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ABSTRACT

Temporal action detection (TAD) is extensively studied in the video understanding community by
generally following the object detection pipeline in images. However, complex designs are not
uncommon in TAD, such as two-stream feature extraction, multi-stage training, complex temporal
modeling, and global context fusion. In this paper, we do not aim to introduce any novel technique for
TAD. Instead, we study a simple, straightforward, yet must-known baseline given the current status
of complex design and low detection efficiency in TAD. In our simple baseline (BasicTAD), we
decompose the TAD pipeline into several essential components: data sampling, backbone design,
neck construction, and detection head. We extensively investigate the existing techniques in each
component for this baseline and, more importantly, perform end-to-end training over the entire
pipeline thanks to the simplicity of design. As a result, this simple BasicTAD yields an astounding
and real-time RGB-Only baseline very close to the state-of-the-art methods with two-stream inputs.
In addition, we further improve the BasicTAD by preserving more temporal and spatial information
in network representation (termed as PlusTAD). Empirical results demonstrate that our PlusTAD is
very efficient and significantly outperforms the previous methods on the datasets of THUMOS14 and
FineAction. Meanwhile, we also perform in-depth visualization and error analysis on our proposed
method and try to provide more insights into the TAD problem. Our approach can serve as a strong
baseline for future TAD research. The code and model are released at https://github.com/MCG-NJU/

BasicTAD.

1. Introduction

Video understanding is a fundamental and challenging
problem in computer vision research. Temporal action de-
tection (TAD) (Jiang et al., 2014; Heilbron et al., 2015;
Liu et al., 2022b), which aims to localize the temporal
interval of each action instance in an untrimmed video and
recognize its action class, is particularly crucial for long-
term video understanding. Due to the high complexity of
video and the lack of a clear definition of action bound-
aries (Moltisanti et al., 2017), past efforts on TAD often
employ a relatively sophisticated paradigm to solve this
problem. For example, they typically use two-stream inputs
for feature extraction in advance (Qing et al., 2021; Yang
et al., 2020; Tan et al., 2021; Liu and Wang, 2020; Lin et al.,
2021; Wu et al., 2021), a multi-stage training strategy for
different components (Lin et al., 2018; Tan et al., 2021),
temporal reasoning with complex models like graph neural
networks (Xu et al., 2020; Chen et al., 2022; Zeng et al.,
2019), and yielding the detection results with the global
classification scores (Lin et al., 2019b; Tan et al., 2021; Lin
et al., 2018) (e.g., UntrimmedNet (Wang et al., 2017)). Such
complex designs need additional extraction of optical flow,
action detectors trained on temporal features rather than raw
video frames, complex components for multi-stage training
and additional classification results. Unlike object detectors
in images, these complex designs hinder the existing TAD
methods from being a simple and neat detection framework
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that could be easily trained in an end-to-end manner and
efficiently deployed in real-world applications.

Given the current status of complex designs and low
detection efficiency in the TAD method, there is a need to
step back and reconsider the basic principle of designing
an efficient and practical TAD framework. In order to cater
to the need for scalability, ease of use, and deployment
into real applications for real needs, simplicity is the most
important requirement for building an efficient and practical
TAD method. Inspired by the great success of object de-
tectors (Lin et al., 2017c; Tian et al., 2019), we argue that
an optimal action detector should strictly follow a similar
modular design, where each component has its function,
and different components can be easily integrated seam-
lessly. In addition, efficient training is another important
property that needs to be considered. Multi-stage training
often brings extra computational and storage costs while not
being conducive to unleashing the power of deep learning.
We argue that an ideal action detector should be end-to-
end trainable where the entire pipeline trains and infers
directly against raw video frames. Finally, being free of pre-
processing is another desired property for action detector
design, particularly important for the deployment in real
applications. We argue that optical flow extraction is the
bottleneck for many TAD methods as it often requires a
high computational cost to calculate these inputs explicitly.
An RGB-only TAD approach should be more favorable and
practical for video understanding applications.
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Therefore, it is urgent to re-design a simple baseline for
Temporal Anomaly Detection (TAD) to meet the abovemen-
tioned requirements. In this paper, we do not aim to intro-
duce any new techniques for building a TAD framework.
Rather, we investigate a simpler yet crucial baseline for
the TAD task. Unlike the complex designs used in existing
TAD frameworks, we carefully design a modular temporal
detection framework that enables us to conduct in-depth
studies on different components to determine the optimal
settings, including data augmentation, backbone, neck, and
detection head. While the design for standard object detec-
tors has been highly mature and robust, better practice for
building a temporal detector in videos is still needed. For
each module design, we choose the simplest and most basic
options and extensively investigate them to discover the
optimal configurations. Additionally, we explore different
data sampling and augmentation techniques during training
and testing to develop an effective TAD method, which has
been largely overlooked in previous methods. Based on our
modular design and extensive empirical investigation, we
establish an RGB-only baseline for TAD called BasicTAD.
Our BasicTAD achieves competitive performance compared
to the state-of-the-art methods with two-stream inputs. This
performance indicates that the basic design of TAD requires
reconsideration, and the search for the optimal basic design
is foundational work that must be taken into account.

Encouraged by the outstanding performance of Basic-
TAD, we strictly follow its basic principle of designing an
ideal TAD method and then further improve it minimally
but meaningfully. Our core idea is to preserve complete
temporal information in our backbone and spatial informa-
tion in our neck under enhanced data augmentation. The
implementation is quite simple to achieve these objectives
by removing the temporal downsampling operations in the
backbone and exchanging the spatial and temporal pooling
operations in the neck. Such a simple design allows us to
further explore larger temporal and spatial inputs for better
detection results. These small changes would significantly
improve the performance of BasicTAD, increasing the per-
formance from 50.5% to 59.6% mAP on the THUMOS14
dataset. The resulted TAD method is denoted by PlusTAD,
and we ascribe its good performance to our core idea of
keeping rich information and careful implementation. We
believe our work is timely and will draw the whole TAD
community to reconsider the design of TAD methods, given
the current status of complex design and low efficiency. The
basic comparisons of our BasicTAD and PlusTAD with pre-
vious end-to-end TAD methods are summarized in Table 1.
In summary, our contributions are threefold:

e We reconsider the TAD pipeline and present a simple
modular detection framework. For each component in
our modular framework, we perform extensive stud-
ies on the existing basic choices. Through extensive
empirical studies, we have developed good practice to
build an astounding RGB-Only baseline method for
TAD, called BasicTAD.

e Encouraged by the outstanding performance of Basic-
TAD, we further improve it with minimal changes to
fully unleash the power of deep networks. Our core
idea is to preserve richer information during our back-
bone feature extraction and neck compression. This
idea could be easily implemented with high efficiency
and the resulting PlusTAD significantly improve the
TAD performance on the THUMOS 14 dataset.

e The extensive experiments on THUMOS 14 and Fine-
Action demonstrate that PlusTAD outperforms pre-
vious state-of-the-art methods by a large margin. In
particular, we obtain an average mAP of 59.6% on the
THUMOS14 only with RGB input. In addition, we
perform in-depth ablation studies and error analysis
to provide more insights for the future TAD pipeline
design.

2. Related Work

2.1. Action Recognition

Action recognition is an important task in video un-
derstanding. Current deep learning-based action recognition
methods can be mainly divided into two types. The first one
is the CNN-based method, which includes the specific video
architectures of 2D CNN, 3D CNN, and (2+1)D CNN. 2D
CNN methods (Simonyan and Zisserman, 2014; Wang et al.,
2016, 2021b) take RGB frames and optical flow as input
to capture appearance and motion information, respectively.
3D CNN methods (Tran et al., 2015, 2017; Carreira and
Zisserman, 2017; Wang et al., 2018a,b; Feichtenhofer et al.,
2019) capture spatiotemporal information between frames
by performing 3D convolution on stacked video frames.
(24+1)D CNN methods (Qiu et al., 2017; Xie et al., 2018;
Tran et al., 2018; Lin et al., 2019a; Liu et al., 2020; Li
et al., 2020; Liu et al., 2021d) model spatiotemporal features
by decoupling 3D convolution into 2D convolution and 1D
convolutions or efficient temporal modules for reducing the
computational complexity of the network.

The second type of neural network is the Transformer (Vaswani

et al., 2017) architecture, which successfully uses a global
self-attention mechanism to address the limitation of CNN
in an insufficient receptive field. The great success of image
transformers (Dosovitskiy et al., 2021; Touvron et al., 2021;
Liu et al., 2021b) has led to the investigation of video trans-
formers (Bertasius et al., 2021; Liu et al., 2021c; Neimark
etal.,2021; Arnabetal.,2021; Tong et al., 2022; Wang et al.,
2023) for action recognition in videos. However, compared
with CNN-based methods, the quadratic complexity of self-
attention operations of Transformer-based architectures has
led to high training costs and memory consumption. These
research efforts on backbone design are orthogonal to our
study on the TAD task. Any video backbone could be
compatible with our BasicTAD and PlusTAD designs. In
this paper, we explore the commonly-used action recognition
backbone (Tran et al., 2015; Carreira and Zisserman, 2017,
Wang et al., 2018b; Feichtenhofer et al., 2019) and mainly
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Table 1

BasicTAD: an Astounding RGB-Only Baseline for Temporal Action Detection

Comparison with previous end-to-end TAD methods only with RGB input on THUMOS14 (Jiang et al., 2014) dataset.
We categorize components and settings based on their order in the whole pipeline: i) Data Stream: modal, resolution in
temporal and spatial; ii) Network: The backbone with g times temporal downsampling (xp) for feature extraction, the Neck
for feature aggregation, and the Head for detecting temporal action segments. The temporal downsample module (TDM), and
temporal feature pyramid network (TFPN) in Neck are two different methods for generating multi-scale features in the subsequent
discussion. SP-NECK means our improved neck module. iii) Performance: The speed metric is FPS. mAP represents the average
mAP from mAPQ0.3 to mAP@©0.7.

Method R-C3D . AFSD DaoTAD BasicTAD PlusTAD
(Xu et al,, 2017) | (Lin et al., 2021) | (Wang et al., 2021a) (Ours) (Ours)
Data Stream
Modality RGB RGB RGB RGB RGB
768 256 768 768 96
Resolution 25 FPS 10 FPS 25 FPS 24 FPS 3 FPS
112x112 112x112 128x128 128x128 short-128
Network
Backbone C3D(x8) 13D(x8) R50-13D(x8) SlowOnly(x8) TP-SlowOnly(x1)
Neck TDM TFPN TDM+TFPN TDM+TFPN/TDM SP-NECK
Head R-C3D AFSD RetinaNet Anchor-based/Anchor-free | Anchor-based/Anchor-free
Performance
mAP < 36.4 43.6 50.0 50.2/50.5 54.9/54.5
Speed 1030 4057 6668 5454/2702 17454 /8377

choose SlowOnly (Feichtenhofer et al., 2019) to generate
the spatiotemporal features due to its good trade-off between
accuracy and efficiency.

