Moreover, we aligned our kernels to the normal
vector, and it means that the order of the kernels may
change depending on the point distribution unlike the
non-rotation-invariant methods. These properties affected
the method performance, and thus our method showed
inferior performances when compared to the state-of-the-
art non-rotation-invariant methods under non-rotation envi-
ronments. However, rotation-invariance is a desired feature
for real-world applications. Thus, it is significant that our
proposed method achieved superior accuracy among the
rotation-invariant methods.

4.3 Parameter and ablation study

We conducted several parameter and ablation studies on
the registration task to verify the effect of our method (Table
M), ie., by varying the following parameters: convolution
operation, the number of nearest neighbors for each kernel,
and global context.

First, we experimented with the convolution methods,
ie, 1 x 1 x 1 channel-wise convolution and circular con-
volution methods. The network with circular convolution
significantly improved the performance in terms of both ro-
tation and translation. These results indicate that the circular
convolution operations successfully captured the geometric
features based on adjacent kernels. Figure [J] illustrates the
registration results according to the kernel alignment and
convolution methods. As illustrated, the network with the
aligned kernel-based circular convolution showed better
registration results.

Second, we analyzed our method with a different num-
ber of neighbors. As listed in Table[d} the errors were not sig-
nificantly dependent on the number of neighbors. Because
we used the distance-based weights for each neighbor, the
closer neighbors had more influence. Owing to the use of the
distance-based weights, employing the averaged neighbors
reduced the influence of the number of neighbors.
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Method [

R-MSE | R-RMSE | R-MAE | T-MSE | T-RMSE | TMAE | C |

ICP 892.601 | 29.876 | 23.626 | 0.086 | 0.293 0251 | -
Go-ICP [30] 192258 | 13.865 | 2914 | 0.000 | 0.022 0.006 | -
FGR [31] 97.002 | 9.848 1445 | 0000 | 0013 0002 | -
PointNetLK [29] | 306.323 | 17502 | 5280 | 0.000 | 0.028 0.007 | 20
PointNetLK [29] | 227.870 | 15.095 | 4225 | 0.000 | 0.022 0.005 | 40
DCP-v2 [28] 9.923 3.150 2.007 | 0.000 | 0.005 0.003 | 20
DCP-v2 [28] 1.307 1.143 0770 | 0.000 | 0.001 0.001 | 40
[Ourmethod | 0.017 | 0.30 | 0.064 | 0.000 | 0.000 | 0.00 | 20 |

TABLE 1: Global registration results for ModelNet40. The evaluation metrics are mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE) for rotation (R-) and translation (T-). C indicates the number of

categories for training.

[ Method | RMSE | R-RMSE | RMAE | TMSE | T-RMSE | T-MAE |
ICP 207.080 | 17236 | 8610 | 0007 | 0082 | 0.043
Go-ICP [30] | 184199 | 13572 | 3416 | 0002 | 0045 | 0.015
FGR [31] 40.832 | 6390 1240 | 0001 | 0038 | 0.008
PointNetLK [29] | 334.67 | 18294 | 9730 | 0008 | 0.092 | 0.053
DCP [28] 45617 | 6754 4366 | 0004 | 0061 | 0.040
PRNet [32] 7355 | 2712 1372 | 0000 | 0017 | 0012
FMR [33] 25412 | 5.041 2304 | 0001 | 0038 | 0016
IDAM [34] 46950 | 6.852 1761 | 0003 | 0054 | 0014
DeepGMR [35] | 356.832 | 18.890 | 9322 | 0.008 | 0087 | 0.056
OMNet [36] 4322 | 2079 0619 | 0000 | 0018 | 0.008
SpinNet [20] 1.355 1.164 0902 | 0000 | 0013 | 0011

[ Ourmethod | 0741 | 0.861 | 0440 | 0.00 | 0.08 | 0.004 |

TABLE 2: Partial registration results for ModelNet40.

[ Method [ OA | mloU [ mcloU [ RI |
SPLATNet [37] - 85.4 83.7 X
SGPN [338] - 85.8 82.8 X
3DmFV-Net [39] 91.6 84.3 81.0 X
SynSpecCNN [40] - 84.7 82.0 X
RSNet [41] - 84.9 81.4 X
SpecGCN [42] 91.5 85.4 - X
PointNet [5] 89.2 83.7 80.3 X
PointNet++ [21] 90.7 85.1 81.9 X
KD-Net [43] 90.6 82.3 77 .4 X
SO-Net [44] 90.9 84.9 81.0 X
PCNN by Ext [45] 923 85.1 81.8 X
SpiderCNN [46] 90.5 85.3 82.4 X
MCConv [47] 90.9 85.9 - X
FlexConv [48] 90.2 85.0 84.7 X
PointCNN [49] 92.2 86.1 84.6 X
DGCNN [2] 92.2 85.2 85.0 X
SubSparseCNN [39] - 86.0 83.3 X
KPConv [7] 929 86.2 85.1 X
ShellNet [23] 93.1 - - X
Point Transformer [50] | 93.7 86.6 83.7 X
PAConv [51] 93.9 86.1 84.6 X
RI-ShellConv [24] 86.5 80.3 75.3 (e}
ClusterNet [25] 87.1 - - (@]
REQNN [26] 83.0 - - O
PRIN [52] - 71.1 67.6 (e}
RIF [27] 89.4 82.5 79.4 (@]
Our method 93.2 85.9 83.3 O