2.2. One-stage Temporal Action Detection

One-stage TAD methods aim to detect the boundaries
and categories of action segments in a single shot. The
existing one-stage TAD methods can be divided into anchor-
based ones (Wang et al., 2021a; Lin et al., 2017b; Buch et al.,
2017; Long et al., 2019; Yang et al., 2020) and anchor-free
ones (Yang et al., 2020; Zhang et al., 2022). Most existing
methods are anchor-based. For example, Lin et al. (2017b)
presented the first one-stage TAD method using convolu-
tional networks. (Long et al., 2019) proposed to use Gaussian
kernels to optimize the scale of each anchor dynamically.
Meanwhile, Wang et al. (2021a) explored the pipeline of
RetinaNet (Lin et al., 2017a) in the TAD task with an RGB-
only stream. Some works explore the application of anchor-
free methods. For instance, Yang et al. (2020) explored
the combination of anchor-based and anchor-free methods.
Zhang et al. (2022) proposed to use a local transformer
encoder as a neck to enhance the video features for TAD.

Our work shares the advantage of simplicity with these
one-stage TAD methods by focusing on designing an end-
to-end TAD baseline. However, our BasicTAD presents a
modular design for easy systematic study over the entire
TAD pipeline. Based on this pipeline, we perform a more ex-
tensive study on the entire pipeline’s components and figure
out a simpler yet must-known TAD baseline (BasicTAD).
In addition, we further empower our BasicTAD by keeping
complete temporal and spatial information to yield our final
TAD method of PlusTAD.

2.3. Multi-stage Temporal Action Detection
Multi-stage TAD methods often involve multiple stages
to generate and refine action detection results. These meth-
ods might focus on different aspects to obtain better de-
tection results. Most of them (Lin et al., 2018, 2019b; Su
et al., 2021; Xu et al., 2020; Bai et al., 2020; Chen et al.,
2022) focus on improving the quality of generated proposals,
while a few others (Liu et al., 2021a; Zhao et al., 2020) try
to improve the quality of classification results. (Lin et al.,
2018, 2019b; Su et al., 2021; Xu et al., 2020; Bai et al.,
2020; Chen et al., 2022; Gao et al., 2017, 2020; Chao et al.,
2018; Xu et al., 2017) generated candidate action proposals
at first, which is called temporal action proposal generation,
and then further classified them into action categories pos-
sibly with the global classification results (e.g., Untrimmed-
Net (Wang et al., 2017)). For proposal generation, Lin et al.
(2018, 2019b); Su et al. (2021); Xu et al. (2020); Bai et al.
(2020); Chen et al. (2022) were boundary-based methods
that predict each frame’s start and end confidence and then
match start and end frames to generate the proposals with
confidence evaluation. (Gao et al., 2017, 2020; Chao et al.,
2018; Xu et al., 2017) generated proposals based on pre-
defined sliding window anchors and trained a classifier to
filter anchors. (Lin et al., 2021) designed a saliency-based
refinement module to refine the detection results generated
by a one-stage detector. Wu et al. (2021); Liu et al. (2021a);
Tan et al. (2021) adopted different query-based dynamic
networks along with multi-stage refinement modules to gen-
erate a direct sparse action proposal, effectively removing
the post-processing steps of NMS. To improve classification
results, Zhao et al. (2020) proposed regressing another
completeness score to complement the classification score.
Liu et al. (2021a) designed a post-processing technique to
refine the confidence score based on actionness regression.
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Unlike these multi-stage TAD methods, our BasicTAD
aims to provide a one-stage and end-to-end TAD base-
line method without requiring multi-stage processing. This
simpler design would allow us to focus on an extensive
investigation of basic yet overlooked designs of the TAD
pipeline. As a result, we obtain a much simpler yet must-
known TAD method, which obtains significant improvement
over these complex multi-stage TAD methods on the THU-
MOS14 benchmark.

2.4. Training Strategies for Temporal Action
Detection

There are various training strategies for optimizing TAD
frameworks. The entire training process of TAD is usually
split into multiple independent steps to reduce the optimiza-
tion difficulty. Mainstream training strategies can be divided
into two types. The first type consists of two steps (Lin
et al.,, 2018, 2019b; Su et al., 2021; Gao et al., 2020;
Liu et al., 2021a; Tan et al., 2021). First, the backbone
networks are pre-trained on the TAD or action recognition
datasets and used to perform feature extraction in a sliding
window manner. Then, a separate TAD head network is
trained without fine-tuning over the backbone networks to
generate action segment proposals or directly predict the
action segment boundaries and categories. This multi-step
training paradigm would fail to unleash the potential of end-
to-end representation learning on TAD.

The second type is to train the whole TAD pipeline
(i.e., backbone and detection head) from RGB frames or
both RGB frames and optical flow in an end-to-end manner.
Recently, several works (Lin et al., 2017b; Wu et al., 2021;
Lin et al., 2021; Wang et al., 2021a; Liu et al., 2022a),
adopted this training strategy. Among them, the concurrent
work (Liu et al., 2022a) compared the difference between
head-only training and end-to-end learning and explored
different backbones and detection heads. It also tried to bal-
ance detection results and computing overhead. However, it
ignored the detailed investigation of some basic components
in the entire TAD pipeline, such as the data augmentation
and the neck design. Meanwhile, our result is better than
its performance on the THUMOS14 dataset thanks to our
simpler design and more detailed empirical study.

Our work shares the same advantage of end-to-end train-
ing with these methods. Compared with these works, our
work conducts more detailed studies on the overall pipeline
of end-to-end TAD and includes in-depth investigation for
each component. Our solution is simpler yet more effective,
achieving much better performance than these methods.
BasicTAD could be easily extended to PlusTAD and has a
fast inference speed, meeting the requirement of real-time
TAD. We hope our extensive study could encourage future
research to focus on designing an end-to-end TAD pipeline.

3. Methodology

In this section, we reconsider the TAD pipeline design
by focusing on simplicity, efficient training, and eliminating

complex pre-processing steps. We present a modular TAD
framework consisting of four key components: data sam-
pling (augmentation), backbone design, neck construction,
and detection head. These components can be seamlessly
integrated to yield a simple and efficient TAD framework.
For each component, we explore the basic options to deter-
mine the optimal configuration, resulting in the BasicTAD
framework. Additionally, we make minimal modifications
to the BasicTAD framework by proposing three new design
principles and creating an improved version of PlusTAD.
Thanks to the straightforward design of both BasicTAD and
PlusTAD, both frameworks enjoy end-to-end training and
fully unleash the power of representation learning for the
TAD task.

3.1. BasicTAD

To establish a straightforward and universal pipeline for
facilitating the analysis and development of TAD methods,
we break down the TAD pipeline into four fundamental
components according to their functions: data augmentation,
backbone design, neck construction, and one-stage detection
head design. In general, these components are in analogy
with the design in the common object detectors (Tian et al.,
2019; Lin et al., 2017a). An overview of the modular TAD
framework is illustrated in Fig 1, and we will delve into each
component in detail in the following subsections.

3.1.1. Data Sampling and Augmentation

As the TAD task involves temporal localization and pre-
diction, the detection precision greatly relies on the robust-
ness of the extracted feature sequence. The temporal sam-
pling method is a crucial factor that affects feature extraction.
The most basic sampling method is dense sampling with a
fixed sampling rate. However, due to the limited memory of
GPUs, it is not feasible to load an untrimmed video in its
entirety. Therefore, we employ a sliding window strategy to
divide the untrimmed video into overlapping clips. Within
each video clip, we utilize the simple dense sampling method
to downsample the original frame sequence with a fixed
frame rate per second (FPS). This hyper-parameter FPS must
be tuned to balance the detection accuracy and memory
consumption afforded by the common GPU devices. We
carefully tune these basic sampling options in our BasicTAD
pipeline to demonstrate their influence on the final detection
performance, which has been largely ignored in the existing
TAD methods.

Another vital factor in feature extraction is data augmen-
tation. Drawing on the success of multiple image-level data
augmentation techniques in action recognition, we incorpo-
rate a similar data augmentation strategy in the first step of
BasicTAD. Random cropping and horizontal flipping have
been commonly utilized in existing end-to-end work, and we
use the two methods by default. Furthermore, since video
data may contain objects with various poses and scenes with
different brightness levels, we adopt more image-based data
augmentation techniques in our BasicTAD, including photo
distortion and random rotation. In subsequent experiments,
we employ all four data augmentation methods mentioned
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Figure 1: BasicTAD Pipeline. Our BasicTAD exhibits a modular design framework for the TAD task, composed of data sampling
(augmentation), backbone, neck, and detection head. (a) The backbone is a spatial-temporal network to extract temporal
features. (b) The neck module of BasicTAD offers three different ways of construction to leverage the extracted features. In the
neck module, n means the number of stages in the backbone, and stage n is the last stage of the backbone. Stage n * contains
extra pooling operations on stage n to construct a temporal feature with low temporal resolution. Particularly, @ represents
adding two features. As the temporal dimension of features varies across different scales, we interpolate the high-level features
along the temporal dimension to align them with the low-level features before addition. (c) We adopt a typical one-stage network

as the detection head, implemented by anchor-based and anchor-free methods.

above. It is worth noting that although these augmentation
techniques are commonplace in images, their effects on TAD
tasks have yet to be explored in previous works.

3.1.2. Backbone

The second component in BasicTAD is the backbone
which is responsible for extracting spatiotemporal features
from videos using a multi-layer network. However, the tem-
poral modeling of early backbones only learns a simple
consensus of RGB scene changes, making it suffering to
capture temporal dynamics. Therefore, optical flow is nat-
urally introduced in the previous TAD methods to explic-
itly supplement the short-form motion information. Nowa-
days, the latest designs of 3D backbones like SlowOnly
can implicitly model such temporal dynamics of RGB in-
put by learning to attain good performance on Something-
something V2 (Materzynska et al., 2020). Hence, we believe
that RGB input is enough, and we adopt an off-the-shelf 3D
action recognition backbone to encode temporal dynamics
for RGB-only input.

To balance the computing overhead and detection preci-
sion, we choose widely used SlowOnly (Feichtenhofer et al.,
2019) as the backbone of BasicTAD by default. For the early
TAD work, 8% spatial-temporal downsampling operation is
applied in the backbones such as C3D (Tran et al., 2015) and
I3D (Carreira and Zisserman, 2017) to reduce the temporal

resolution for saving computational overhead and increasing
the receptive field to capture actions at larger scales. Since
SlowOnly does not contain 8 temporal downsampling, we
insert three 2x temporal downsampling operations to align
the settings and fairly compare with these methods. We will
perform ablation studies to explore the impact of the tempo-
ral downsampling operation. We also perform comparative
studies over the different choices of video backbones on the
final TAD performance.

3.1.3. Neck

The neck module, located after the backbone and before
the detection head, plays a critical role in the TAD task by
facilitating the alignment between the video features and
downstream detection tasks. Its objective is to construct
multi-resolution representations that can flexibly handle the
vast variety of temporal durations of action instances. In this
section, we introduce three neck modules and consider them
candidates for the neck in BasicTAD.

After obtaining the extracted spatiotemporal features
F;, € ROTXHXW e squeeze the H and W dimensions
using spatial average pooling to get the temporal feature
F,; € RE*T . We adopt multi-scale temporal features for our
subsequent one-stage detection heads, helping the one-stage
methods (anchor-based or anchor-free) better detect action
segments of many scales. We use two basic feature pyramid
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networks, i.e., Temporal Feature Pyramid Network (TFPN)
and Temporal Down Network (TDM) to build necks for
creating or enhancing multi-scale temporal features from the
backbone. TFPN enhances multi-scale temporal features by
performing up-sampling and lateral addition on given multi-
scale temporal features. Formally, the operation of each layer
in TFPN can be represented as follows:

F, = Conv(F, + Upsample(Fy, ). W

where F; represents the features in the i-th layer of the
temporal feature pyramids, and Fi/ denotes the new features
that aggregate both high-level features F;,; and current
scale features F;. TDM utilizes multiple down-sampling
operations to create multi-scale temporal features from a
single-scale feature. Given a single-scale temporal feature
sequence as the first-layer feature of feature pyramids, each
layer of TDM can be expressed as follows:

F;, 1 = Downsample(F;) 2)

where Downsample represents a max-pool or convolution
layer, aggregating the temporal semantic information of the
features and halving the temporal dimension. Based on both
basic networks, as shown in Fig 1, we construct three necks:
Lateral-TFPN, Post-TDM, and Post-TDM-TFPN.

Lateral-TFPN. One of the most intuitive approaches to
building a TFPN is by leveraging multi-scale spatiotemporal
features extracted from different stages of the backbone. This
approach facilitates the integration of high-level semantic
information with low-level features, much like what is ac-
complished by FPN in object detection. Although shallow
layers offer a greater temporal resolution, the spatial fea-
tures at each temporal location may need to capture more
rich temporal semantic information, which could hinder the
effectiveness of the TAD task.

Post-TDM. TDM generates multi-scale temporal fea-
tures on pre-extracted temporal features. While the last layer
of backbone features provides rich semantic information at
each temporal location, increasing the number of feature
layers may prevent the learned high-level semantics from
being fed back to low-level features. TDM, on the other hand,
utilizes features from the backbone directly and is, therefore,
easier to optimize compared to TFPN.

Post-TDM-TFPN. Constructing TDM and TFPN after
the backbone can simultaneously address the abovemen-
tioned problems. TFPN integrates high-level semantic in-
formation into low-level features, which could improve the
network’s capacity to aggregate temporal context while en-
suring adequate spatial semantics. However, the introduction
of additional learnable parameters could impede network
optimization.

In the subsequent experiments, we study and analyze the
different choices of the three necks and provide our final
combination in BasicTAD.

3.1.4. Head

The detection head is the final component in our modular
TAD framework. It is responsible for completing the detec-
tion task by generating the temporal interval of the action
instance and its corresponding label. Typically, this compo-
nent includes sub-networks designed for classification and
regression tasks, respectively. Moreover, the specific sample
assignment is critical for training these detection heads
effectively. Both aspects complement each other to produce
the best possible results in the final detection performance.

For simplicity and end-to-end training, we adopt anchor-
based and anchor-free mechanisms as the basic detection
head of our BasicTAD, by following the basic design prin-
ciple in object detection (Ren et al., 2015; Lin et al., 2017a;
Tian et al., 2019). Since these two detection methods have
advantages and disadvantages, there is no clear conclusion
on which is better. We briefly introduce two detection meth-
ods in our TAD pipeline and provide specific implemen-
tation details. Both methods share the same sub-networks
composed of four temporal convolutional layers followed by
a normalization and activation layer. Both methods share
two classification and regression sub-networks composed of
four temporal convolutional layers followed by a normaliza-
tion and activation layer. The regression and classification
branches for both methods can be formulated as follows:

F; = Conv(F,_,), (3

where i € [1,4] is the output features of the i-th convolution
layer and F{, represents input features of head. In the last
layer, the output of the classification branch is represented
as F:ls € RNXNXT where N, represents the number of
anchors (N, = 1 for anchor-free method) and N, represents
the number of categories. The output of the regression
branch denotes F;eg € RNX2XT | where 2 represents the
variables related to boundaries. Since the sub-network de-
sign of both methods is identical, we will primarily focus
on introducing the two methods from the perspective of the
sample assignment mechanism.

Anchor-based Method. Anchor-based methods gen-
erate temporal proposals by assigning dense and multi-
scale intervals with pre-defined lengths to uniformly dis-
tributed temporal locations in the input video. We use
translation-invariant anchors, which have an increasing tem-
poral size from the bottom to the top of the feature pyra-
mid network. At each level, we add anchors of 5 sizes
{20,21/5,22/5,23/5 24/5} of the original set of default
anchors for dense scale coverage. Anchors are assigned to
ground-truth action segments using the temporal Intersection-
over-Union (tloU) threshold of 0.6 and a background with
a tloU lower than 0.4. Other anchors overlapping [0.4,
0.6) will be eliminated during training. We obtain the
predicted action boundaries by optimizing the relative offset
between anchors and ground truths. Dense anchor matching
is required at each temporal position of the feature for
anchor-based methods, which need rich semantic context
information.
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Anchor-free Method. Anchor-free methods directly
regress the offsets to action boundaries at each temporal
location and then use these offsets to generate temporal
proposals. We first compute the regression offsets for each
location on all feature levels. Any location which falls into
any ground-truth box will be set as a positive sample. The
others are negative samples. Each level is responsible for
a range of motion detection. If an action proposal at one
temporal location is beyond this range, this location will
be ignored. We define m; as the maximum range border
that the feature level i needs to regress. In this work,
m,, msz, my, ms, mg, m; are set as —1,5,10,20,40 and oo,
respectively. Even with multi-level prediction, if a location
is still assigned to more than one ground-truth box, we
choose the ground-truth box with minimal area as its target.
Subsequently, we employ e** with a trainable scalar s; to
automatically adjust the base of the exponential function
for feature level i. This approach enables us to obtain the
predicted actions’ boundaries accurately. Compared with
anchor-based methods, anchor-free methods have a more
flexible matching mechanism.

Post Processing. We also apply post-processing to sup-
press redundant predictions to yield the final detection
results for both anchor-free and anchor-based methods.
Specifically, we choose two suppression algorithms: Non-
Maximum Suppression (NMS) (Neubeck and Gool, 2006)
and Non-Maximum Weighting (NMW) (Ning et al., 2017)
for both anchor-based and anchor-free methods. NMS is a
crucial technique that ensures the algorithm produces only
one detection per object. It selects the proposal with the
highest confidence in each iteration, chooses all remaining
proposals with a high overlap rate with the current proposal,
and then suppresses them. After that, it saves the currently
selected proposal and proceeds to the next iteration, exclud-
ing the selected proposal. This procedure continues until
all proposals have been processed. NMW is an improved
version of NMS since proposals with the highest confidence
scores may not be accurately positioned, while other well-
located proposals may exist. NMW uses the confidence score
and Intersection over Union (IoU) to calculate a weighted
average of all proposal coordinates of the same type. We
will conduct ablation studies on them in the later section.

The above detection methods and post-processing mech-
anisms are our optional basic components in head. Valida-
tion and more in-depth studies on these components will be
shown in ablation studies.

3.2. From BasicTAD to PlusTAD

Based on our modular TAD framework, we perform
comprehensive studies of the basic options and come up
with a simple yet effective TAD baseline, termed BasicTAD.
Furthermore, based on the BasicTAD, we introduce three
customized improvements to fully unleash the power of this
simple and end-to-end detection pipeline, and the upgraded
framework is called PlusTAD. Specifically, we propose
two network structure designs, Temporal Preservation and
Spatial Preservation, to improve the quality of the temporal

features of networks’ backbone and neck parts. We further
study and adopt stronger data augmentations for training and
multi-view ensemble methods in the testing phase.

3.2.1. Temporal Preservation for Backbone

The existing TAD methods use backbones that down-
sample temporal and spatial information and require dense
frames sampled at high FPS as input.

Intuitively, denser inputs generally lead to better de-
tection performance. To alleviate the huge computational
overhead imposed by dense inputs, the existing practice is to
perform temporal downsampling on the inputs in the early
stages of the backbone. However, our subsequent experi-
ments show that this approach does not always yield gains.
Due to insufficient discriminative power between adjacent
frames in shallow layers, it is hard for the early stages of
the backbone to learn how to extract useful temporal signals
from these subtle frame changes. Therefore, we propose
Temporal Preservation (termed as “TP” for short) design
that feeds frames into the model from the beginning at
an explicitly sampled frame rate (sparse or dense) without
downsampling in the backbone. For long actions in datasets
like THUMOS 14, sparse input without temporal downsam-
pling in the backbone is enough to predict actions. Though
sparse input may not be suitable for fine-grained action
detection, maintaining the temporal dimension and adopting
dense input can encourage the backbone to capture their
subtle changes. TP design is effective and helpful for both
scenarios above.

3.2.2. Spatial Preservation for Neck

Many existing TAD works (Lin et al., 2021; Wang et al.,
2021a) squeeze the spatial dimension of features before feed-
ing them into the neck module. We argue that the squeezing
operation prematurely drops the spatial dimension, making
the feature pyramid constructed by the neck module unable
to capture spatial-sensitive multi-scale features.