TABLE 3: ModelNet40 classification results (i.e. OA) and
ShapeNetPart segmentation results (i.e. mloU). OA, mloU,
and mcloU indicate the overall accuracy, instance average
intersection over union, and class average intersection over
union, respectively. RI indicates whether the method is the
rotation-robust method or not.

Third, we conducted registration with the global con-
text. Consequently, the rotation error decreased significantly
when compared to the other experiments. These results
demonstrate that the global context resolves the ambiguities
of each local descriptor.

4.4 Robustness study

In addition to the parameter studies on the registration task,
we conducted scale- and rotation- robustness studies for
evaluation. First, we experimented with the scale adaptation
module. The network is trained with the original scale
(1.00) of point clouds and tested with different scales (0.50,
1.50) to demonstrate the scale robustness. Table [5| lists the
results of different scale tests for each model. The mean
and standard deviations are presented, and the proposed
network showed stable results when the network used the
scale adaptation module. The results indicate that the scale
adaptation module determined the optimal kernel size to
capture geometric information so that the performance of
the global registration outperformed.

In addition, to demonstrate the rotation robustness, we
trained the network with azimuthal rotations (around the
gravity axis) (ZR) and arbitrary rotations (AR) and tested
with arbitrary rotations (ZR/AR, AR/AR) for the classifica-
tion and segmentation (Table [f|and [7). (-/-) indicates which
rotational metric was used for training/testing, respectively.

We compared the results with state-of-the-art rotation-
invariant methods to demonstrate the rotation robustness.
The rotation-invariant methods [24] [25] used rotation-
invariant features to represent the relative positions of
neighbors and processed each point using MLP to avoid
processing in non-rotation-invariant order. However, since
there is no additional reference point, the used rotation-



Fig. 8: Left: source (blue) and target (red) point clouds, Middle: registration results of deep closest point method . Green
indicates the transformed source point clouds. Right: registration results of our method.

invariant features were insufficient to completely represent
the relative positions [25]. RIF used the additional
reference points, but the reference points have a chance
to be changed depending on object shape variation, and
it may result in insufficient consistency of the descriptors
between similar object parts. Moreover, the shared MLP
simply processed each point feature without considering
other points.

On the contrary, by using the kernels (i.e., reference
points) which have fixed distances from an interest point,
our proposed method can represent the relative positions of
neighbors accurately. Moreover, by using the circular convo-
lution method which processed the adjacent kernels at once

to capture the relationships between the information, our
descriptor improved geometric information representations.

As a result, in the case of training and evaluating under
arbitrary rotation (AR/AR), our method showed superior
performances when compared to the state-of-art methods.
In addition, in the case of training under azimuthal rota-
tion and evaluating under arbitrary rotation (ZR/AR), the
accuracy losses of our methods were not significant when
compared to the other non-rotation-invariant methods since
our method used rotation-invariant features.

Conv method R-MSE R-RMSE | R-MAE T-MSE T-RMSE T-MAE
channel-wise 0.040420 | 0.201046 | 0.105576 | 0.000000 | 0.000149 | 0.000094
circular conv 0.017159 | 0.130991 | 0.064475 | 0.000000 | 0.000048 | 0.000027
KNN R-MSE R-RMSE | R-MAE T-MSE T-RMSE T-MAE
10 0.017159 | 0.130991 | 0.064475 | 0.000000 | 0.000048 | 0.000027
2 0.014517 | 0.120486 | 0.065029 | 0.000000 | 0.000037 | 0.000025
Global information R-MSE R-RMSE | R-MAE T-MSE T-RMSE T-MAE
X 0.017159 | 0.130991 | 0.064475 | 0.000000 | 0.000048 | 0.000027
O 0.008142 | 0.091766 | 0.046526 | 0.000000 | 0.000047 | 0.000027

TABLE 4: Parameter and ablation study for ModelNet40 global registration task.