In our further experiments, we find it is worth preserving
spatial dimension. So we propose a design named Spatial
Preservation (termed as “SP” for short) that postpones
the spatial squeezing until after the neck and replaces the
1D operators with 3D operators. It introduces the local
spatial context and enhances the robustness of multi-scale
spatiotemporal information. We discuss its performance im-
provement in the experimental section.

3.2.3. Enhanced Data Augmentation

In Section 3.1.1, we equip BasicTAD with various image
data augmentations in the training phase. To further improve
the performance of our PlusTAD pipeline, we explore more
data augmentation methods. Through ablation experiments,
we investigate the effects of more different spatial resolu-
tions on TAD performance in the training stage.

Furthermore, considering the data augmentation in the
testing phase mainly works on the temporal and spatial lev-
els, we adopt various test augmentation methods to enhance
the robustness of the predictions. In detail, we employ two
spatial-level data augmentation methods for each temporal
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window, namely “ThreeCrop” and “Flip”, individually or
simultaneously. We also use the reverse sliding window,
termed ‘“Backward”, to increase the density of temporal win-
dows and combine the predictions of each temporal window
for post-processing.

3.3. Training and Testing
3.3.1. Training

In the training phase, we randomly sample a fix-sized
temporal window of consecutive frames in each untrimmed
video per iteration and feed them into our model. We train
BasicTAD and PlusTAD with both heads as a multi-task loss
function L, including a classification loss L, a regression
loss L.

cls»

L =1L+ aL.,, 4)

cls

where « is a hyper-parameter to balance these two terms
and set them to 1. classification loss: We use focal loss (Lin
et al., 2017c¢) as classification loss for its ability to solve
the problem of positive and negative sample imbalance. The
formal expression of focal loss is as follows:

Lys=—(- pz)yIOg(Pt) 5)

where p, represents the probability of each action category
after softmax, and y represents the modulation factor that
focuses on hard samples. Meanwhile, Distance-IoU (DIoU)
loss (Zheng et al., 2020) is adopted as regression loss for
faster convergence during training and more accurate bound-
ary regression. The formal expression of DIoU loss is as
follows:

p2(b, b%")
C2
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where B represents the boundary of the proposed action,
B¢ represents the boundary of ground truth action, p?(b, b%")
represents the square of the Euclidean distance between the
center points of B and B&" and c represents the shortest
length that simultaneously covers B and B&'.

3.3.2. Testing

We use sliding windows with overlap to sample fixed-
number frames and feed them into BasicTAD and PlusTAD
in the testing stage. Our model outputs {(s;, e;, p;) }l’,”= L as the
predicted action set, where i and m is the i-th action and
total number of predicted action. s;, e; represent the start
and end time of the i-th action i and p; is its score. We
adopt NMW (Ning et al., 2017) for both heads to remove

the redundant action segments.

4. Experiments

4.1. Datasets

We perform extensive experiments on three datasets,
summarized in Fig 2 and Table 2, to demonstrate the effec-
tiveness of our BasicTAD and PlusTAD. THUMOS14 (Jiang
et al., 2014) is a commonly-used dataset in TAD, containing

Table 2

Summary of three datasets. Video number, category number
and other information about THUMOS14, FineAction and
ActivityNet-v1.3 are listed in this table.

Dataset Video  Category Instance Duration Type

THUMOS14 413 20 6,316 43s sports
FineAction 16,732 106 103,324 7.1s daily events
ActivityNet-v1.3 19,994 200 23,064 492 s daily events

BasketballDunk

TennisSwing CliffDiving

Sports, Exercise-play Personal Care-cut hair Socializing, Relaxing-
badminton hug

Household Activities-
water plants

= o

Applying sunscreen

Baking cookies Swimming Changing car wheel

Figure 2: Samples of three TAD datasets. (a): A few examples
in THUMOS14. All actions are sports-related. (b): A few
examples in FineAction. These samples’ categories are shown
in the form of “top-level category"-"bottom-level category".
Its action scenes are more varied than THUMOS14. (c): A few
examples in ActivityNet-v1.3. It has plenty of action scenes.
Unlike FineAction, actions in ActivityNet-v1.3 are mostly long-
term actions.

200 validation videos and 212 test videos with labeled
temporal annotations from 20 action categories in sports.
FineAction (Liu et al., 2022b) is a newly collected large-
scale fine-grained TAD dataset containing 57,752 training
instances from 8,440 videos and 24,236 validation instances
from 4,174 videos and 21,336 testing instances from 4,118
videos. It contains 106 action categories within a new
taxonomy of three-level granularity. This taxonomy consists
of 4 top-level categories, 17 middle-level categories, and
106 bottom-level categories. The 4 top-level categories
are “Household Activities”, ‘“Personal Care”, “Socializ-
ing, Relaxing” and “Sports, Exercise”. With richer action
scenes and finer-grained action categories, FineAction will
be a challenging data set in the TAD task. ActivityNet-
v1.3 (Heilbron et al., 2015) is a large-scale dataset con-
taining 10,024 training videos, 4,926 validation videos,
and 5,044 test videos belonging to 200 activities covering
sports, household, and working actions. Different from
THUMOS 14 and FineAction, which consist mostly of short
actions, most videos in ActivityNet-v1.3 contain only one
long-term action instance, and the action frames exceed 64%
of all frames.

4.2. Evaluation Metric

Following previous work, we report the mean average
precision (mAP) with tloU thresholds [0.3 : 0.1 : 0.7]
on the test set of THUMOSI14. And on the validation set
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of FineAction and ActivityNet-v1.3, the thresholds are set
as [0.5,0.05,0.95]. We use “Avg” to represent the average
mAP on THUMOS 14, FineAction, and ActivityNet-v1.3.

4.3. Implementation Details

We perform experiments using BasicTAD and PlusTAD
on THUMOS14 (Jiang et al., 2014). Though THUMOS14
is a scene-biased dataset that can not reflect the importance
of temporal dynamics in classification, it can provide tem-
poral dynamics for the regression of action boundaries. This
means that the conclusions obtained from the ablation exper-
iments on THUMOS 14 are universal to a certain extent, SO
we choose THUMOS14 to do ablation studies. We sample
temporal windows of 32 seconds for both configurations,
covering over 99.7% action instances. We use 768 frames at
24FPS for BasicTAD and 96 frames at 3FPS for PlusTAD.
In the training phase, we resize the original size (the size of
the original frames) to 128 X 128 for BasicTAD and short-
128 (the short side of the frame is set to 128) for PlusTAD.
We randomly sample a temporal window in each untrimmed
video per iteration. We set the crop size (the size of the
cropped images) to 112 x 112. The photo distortion and
random spatial rotation are consistent with (Wang et al.,
2021a; Liu et al., 2016). In the testing phase, we sample
uniform sliding windows whose sampling stride between
adjacent sliding windows is set to 25% of the window
length. And the center crop of 112 X 112 is used. If there
is no special emphasis, the above configuration will be the
default configuration for subsequent experiments based on
THUMOS14.

We use PlusTAD to perform further experiments on
FineAction (Liu et al., 2022b) and ActivityNet-v1.3 (Heil-
bron et al., 2015). On FineAction, we sample RGB frames at
2FPS. In the training phase, we set the original size to short-
256 and the crop size to 224 X 224. In the testing phase, we
use the center crop of 224 x 224. On ActivityNet-v1.3, we
follow the settings in AFSD (Lin et al., 2021) that we sample
frames at different fps and ensure the number of frames in
each video is the same. We set the original size to 224 x 224.

We use SlowOnly (Feichtenhofer et al., 2019) pre-
trained on Kinetics (Kay et al., 2017) as our backbone by
default, where all batch normalization layers are frozen.
We train the model using SGD with a momentum of 0.9
and weight decay of 0.0001. The batch size is set as 16.
The learning rate schedule is annealing down from 0.01 to
0.0001 every 1200 iterations on THUMOS14, 20 epochs
on FineAction, and ActivityNet-v1.3 using the cosine decay
rule.

4.4. Ablation Studies on BasicTAD

We first begin the ablation study on the design of each
component in our proposed modular TAD framework. In the
previous section, we introduced the basic and simple options
for each step in our modular framework. In this section,
we will perform extensive studies over these basic designs
through in-depth and step-by-step ablation experiments. Our
goal is to discover a simple yet must-known TAD baseline.

4.4.1. Study on different backbones

The first and most important choice in our modular
TAD framework is the backbone design. The previous
works (Wang et al., 2021a; Xu et al., 2017; Liu and Wang,
2020; Lin et al., 2021; Wu et al., 2021) with end-to-end
training manner usually input many frames and use back-
bones with 8x temporal downsampling, such as C3D (Tran
et al., 2015), I3D (Carreira and Zisserman, 2017), and R50-
I3D (Wang et al., 2018b). This method can increase the
utilization of the data source as much as possible. Mean-
while, using 8X spatiotemporal downsampling can reduce
the computational overhead. However, these backbones are
relatively outdated and inferior to the recent SlowOnly
backbone (Feichtenhofer et al., 2019). To fully unleash the
power of our proposed modular TAD framework with end-
to-end training, we also try SlowOnly backbone in our TAD
framework. For a fair comparison with previous backbones,
we align with the settings of these previous works, and
8x temporal downsampling is adopted. Hence, we insert a
2x downsampling layer before res-2, res-3, and res-5(res-x
denotes the x-th res-stage in SlowOnly) of the SlowOnly
backbone, respectively.

Inputting 768 frames at 24FPS under end-to-end train-
ing, we compare the performance of BasicTAD, which uses
C3D, I3D, R50-I3D, and SlowOnly with 8x downsampling
in Table 3. These four backbone encoders are all 3D CNN
methods that capture spatiotemporal information between
frames by performing 3D convolution. As shown in Table 3,
BasicTAD with C3D does not perform well due to its lim-
ited representation power caused by relatively shallow net-
works. Meanwhile, I3D performs worse than SlowOnly with
8% downsampling. This can imply that the ResNet50 (He
et al., 2016) network outperforms the Inception-v1 (loffe
and Szegedy, 2015) network in the TAD task. R50-I13D
is slightly weaker than SlowOnly with 8X downsampling
because they both are based on ResNet. R50-I13D performs
8% downsampling at the beginning of the backbone, while
SlowOnly with 8x downsampling delays the timing of back-
bone downsampling. This difference will contribute to the
slight performance difference. This downsampling location
will be analyzed in the next section.

4.4.2. Study on the gain of end-to-end training

In this section, we study the gain of end-to-end training
BasicTAD with different backbones. Table 4 shows that
abandoning the end-to-end training strategy leads to signif-
icantly worse detection results for the anchor-based method
across all four backbones. While this method reduces train-
ing costs, it fails to fully leverage the modeling capabilities
of the backbone, given the gap between TAD and action
recognition tasks. This underscores the importance of a
trainable backbone in the TAD pipeline.

4.4.3. Study on Downsampling Locations in backbone

Following the previous section, we further study down-
sampling locations in the SlowOnly backbone. To construct
a structure with 8x temporal downsampling, the backbone
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Table 3

Performance of BasicTAD on different backbones on THUMOS14 (Jiang et al., 2014). We replace SlowOnly with C3D (Tran
et al., 2015), 13D (Carreira and Zisserman, 2017) and R50-13D (Wang et al., 2018b) for our BasicTAD to perform experiments,

where 13D only retains RGB branch.

Method ‘ Backbone ‘ mAP@©0.3 mAPQ©0.4 mAP@©0.5 mAP@©0.6 mAP@0.7 Avg
C3D 54.4 50.8 45.7 37.4 26.1 42.9

Anchor-based 13D 59.5 56.0 51.4 41.8 28.3 47.4
R50-13D 62.8 59.5 53.8 43.6 30.1 50.0

SlowOnly (x8) 63.1 59.5 54.3 43.6 30.5 50.2

C3D 56.8 50.1 447 35.2 24.3 42.2

Anchor-free 13D 61.7 56.9 49.3 38.7 26.1 46.6
R50-13D 63.7 58.5 51.6 41.0 30.8 49.1

SlowOnly (x8) 63.2 59.7 52.6 44.5 32.7 50.5

Table 4

Study on the effectiveness of end-to-end training based on the anchor-based BasicTAD with different backbones on
THUMOS14 (Jiang et al., 2014). “"e2e” is short for end-to-end training. We freeze all layers in the backbone to construct

a non-end-to-end training manner.

Backbone e2e ‘ mAPQ@0.3 mAPQ0.4 mAPQ0.5 mAPQ0.6 mAPQ0.7 Avg
3D v 54.4 50.8 45.7 37.4 26.1 42.9

X 32.0 27.2 22.0 14.4 7.6 20.6

13D v 59.5 56.0 51.4 41.8 28.3 47.4

X 35.2 29.7 23.1 15.9 8.1 224

R50.13D v 62.8 59.5 53.8 43.6 30.1 50.0

X 36.5 31.8 26.7 19.6 12.3 25.4

SlowOnly (x8) v 63.1 59.5 54.3 43.6 30.5 50.2
y X 373 324 26.6 19.8 13.0 25.8

of BasicTAD need to choose three different places to oper-
ate 2x downsampling. Since R50-based SlowOnly has five
stages, we can choose three of four intervals between these
res-stages. In this sense, we can downsample the spatiotem-
poral features before res-2, res-3, res-4, and res-5 (res-x
denotes the x-th res-stage in SlowOnly). Inserting down-
sampling layers at different locations can lead to differences
in model performance due to different temporal receptive
fields and aggregations. Meanwhile, their corresponding
computing costs will be different as well.

Table 5

Following the input in the previous section, we compare
the performance of BasicTAD with different downsampling
locations. The results are shown in Table 5. In the back-
bone’s first half stages (res-2 and res-3), the features are
highly redundant in the temporal dimension. If we put the
temporal downsampling layers at the first three stages, it
can save the computational cost most but also achieves
the worst detection mAP. However, if we simply change a
single downsampling location from res-4 to res-5, it leads
to a large performance improvement of around 5% mAP.

Comparison between different locations of downsampling in BasicTAD on THUMOS14 (Jiang et al., 2014). We choose three of
four intervals between these res-layers to insert the max-pool downsampling operation. In this table, choosing an interval before

a res-layer will be indicated by a tick.

Method | res2 res-3 res-4 res5 | FLOPs | mAP@0.3 mAPQ0.4 mAPQ@).5 mAP@0.6 mAPQ0.7 Avg
v v v 227.7G 55.9 525 47.3 40.3 29.2 45.1

Anchorbased | Y. v v | 280.2G 63.1 59.5 54.3 43.6 30.5 50.2
v v v | 329.9G 55.3 51.5 46.8 38.0 26.9 43.7

v v v | 395.4G 56.5 53.1 48.2 40.1 29.0 45.4

v v v 245.8G 59.2 55.0 475 37.2 273 45.3

Anchor-free v v v | 208.4G 63.2 59.7 52.6 44.5 32.7 50.5
v v v | 348.1G 63.8 58.2 50.4 41.8 30.1 48.9

v v v | 4135G 64.6 58.8 51.4 42.6 312 49.7
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Table 6

Comparison between three kinds of the neck on THUMOS14 (Jiang et al., 2014). We test three different kinds of neck and

compare the results on THUMOS14. We denote the down-sampling operator of Lateral-TFPN as

feature from the backbone.

won

because it uses the multi-scale

Method | Neck | Operator | mAP@0.3  mAP@0.4  mAP@).5 mAPGD.6 mAP@D.7  Awg
Lateral-TFPN - 59.1 55.4 50.0 40.9 27.9 46.7

Post-TDM Conv 56.7 53.1 48.0 38.8 27.0 44.7

Anchor-based Post-TDM Maxpool 54.1 52.0 46.3 37.9 27.8 43.4
Post-TDM-TFPN Conv 63.1 59.5 54.3 43.6 30.5 50.2
Post-TDM-TFPN Maxpool 58.7 55.2 50.7 42.0 30.6 47.5

Lateral-TFPN - 56.1 50.2 43.6 34.1 245 41.7

Post-TDM Conv 63.9 58.7 50.2 40.0 29.1 48.4

Anchor-free Post-TDM Maxpool 63.2 59.7 52.6 44.5 32.7 50.5
Post-TDM-TFPN Conv 62.3 56.5 49.1 38.3 24.6 46.2
Post-TDM-TFPN Maxpool 61.8 56.6 49.2 39.9 28.7 47.2

Meanwhile, we notice that other configurations of down-
sampling locations achieve a weaker performance than the
previous version yet with higher computational costs. From
the above results, it can be found that the temporal features
are highly redundant in the first half stages, and the latter
half stages are key stages of feature encoding, so temporal
downsampling cannot be easily performed there. Thus, we
keep the temporal downsampling locations before res-2, res-
3, and res-5 by default.

4.4.4. Study on Neck Design

After the ablation studies on the backbone design, we
now turn to the exploration of the neck design. Based on the
best result in Table 5, we set the down-sampling locations
at res-2, res-3, and res-5 in this ablation study. Specifically,
we compare three kinds of neck modules for anchor-based
and anchor-free TAD methods, namely Lateral-TFPN, Post-
TDM, and Post-TDM-TFPN, as introduced above. These
neck modules with different down-sampling operators yield
multi-resolution representations for action detection. The
results are listed in Table 6. As shown in the table, Lateral-
TFPN achieves the worst performance because the feature
maps lack enough high-level semantic information in the
early stages of the backbone. In order to keep high-level
semantic information in the neck module, it is necessary to
build the neck representation right behind the backbone.

For Post-TDM and Post-TDM-TFPN, we explore two
basic operators in the downsampling procedure, namely
convolution, and max-pool. As demonstrated in Table 6,
Post-TDM with the max-pool operator and Post-TDM-TFPN
with the convolution operator is more suitable for the anchor-
free method and the anchor-based method, respectively. This
difference is due to the different detection and training
mechanisms of the anchor-free method and the anchor-based
method. The anchor-based TAD method adopts the global
sample assignment mechanism based on tloU. It depends
on the global multi-scale context aggregated by Post-TDM-
TFPN with convolution operations. Instead, the anchor-free
TAD method uses a sample assignment mechanism based on

the multi-scale center points, so it is subject to local high-
frequent boundary information in the temporal dimension to
directly regress the locations of action boundaries.

Based on the above results and analysis, we apply Post-
TDM with the max-pool operator and Post-TDM-TFPN with
the convolution operator to the anchor-free method and the
anchor-based method in BasicTAD.

4.4.5. Study on Head Design

To ensure the simplicity principle in BasicTAD, we in-
troduce basic one-stage anchor-based and anchor-free meth-
ods in our study. In the previous ablation experiments on
backbone and neck design for BasicTAD, we conducted ex-
periments with both detection heads. The results are shown
in Table 3, Table 5, and Table 6. From these results, we can
also provide some comparative analysis for head design.

As shown in Table 5, the anchor-based TAD method
has slightly lower FLOPs than the anchor-free TAD method
due to its smaller number of channels in the detection head.
Although the max-pool operator does not contain any learn-
able parameters, the anchor-free method does not reduce the
dimension of the last layer features from SlowOnly, which
is 2048. It leads to more FLOPs compared with the anchor-
based method. For detection accuracy, the anchor-free TAD
method achieves a slightly better mAP than the anchor-based
TAD method.

In our design, the anchor-based and anchor-free Basic-
TAD are both dense detectors. As dense prediction methods,
anchor-based and anchor-free heads rely on post-processing
to suppress redundant predictions to yield the final detection
results. In our BasicTAD, we generally follow the box sup-
pression methods in object detection. Specifically, various
classical suppression algorithms, i.e., Non-Maximum Sup-
pression (NMS) (Neubeck and Gool, 2006), Non-Maximum
Weighting (NMW) (Ning et al., 2017) are introduced to
suppress bounding boxes in post-processing. We perform a
comparative study on them to determine the best option for
anchor-free and anchor-based TAD methods.

The experiment results on the choice of the post-processing
algorithms are reported in Table 7. For the anchor-free
method, the detection result is not sensitive to the choice of
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Table 7

Comparison of Post-Processing strateg on THUMOS14 (Jiang et al., 2014). We take both Non-Maximum Suppression (NMS)
and Non-Maximum Weighting (NMW) into account for both anchor-free and anchor-based methods. NMW performs better than
NMS for its weighted average mechanism for redundant accurate boundaries.

Method ‘ Post Processing ‘ mAP@0.3 mAPQ@0.4 mAPQ@0.5 mAP@©0.6 mAPQ@0.7 Avg
Anchor-based NMS 61.4 57.8 51.8 42.1 30.6 48.7
NMW 63.1 59.5 54.3 43.6 30.5 50.2

Anchor-free NMS 63.2 59.7 52.6 44.5 32.7 50.5
i NMW 64.7 60.0 52.8 43.7 33.0 50.8

Table 8

Ablation study on improvements of PlusTAD on THUMOS14 (Jiang et al., 2014). Temporal Preservation is for backbone design
(indicated as “TP"), and Spatial Preservation is for neck design (indicated as “SP").