Scale adaptation (training/test scale) R-MSE R-RMSE R-MAE T-MSE T-RMSE T-MAE
X (1.00/0.50) 0.111988 0.334647 0.112045 0.000000 0.000044 0.000031
X (1.00/1.00) 0.017159 0.130991 0.064475 0.000000 0.000048 0.000027
X (1.00/1.50) 0.023768 0.154168 0.080950 0.000000 0.000150 0.000082

X (Total) 0.050971 £ | 0.206601 £ | 0.085823 & | 0.000000 & | 0.000080 + | 0.000046 +
0.043229 0.0910345 0.019723 0.000000 0.000049 0.000025
0 (1.00/0.50) 0.041671 0.204134 0.073383 0.000000 0.000056 0.000036
O (1.00/1.00) 0.021910 0.148021 0.055841 0.000000 0.000039 0.000025
O (1.00/1.50) 0.027835 0.166837 0.064757 0.000000 0.000073 0.000046
O (Total) 0.030472 £ | 0.172997 £ | 0.064660 &= | 0.000000 = | 0.000056 + | 0.000035 +
0.008280 0.023318 0.007161 0.000000 0.000013 0.000008

TABLE 5: ModelNet40 global registration results with different scales. (1.0/#) is the experiments in which networks are
trained with the original scale of point clouds and tested with (#) scale of point clouds. Values indicate the mean and

standard deviation of the results.

Source (blue) and target (red)

w/o kernel alignment
(channel-wise convolution)

w/ kernel alignment
(channel-wise convolution)

w/ kernel alignment
(circular convolution)

Fig. 9: Comparison of methods

[ Method [ OA (ZR/AR) [ OA (AR/AR) [ RI ]
PointNet [5] 16.4 75.5 X
PointNet++ [21] 28.6 85.0 X
PointCNN [49] 41.2 84.5 X
DGCNN [2] 20.6 81.1 X
ShellNet [23] 19.9 87.8 X
KPConv [7] 47.8 87.8 X
RI-ShellConv [24] 865 865 0
ClusterNet [25] 87.1 87.1 (@]
REQNN [26] 83.0 - 0
RIF [27] 89.4 89.3 O
Our method 89.0 91.0 O

TABLE 6: Classification results with rotations for Model-
Net40. ZR and AR indicate the azimuthal rotations (ZR) and
arbitrary rotations (AR), respectively.

5 DiscuUssION

Point cloud analysis requires rotation- and scale-robust fea-
ture representation. It is challenging to develop a robust
descriptor with a good benchmark accuracy. In this paper,
we propose an aligned kernel-based feature representation
to resolve these limitations. To make the descriptor robust
to rotation, we aligned the kernels to the local reference
frame. Subsequently, we applied normal sign-independent
convolutions to the descriptors rather than using fixed ker-
nels that are independent of the rotations [7]. Instead of

[ Method [ mcloU (ZR/AR) | mcloU (AR/AR) [ RI |
PointNet [5] 37.8 74.4 X
PointNet++ [21] 483 76.7 X
PointCNN [49] 34.7 714 X
DGCNN [2] 37.4 733 X
ShellNet [23] 47.2 77.1 X
KPConv [7] 463 75.8 X
RI-ShellConv [24] 753 753 0
PRIN [52] 64.6 67.6 (@)
RIF [27] 79.2 79.4 0
Our method 73.7 80.1 O

TABLE 7: Results of ShapeNetPart segmentation. mcloU
indicates the class average intersection over union. The
second and third column (i.e., ZR/AR and AR/AR) indicate
values of mcloU obtained from training the data based on
ZR and AR, respectively, and tested on AR.

using translation-invariant features [2], we used rotation-
robust features from the aligned kernels. In addition, to
improve the representations of the descriptor, we estimated
the adaptive global context for each point rather than using
a single global context [6]]. Because the kernel-based descrip-
tors are highly dependent on the size of the given kernels,
we adjusted the kernel size based on the trainable weights.

The experimental results for various tasks (i.e., registra-
tion, classification, and part segmentation) showed promis-



ing results for feature representation. In the registration task,
the rotation and translation errors decreased significantly.
This indicates that our descriptors successfully captured the
salient and corresponding geometric information between
the two transformed point clouds. In the case of classifica-
tion and segmentation tasks, our proposed method showed
the best performances under rotations. These results indi-
cate that our method is not only limited to the transformed
point cloud task but also applicable to general purposes (i.e.,
feature representations). Several parameter and ablation
studies have also demonstrated that our proposed methods
improved the feature representations and stability of the
descriptor.

6 CONCLUSION

Encoding rotation- and scale-robust features is a challenging
task for point cloud representation. The robustness of each
parameter is critical for a successful application in various
downstream tasks. In this paper, we proposed a CNN-based
feature encoding method to resolve this task. The proposed
kernel alignment, feature projection, and kernel-conscious
convolution methods demonstrated superior performance
on the registration task when compared to previous meth-
ods. Moreover, the proposed scale adaptation and global
aggregation methods successfully captured the optimum
scale parameter and global geometric features for each local
descriptor, respectively.
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