Method ‘ TP SP ‘ FPS  Frames ‘ mAP©@0.3 mAP®©@0.4 mAPQ@0.5 mAPQ@0.6 mAP®Q0.7 Avg ‘ FLOPs
24 768 63.1 59.5 54.3 43.6 30.5 50.2 280.2G

v 3 96 63.9 59.4 53.7 44.3 31.0 50.5 | 133.3G

Anchor-based v 3 96 63.2 59.7 54.4 45.6 32.2 51.0 | 136.4G
v 6 192 65.4 61.8 56.4 47.9 33.8 53.1 266.0G

v 6 192 65.1 62.0 57.1 48.9 33.9 53.4 272.9G

24 768 64.7 60.0 52.8 43.7 33.0 50.8 | 298.4G

v 3 96 65.7 60.7 52.8 41.7 29.3 50.0 151.4G

Anchor-free v 3 96 67.3 61.6 54.4 41.2 29.5 50.8 | 151.5G
v 6 192 67.5 62.6 55.4 45.7 33.7 53.0 | 284.2G

v 6 192 69.9 64.3 56.8 447 321 53.6 284.2G

the post-processing algorithm, and using NMW is slightly
better. However, the results of the anchor-based method
are quite different, where the choice of the post-processing
algorithm significantly affects the detection results. One
possible reason is that in TAD tasks, annotations tend to
be very sparse, and the anchor-based method generates
too many redundant predictions that we need an advanced
suppression algorithm. NMW performs better on anchor-
based and anchor-free methods, so we use NMW in the
subsequent experiments.

4.5. Ablation Studies on PlusTAD

We have explored several basic settings of each module
in our modular pipeline and come up with a very simple TAD
baseline method, termed BasicTAD. These experiments are
all based on the basic design described in Section 3.1. In
this subsection, we further perform ablation experiments
to validate the improvements proposed over the BasicTAD
design. Specifically, we provide empirical results for the
three improvements, namely temporal preservation of back-
bone design, spatial preservation of neck, and more training
augmentations. With these three improvements, we obtain
another more powerful TAD baseline method, termed as
PlusTAD.

4.5.1. Temporal Preservation in Backbone Design
Temporal sampling is an important but less studied
factor influencing the design of the TAD method. We have
presented a Temporal Preservation (TP) principle in our
PlusTAD design as we need to keep as much temporal
semantic information as possible for efficient localization of

each action instance. We conduct the following experiments
to study the effectiveness of TP for the backbone design.
In detail, we directly remove 8x temporal downsampling
in the backbone design. Thus the temporal size of feature
maps keeps the same with the input frames for all stages in
ResNet. In order to keep the final temporal feature the same
as the BasicTAD, we use 96 frames at 3FPS to replace 768
frames at 24FPS in BasicTAD. We change the sampling
FPS to keep the temporal window size the same.

As is shown in Table 8, compared with BasicTAD (the
first row in the table), using a video clip of 96 frames at
3FPS achieves a similar performance for both anchor-based
and anchor-free TAD methods. However, the computation
overhead is only half of BasicTAD, indicating that our pro-
posed TP principle in backbone design is a good practice for
increasing TAD running speed without mAP loss. To fully
unleash the modeling power of our TP-equipped backbone
in TAD, we further increase the sampling FPS and sampling
frame number to provide richer information. When using
video clips of 192 frames at 6FPS, the average mAP of
the anchor-based and the anchor-free methods is improved
by 2.9 and 2.2 over the BasicTAD, respectively. But, their
overall FLOPs are still lower than that of BasicTAD. This
performance demonstrates that preserving the temporal res-
olution in the backbone design makes it more effective and
efficient in capturing temporal information. Therefore, in our
PlusTAD, we will employ the TP principle in our design by
default.
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Table 9

Comparison of the different spatial sizes in the training stage on THUMOS14 (Jiang et al., 2014). Original size means input
frame size, and the crop size indicates the cropped patch resolution as the network input.

Method ‘ Original size ‘ Crop size ‘ mAPQ@0.3 mAPQ@0.4 mAPQ@0.5 mAPQ@0.6 mAPQ@0.7 Avg ‘ FLOPs
128 x 128 112 x 112 63.2 59.7 54.4 45.6 32.2 51.0 136.4G

Anchor-based 171 x 128 112x 112 66.8 63.3 57.8 48.8 32.9 53.9 136.4G
~ short-128 112x 112 68.4 65.0 58.6 49.2 33.5 54.9 136.4G
short-180 160 x 160 71.2 66.8 61.2 50.1 36.3 57.1 262.1G

128 x 128 112 x 112 67.3 61.6 54.4 41.3 29.5 50.8 151.5G

Anchor-free 171 x 128 112 x 112 68.1 64.3 55.2 453 31.9 53.0 151.5G
short-128 112x 112 70.4 65.5 57.6 46.0 33.2 54.5 151.5G

short-180 160 x 160 72.5 66.8 59.1 48.4 35.0 56.4 | 275.9G

Table 10

Ablation study results on testing augmentation on THUMOS14 (Jiang et al., 2014). For ThreeCrop and Flip augmentation, we
fuse the features after the neck. For backward augmentation, we fuse the detection results in the post-processing phase.

Method ‘ Test Aug ‘ Crop Size ‘ mAP©@0.3 mAPQ@0.4 mAP@0.5 mAP@0.6 mAPQ0.7 Avg
CenterCrop 160 x 160 71.2 66.8 61.2 50.1 36.3 57.1
CenterCrop 180 x 180 71.6 67.3 61.6 50.8 34.7 57.2
Anchor-based CenterCrop+Backward 180 x 180 71.1 67.4 61.1 51.0 345 57.0
ThreeCrop 180 x 180 717 67.9 62.0 50.7 35.6 57.6
CenterCrop+Flip 180 x 180 71.9 67.7 62.1 51.0 35.2 57.6
CenterCrop 160 x 160 72.5 66.8 59.1 48.4 35.0 56.4
CenterCrop 180 x 180 72.9 66.3 59.5 48.2 35.1 56.4
Anchor-free CenterCrop+Backward 180 x 180 72.9 66.7 59.9 47.6 33.9 56.2
ThreeCrop 180 x 180 72.3 67.6 59.0 48.5 35.9 56.7
CenterCrop+Flip 180 x 180 72.4 66.8 59.7 48.9 35.0 56.6

4.5.2. Spatial Preservation in Neck Design

Our proposed Spatial Preservation (SP) design aims to
build spatial-sensitive temporal multi-scale features in the
neck module. We maintain the spatial dimension of features
in the neck module and perform the spatial squeezing after
completing the multi-scale feature construction.

As shown in Table 8, with the same other settings, using
SP for the neck module with 96 and 192 frames can obtain
0.8 and 0.6 mAP improvement in the anchor-free method,
and 0.5 and 0.3 mAP improvement in the anchor-based
method, respectively. This is due to the fact that additional
spatial dimension can make features capture rich structure
on the spatial locations of actions occurring at different
scales. Meanwhile, we observe that the computational cost
of PlusTAD with SP is almost the same as without SP. The
performance of SP demonstrates that it is a simple mod-
ule for improving temporal action detection performance.
Therefore, by default, we incorporate the SP design principle
in our PlusTAD.

4.5.3. Effectiveness of Training Augmentation

In the previous ablation studies, we used the default
data augmentation techniques for training and testing. For
simplicity, we set the original size to 128 X 128 and the crop
size to 112 X 112. But a larger resolution of original frames
can provide more structure information for modeling and
more crops for data augmentation. Therefore, we perform
a detailed study on the input frame resolution to investigate

its effect on the TAD performance. To study its effect on
detection performance, we adopt the same settings of using
96 frames at 3FPS as the input and enable SP and TP in our
PlusTAD.

Specifically, we use two choices to expand the frame
resolution. One choice is to use the fixed resolution as “171x
1287, and the other is to use “short-128" to keep the original
aspect ratio. Among them, “171 x 128" were first adopted
in (Xu et al., 2017) for network training, and we follow its
setting to increase the input resolution. First, we only change
the frame resolution and fix the crop size as 112 X 112. As
shown in the first three rows in Table 9 for both anchor-
based and anchor-free PlusTAD, a larger original size can
contribute to a better TAD performance. Notably, it can
bring around 4% performance improvement for both anchor-
based and anchor-free detection methods. This significant
performance improvement indicates that larger input resolu-
tion can provide more detailed spatial structure information
and generate more diverse training samples.

Furthermore, we perform another comparative study by
increasing the crop size. More concrete, we increase the
origin frame size to “short-180 and crop size to “160x160”.
This setting has a similar ratio of crop size and original
size to the original PlusTAD. As shown in Table 9, under
this setting, the average mAP obtains an improvement of
about 2.0%. This performance improvement demonstrates
the effectiveness of increasing input frame resolution and
keeping the resolution correspondence between the original
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Table 11

Ablation Study results on spatial and temporal resolution on THUMOS14 (Jiang et al., 2014). Overhead represents the increase
in computational overhead after expanding the temporal or spatial resolution, and the basic one denotes by x1.

Method ‘ Original Size ‘ Crop Size ‘ FPS Frames ‘ mAP@0.3 mAP®©0.4 mAPQ@0.5 mAP®@0.6 mAP®©0.7 Avg ‘ FLOPs
short-128 | 112x 112 | 3 9% 68.4 65.0 58.6 49.2 335 549 136.4G

Anchor-based | Short-180 | 160x 160 | 3 9% 71.2 66.8 61.2 50.1 36.3  57.1262.1G
chorbased | ghort-128 | 112x 112 | 6 192 70.2 66.3 60.6 50.3 36.2  56.7 | 272.9G
short-180 | 160x 160 | 6 192 72.3 68.4 62.0 52.4 370 584 | 519.3G

short-128 | 112x 112 | 3 9% 70.4 65.5 57.6 46.0 33.2 545 151.5G

Anchor-free short-180 | 160x 160 | 3 96 72.5 67.2 59.1 48.2 353  56.4 | 275.9G
short-128 | 112x 112 | 6 192 71.7 66.9 59.0 49.2 353 56.4 | 284.2G

short-180 | 160x 160 | 6 192 75.5 70.8 63.5 50.9 37.4 596 | 533.1G

frame and crop patch. Therefore, we choose the input frame
resolution as “short-180” and the crop size as 160 X 160 by
default in the following studies.

4.5.4. Effectiveness of Testing Augmentation

After the ablation on the spatial resolution of training
frames and crop patches, we investigate the influence of
testing augmentation on the TAD performance. The aug-
mentation methods in the testing phase can improve the
robustness of the predictions without additional training
costs. We conduct ablation experiments to study the ef-
fect of different cropping methods. We attempt to apply
four following kinds of testing augmentation. “CenterCrop”
is cropping the center area the same size as the training
crop from images. “ThreeCrop” is cropping three areas of
the same size as the training crop from the frames along
the long side. “Flip” is flipping the frames for horizontal
augmentation. “Backward” complements a reverse sliding
window process to sample windows. Each augmentation
method produces a new clip view to be inferred by the
network separately and fuses predictions of these views to
produce the final TAD results. Specifically, for ThreeCrop
and Flip augmentation, we fuse the features after the neck.
For backward augmentation, we fuse the detection results in
the post-processing phase.

The results of different testing augmentation are shown
in Table 10. We find that “ThreeCrop” and “CenterCrop+Flip”
achieve very similar results for both anchor-based and
anchor-free TAD methods, which can improve the perfor-
mance of “CenterCrop” by around 0.5%. Unexpectedly,
“+Backward” seems to hurt the final precision. A possible
explanation is that increasing the number of predicted ac-
tions degenerates the distribution of the original prediction.
Considering the extra computation cost brought by extra
testing views and its small performance improvement, we
set the default testing scheme of our PlusTAD as the simple
“Center Crop”.

4.5.5. Study on the spatial and temporal resolutions
From previous studies, we have concluded that larger
frame resolution and more input frames can contribute to
a higher TAD performance. We further perform ablation
studies to investigate how to keep a balance between spatial

resolution and temporal frame under a fixed computational
budget. Considering video data contains two dimensions,
spatial and temporal. Using 96 frames at 3FPS as a baseline,
we can add sources of information along two alternative
paths, one of which is increasing the number of frames
(higher temporal resolution) and the other is using larger
frames (higher spatial resolution). We conduct experiments
to explore the gain of different data sources and search for
an optimal route to boost performance.

As reported in Table 11, doubling the number of frames
and doubling the frame size separately brings similar per-
formance improvement for both detection heads. It is worth
noting that, compared with more frames, a larger resolution
of frames may deliver more benefits to the anchor-based
method. When we double the number of frames and double
the frame size, both detection heads are further improved and
create a new record of temporal action detection. We obtain
the mAP of 59.6% for anchor-free PlusTAD. In summary,
we find that temporal resolution and spatial resolution are
both important for improving TAD performance, and we can
choose a reasonable baseline method under the computa-
tional resource available.

4.6. Comparison with the State of the Art

In previous subsections, we have performed thorough
ablation studies on the basic design in our modular Basic-
TAD framework. We also provide extensive investigation
on our proposed new design principles to enhance the TAD
performance of BasicTAD. In this subsection, we turn to
compare our PlusTAD with previous state-of-the-art meth-
ods. In this comparison, we direct transfer these optimal con-
figurations discovered from THUMOS 14 (Jiang et al., 2014)
to the other two large-scale benchmarks: FineAction (Liu
et al., 2022b) and ActivityNet v1.3 (Heilbron et al., 2015).
Table 12 reports our configurations on the three datasets.
We use PlusTADISQ’F to represent the configuration name
on the datasets with the window sampling strategy, such as
THUMOS14 and FineAction. R, F, S is the frame rate of the
sampling, the number of frames, and the size of the frames.
For the datasets based on the video-level sampling strategy,
such as ActivityNet v1.3, we delete R of the subscript due
to the sampled frames representing the whole video. We
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Table 12
Summary of configurations of the optimal PlusTAD on the datasets of THUMOS14, FineAction, and ActivityNet-v1.3.
Dataset Configuration Frame Representation Temporal Resolution Spatial Resolution Window Size
THUMOS14 PlusTAD, Window 96 112x112 32s
THUMOS14 PlusTAD,’:, Window 192 160x160 32s
FineAction PlusTAD; 3, Window 96 224x224 48s
ActivityNet-v1.3 PlusTAD.* Video 96 224x224 -

Table 13
Comparison with state of the art on the THUMOS14. “RGB-Only" means whether to use other input modalities besides RGB
input.
Type Method Backbone RGB-Only gg? ng(,)AZ EQE ggz gé? g:vpg FLOPs
BSN (Lin et al., 2018) TSN X 535 450 36.9 284 20.0 | 368 -
MGG (Liu et al., 2019) TSN X 539 46.8 374 295 213 | 378 -
BMN (Lin et al., 2019b) TSN X 56.0 47.4 388 297 205 | 385 -
DBG (Lin et al., 2019b) TSN X 578 49.4 398 302 217 | 3938 -
Multi-stage | R TD-Net (Tan et al., 2021) 13D X 58.5 53.1 451 36.4 25.0 | 436 -
TCANet (Qing et al., 2021) TSN X 60.6 53.2 44.6 36.8 26.7 | 44.4 -
G-TAD (Xu et al., 2020) TSN X 66.4 604 516 37.6 229 | 478 -
AFSD (Lin et al., 2021) 13D X 673 624 555 437 311 | 52.0 | 2780.0G
DCAN (Chen et al., 2022) TSN X 68.2 627 541 439 326 | 523 -
SP-TAD (Wu et al., 2021) 13D X 69.2 633 559 457 334 | 535 -
TadTR (Liu et al., 2022a) R50-SlowFast v 69.4 643 56.0 464 349 | 54.2 | 475.0G
SSAD (Lin et al., 2017b) TSN X 430 350 246 @ - - - -
DBS (Gao et al., 2019) TSN X 506 43.1 343 244 147 | 334 -
A2Net (Yang et al., 2020) 13D X 58.6 541 455 325 17.2 | 416 -
PBRNet (Liu and Wang, 2020) 13D X 58.5 546 513 418 295 | 47.1 -
R-C3D (Xu et al., 2017) C3D 4 448 356 289 - - - | 1360.0G
One-stage GTAN (Long et al., 2019) P3D v 578 472 388 - - - -
DaoTAD (Wang et al., 2021a) R50-13D v 628 595 53.8 436 30.1 | 50.0 | 206.7G
DaoTAD; % (Wang et al., 2021a) | R50-SlowOnly v 63.2 59.7 544 456 322 | 51.0 | 133.3G
PlusTAD;  (Anchor-based) | R50-SlowOnly v 68.4 65.0 586 49.2 33.5 | 54.9 | 136.4G
PlusTAD; ; (Anchor-free) R50-SlowOnly 4 70.4 655 57.6 46.0 33.2 | 54.5 | 151.5G
PlusTAD,’;,(Anchor-based) | R50-SlowOnly v 723 68.4 620 524 37.0 | 58.4 | 519.3G
PlusTAD, ", (Anchor-free) R50-SlowOnly v 755 70.8 63.5 509 37.4 | 59.6 | 533.1G

compare these configurations with state-of-the-art methods
on the three datasets.

THUMOS14. We compare other state-of-the-art meth-
ods in Table 13 on the THUMOS14 dataset. We compute
the FLOPs of other end-to-end methods (Lin et al., 2021;
Wang et al., 2021a; Liu et al., 2022a; Xu et al., 2017)
in the table for a fair comparison with our method. For
some two-stage and head-only methods, their FLOPs are
unavailable and indicated as “-” in the table. From this table,
we see that our PlusTAD significantly outperforms previous
methods by a large margin with only RGB as input. In
particular, PlusTADégO92 uses more frames with a larger size
and improves the mAP jumps by 4 to 5 points. Meanwhile,
our overall FLOPS are still less than these methods, and our
simple design allows for very fast deployment. These supe-
rior results demonstrate the effectiveness of our PlusTAD
thanks to its simplicity and end-to-end training.

FineAction. We also compare our proposed PlusTAD
with the state-of-the-art methods on FineAction (Liu et al.,
2022b). FineAction is a new and large-scale TAD dataset,
and few works have reported results on this new benchmark.
As shown in Table 14. We compare our PlusTADg’Z;'6 with
three representative works (Lin et al., 2019b, 2020; Xu et al.,
2020), which are provided by (Liu et al., 2022b). All of
them are based on pre-extracted I3D features. We find that
our method can obtain a better performance on Average
mAP. However, our method performs worse on mAP@0.95.
One possible reason is that all three methods above are
multi-stage methods that can get refined proposals from the
previous detection or proposal generation stage. This leads
to better localization results for metrics at high thresholds
like mAP@0.95.

ActivityNet-v1.3. Due to the complex semantics of the
action class on ActivityNet-v1.3, we adapt our PlusTAD to
generate binary action proposals and obtain the detection
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Table 14
Comparison with state of the art on the FineAction dataset. "RGB-Only" means whether to use other input modalities besides
RGB input.
Method ‘ Backbone | RGB-Only | mAPQ0.5 mAP®0.75 mAPQ0.95 | Avg
BMN (Lin et al., 2019b) 13D v 12.56 7.49 2.62 7.86
BMN (Lin et al., 2019b) 13D X 14.44 8.92 3.12 9.25
DBG (Lin et al., 2020) 13D 4 8.57 5.01 1.93 5.31
DBG (Lin et al., 2020) 13D X 10.65 6.43 2.50 6.75
G-TAD (Xu et al., 2020) 13D 4 10.88 6.52 2.19 6.87
G-TAD (Xu et al., 2020) 13D X 13.74 8.83 3.06 9.06
PlusTAD;", (Anchor-based) R50-SlowOnly v 24.34 10.57 0.43 12.15
PlusTAD;?, (Anchor-free) R50-SlowOnly v 22.37 10.36 0.83 11.66

Table 15

Comparison with state of the art on the ActivityNet-1.3 dataset. "RGB-Only" means whether to use other input modalities

besides RGB input.

Method ‘ Backbone ‘ RGB-Only ‘ mAPQ0.5 mAP@0.75 mAP@0.95 ‘ Avg

BSN (Lin et al., 2018) TSN X 46.45 29.96 8.02 30.03
P-GCN (Zeng et al., 2019) - X 48.26 33.16 3.27 3111
BMN (Lin et al., 2019b) TSN X 50.07 34.78 8.29 33.85
G-TAD (Xu et al., 2020) TSN X 50.36 34.60 9.02 34.09
AFSD (Lin et al., 2021) 13D X 52.40 35.30 6.50 34.40
SP-TAD (Wu et al., 2021) 13D X 50.06 32.92 8.4 32.99
BMN (Lin et al., 2019b) TSN v 41.93 30.10 9.00 29.23
G-TAD (Xu et al., 2020) TSN 4 45.68 31.36 7.42 30.98
AFSD (Lin et al., 2021) 13D v - - - 32.90
PlusTAD;.* (Anchor-based) R50-SlowOnly v 50.04 33.79 2.75 3213
PlusTAD;;" (Anchor-free) R50-SlowOnly 4 51.20 33.41 7.57 33.12

results by applying video-level action classifiers. This is a
common setting for many previous state-of-the-art methods
on ActivityNet-v1.3. This is mainly due to the annotation
sparsity of ActivityNet-v1.3, and thus the detection results
can benefit from the video-level classification. As shown
in Table 12, due to the sparse action instance distribution
of ActivityNet-v1.3, we sparsely sample 96 frames from
the entire video to represent the whole video. This sparse
sampling would greatly increase the temporal receptive field
but also lose detailed temporal information that might be
useful for TAD.

As shown in Table 15, our PlusTADgé4 performs better
than (Lin et al., 2019b; Xu et al., 2020; Lin et al., 2021) when
only using RGB frames as input. Meanwhile, our method is a
one-stage detector without any refinement sub-network, such
as AFSD (Lin et al., 2021), to refine boundaries. However,
other head-only methods use pre-extracted features from the
entire video to get richer information. Note in this case,
they can use more frames (not only 96) for feature extrac-
tion. Their detection results can be further improved by
introducing an additional optical flow modality. Considering
these several factors, our PlusTAD still remains a powerful
baseline method due to its simplicity, effectiveness, and
efficiency.

4.7. Efficiency Analysis

In the above subsections, we have demonstrated that
our BasicTAD and PlusTAD can achieve very high TAD
mAP on the standard benchmarks. Due to its simplicity in
design, our PlusTAD enjoys high efficiency as well. In this
subsection, we report the running speed of our PlusTAD and
compare it with the other state-of-the-art methods with end-
to-end training strategies.

To make the comparison fair and rigorous, we first
define the inference speed for TAD tasks. We use “FPS”
to represent the number of frames per second processed by
the model when processing the video stream. “FPS” here
is calculated differently between the image field and TAD.
Given an input video with s seconds and its f FPS, the total
number of frames to be processed is s X f. If we re-sample
frames before feeding them into the network, we can get a
new input with s seconds, f’ FPS, and sx f frames. Suppose
we spend ¢ seconds to process re-sampled frames. The speed
(FPS) of processing the origin video is %

We use 96 frames at 3FPS to evaluate the inference
speed of PlusTAD with both heads because the average
mAP is close to other SOTA methods under this setting.
Considering using the same GPU, as shown in Table 16,
PlusTAD with the anchor-based method yields 17454 FPS
using V100 GPU, which is 4x faster than (Lin et al., 2021).
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Table 16

Comparison of inference speed. The running speed of previous methods is directly cited from their papers. Note that these
methods all use optical flow as inputs, and their running time does not include the optical flow calculation. So, their real running
speed is lower than the reported speed. ¥ donate DaoTAD (Wang et al., 2021a) tested in our platform.

Method ‘ FPS Frames Size ‘ GPU ‘ RGB-Only ‘ FPS ‘ mAP

SS-TAD (Buch et al., 2017) - - - TITAN XM X < 701 -

R-C3D (Xu et al., 2017) 25 768 112x 112 TITAN XP X < 1030 -
PBRNet (Liu and Wang, 2020) 10 256 96 X 96 1080Ti X < 1488 47.1
AFSD (Lin et al., 2021) 10 256 96 X 96 1080Ti X < 3259 52.0
AFSD (Lin et al., 2021) 10 256 96 x 96 V100 X < 4057 52.0
DaoTAD (Wang et al., 2021a) 25 768 112x 112 1080Ti v 6668 50.0
SP-TAD (Wu et al., 2021) 10 256 96 x 96 V100 X <5574 535
TadTR (Liu et al., 2022a) 10 256 96 x 96 TITAN XP v 5076 54.2
DaoTAD? (Wang et al., 2021a) 25 768 112x 112 TITAN XP 4 7064 50.0
DaoTAD? (Wang et al., 2021a) 25 768 112x 112 V100 v 8989 50.0
PlusTAD; s, (Anchor-based) 3 9 112 % 112 TITAN XP v 13715 54.9
PlusTAD;;; (Anchor-based) 3 9 112x 112 V100 v 17454 54.9
PlusTAD, \ (Anchor-free) 3 9% 112x 112 TITAN XP v 7143 54.5
PlusTAD; ; (Anchor-free) 3 9% 112x 112 V100 4 8377 54.5

Although PlusTAD with the anchor-free method is much
slower because of more channels in the neck and head, it
still has a higher FPS and mAP than AFSD (Lin et al., 2021)
and TadTR (Liu et al., 2022a).

Furthermore, to eliminate the influence of other hard-
ware, such as CPU, RAM, and disk, we also compare the
inference speed of DaoTAD (Wang et al., 2021a) reproduced
on our platform. In Table 16, the FPS on 1080Ti reported
by DacTAD (Wang et al., 2021a) is slower by 5.9% than
our report. It roughly matches the performance gap between
1080Ti and TITAN XP. From the above analysis, our Plus-
TAD still maintains an advantage in inference speed.

These comparisons show that it is necessary to re-design
a simple and efficient TAD baseline method, and our pro-
posed PlusTAD can achieve a new astounding baseline of
high effectiveness and efficiency.

4.8. Feature Activation Analysis

After conducting extensive quantitative studies on the
accuracy and efficiency of our proposed BasicTAD and
PlusTAD, we present some visualization analysis on THU-
MOS 14 in this subsection. We start by visualizing the feature
maps of the backbone for both anchor-based and anchor-free
heads. To enhance the visualization clarity, we perform av-
erage pooling to squeeze the feature map spatially and retain
only the temporal dimension. As illustrated in Figure 3, we
depict the feature activation of anchor-based PlusTAD at the
top, the original frames with ground truth in the middle,
and the feature activation of anchor-free PlusTAD at the
bottom. We provide three examples in total. As evident in
Figure 3, the anchor-based method exhibits a preference
for activating a large area of target regions. On the other
hand, the anchor-free method demonstrates activation at a
specific and single location within the target action. Figure 3
shows that the anchor-based method prefers to activate at
a large area of target regions. In contrast, the anchor-free

method activates at a specific and single location inside
the target action. While these findings cannot be considered
definitive conclusions, we believe they can serve as useful
guidelines for future research to investigate the application
of anchor-based and anchor-free methods in TAD and draw
more comprehensive conclusions.

4.9. Error Analysis

In addition to the feature map visualization, we provide
the error analysis on our detection results as well. To better
understand the detection errors, we use the diagnostic tool
provided by Alwassel et al. (2018) to analyze the detection
results of PlusTAD with 192 frames at 6FPS. We visualize
the error analysis of both anchor-based and anchor-free
methods to make a direct comparison between them and
provide some insightful analysis of both TAD methods.

False Positive Analysis The left of Figure 4 shows false
positive (FP) profiling. As shown on the left of the figure,
top-1G predictions contain the most TP (true positive) pre-
dictions. The majority of error type is localization error and
background error. When we consider more predictions, the
true positive rate will decrease dramatically. In this sense,
the vast majority of ground truth actions can be success-
fully predicted within top-1G predictions. Comparing the
anchor-based and anchor-free methods from top-2G to top-
10G, we could see that the anchor-free method suffers more
from “Background Err”. It may be due to limited anchors
causing more predictions to fail to match ground truth.
Conversely, the anchor-based method has sufficient anchors
to reduce “Background Err”, but may bring other errors such
as “Wrong Label Err”.

False Negative Analysis False negative (FN) profiling is
illustrated in the right of Figure 4. From the visualization,
we see that under the measure of Coverage and Length, the
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Figure 3: Visualization of our anchor-based and anchor-free methods on three different actions “TennisSwing’”, “"SoccerPenalty”
and “GolfSwing". For each action, the top feature map represents the anchor-based method's action activation feature map, while
the bottom represents the anchor-free method’s action activation map. The middle one is the original action frame, and the video
order is from left to right. For example, we choose “TennisSwing” with two ground truth actions in the red and orange boxes.
Anchor-based and anchor-free methods each have two activation parts of target actions, and we mark them with red and orange
boxes.
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Figure 4: (a) False Positive Profiles. Left: False positive profiles of both methods. Each profile demonstrates the FP error
breakdown in the top-10G predictions. Right: Improvement gained from removing all predictions that cause each type of error.
The higher the value, the greater the effect on average-mAP,. (b) False Negative Profiles. Average false negative rate across
algorithms for each characteristic on both methods.

FN rate of the anchor-based method is significantly lower While, for the anchor-free method, it lacks the flexibility of
than the anchor-free method. Since short actions of the same detecting very small or large action instances, which might
category usually have more numbers in THUMOS14, the  be due to the difficulty of directly regressing the boundaries
anchor-based method can benefit from the dense sample of these hard action instances. In general, we can conclude
matching mechanism and tends to better detect short actions. that the anchor-based method might be more robust than the
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anchor-free method for dealing with extremely hard cases,
but not their detection results are not as accurate as the
anchor-free method.

5. Conclusion and Future Work

In this paper, we have reconsidered the design of the
TAD pipeline and presented a simple modular detection
framework. Based on this modular design, we perform ex-
tensive investigation over the basic options in each com-
ponent and finally, come up with a simple yet effective
TAD baseline, termed BasicTAD. Furthermore, we improve
the BasicTAD with minimal changes by following the core
design of preserving rich information in the backbone and
neck, and the resulted detector is termed PlusTAD. Our end-
to-end BasicTAD and PlusTAD are free of pre-processing
and can be used in real-time application scenarios. Extensive
experiments demonstrate that our PlusTAD significantly
outperforms previous state-of-the-art methods on the THU-
MOS14 and FineAction, and achieves quite competitive
results on the ActivityNet-v1.3 datasets. We also provide in-
depth ablation studies on each TAD component in a step-
by-step manner and detailed visualization results to figure
out the main property and major error of our PlusTAD. We
hope our approach can serve as a strong baseline for future
TAD research.

In the future, we can enhance the temporal modeling
capacity of our BasicTAD and PlusTAD by incorporating
long-term memory. This addition will enable us to tackle ac-
tion instances of longer duration with greater precision and
accuracy. In addition, we can expand our TAD framework to
include Transformer backbones with global receptive fields
to boost its representation power. Doing so can significantly
improve the final TAD performance, further enhancing our
ability to analyze complex temporal sequences.
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