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Snow Mask Guided Adaptive Residual Network for
Image Snow Removal

Bodong Cheng, Juncheng Li*, Ying Chen*, Shuyi Zhang, and Tieyong Zeng

Abstract—Image restoration under severe weather is a chal-
lenging task. Most of the past works focused on removing
rain and haze phenomena in images. However, snow is also an
extremely common atmospheric phenomenon that will seriously
affect the performance of high-level computer vision tasks, such
as object detection and semantic segmentation. Recently, some
methods have been proposed for snow removing, and most meth-
ods deal with snow images directly as the optimization object.
However, the distribution of snow location and shape is complex.
Therefore, failure to detect snowflakes / snow streak effectively
will affect snow removing and limit the model performance. To
solve these issues, we propose a Snow Mask Guided Adaptive
Residual Network (SMGARN). Specifically, SMGARN consists
of three parts, Mask-Net, Guidance-Fusion Network (GF-Net),
and Reconstruct-Net. Firstly, we build a Mask-Net with Self-
pixel Attention (SA) and Cross-pixel Attention (CA) to capture
the features of snowflakes and accurately localized the location of
the snow, thus predicting an accurate snow mask. Secondly, the
predicted snow mask is sent into the specially designed GF-Net to
adaptively guide the model to remove snow. Finally, an efficient
Reconstruct-Net is used to remove the veiling effect and correct
the image to reconstruct the final snow-free image. Extensive
experiments show that our SMGARN numerically outperforms
all existing snow removal methods, and the reconstructed images
are clearer in visual contrast. All codes will be available.

Index Terms—Image snow removal, snow mask guided, self-
pixel attention, cross-pixel attention, multi-level guidance.

I. INTRODUCTION

As a common atmospheric phenomenon, snow is often
inevitably captured in images by camera lenses, which will
affect the accuracy of high-level computer vision tasks such as
image classification [1], [2], object detection [3], [4], and facial
recognition [5]–[7]. Different from other weather phenomena,
snow is more complex that includes opaque and translucent
snowflakes and snow streaks, and will cause veiling effects.
According to previous work [8], images affected by snow can
be modeled as

I(x) = K(x)T (x) +A(x)(1− T (x)), (1)
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Fig. 1. Examples of real image snow removal by our SMGARN. All of these
snowy images are real images captured by cameras, which contains different
shapes and sizes of snowflakes / snow streaks. It can be see that our SMGARN
can reconstruct high-quality snow-free images in real scenes.

where I(x) denotes the snowy image, T (x) is the media
transmission, and A(x) is the atmospheric light. Meanwhile,
K(x) represents a snow scene image without veiling effect,
which can be obtained by the following formula

K(x) = J(x)(1− Z(x)R(x)) + C(x)Z(x)R(x), (2)

where J(x) is the scene radiance, R(x) is a binary mask that
presents the snow location information, C(x) and Z(x) are the
chromatic aberration map for the snow image and the snow
mask, respectively.

In the past, in order to better deal with the problem of single
image desnowing, many methods [9]–[13] have been proposed
with manually extracting features. However, most of them rely
on human intuition and do not have the ability to learn the
deep features of images, so the snow removal performance is
limited and the generalization ability is weak. Recently, with
the powerful feature extraction capabilities of convolutional
neural networks (CNNs), more and more CNN-based image
desnowing methods [8], [14], [15] have been proposed. Among
them, Liu et al. [14] proposed the first CNN-based image
snow removal method, called DesnowNet. It produces snow-
free images by sequentially processing complex translucent
and opaque snow particles. Chen et al. [15] took the removal
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of the veiling effect as part of the image snow removal
and inpainted the image. In order to better guide the model
to learn the information of snow particles and pay more
attention to the heavy snow. Jaw et al. [16] proposed an
efficient modular snow removal network, and introduced a
generative adversarial network (GAN) to further improve the
snow removal ability. Although JSTASR also predicts snow
mask as part of joint snow removal, its performance is not
excellent and the number of model parameters is huge. Chen et
al. [8] proposed a dual-tree complex wavelet transform-based
image snow removal model, named HDCWNet, and used con-
tradictory channel loss to improve the desnowing performance.
Using Dual-Tree Complex Wavelet Transform (DTCWT) to
locate high-frequency snow information in images enables
HDCWNet to obtain better snow removal results. However,
wavelet transform cannot accurately distinguish snow from
other high-frequency information in the original image, so part
of useful information will also be removed. Moreover, the loss
of information in the up-sampling process of wavelet transform
will inevitably result in the change of the information of these
sub-bands, which will affect the quality of the reconstructed
images.

According to our research on the generation mechanism of
snow images, we found that the distribution of snow can be
predicted through a specially designed network. Meanwhile,
we believe that the predicted snow mask can accurately reflect
the distribution of snow in the image and the reconstructed
images guided by snow mask will have less snow residue.
To achieve this, we propose a Snow Mask Guided Adap-
tive Residual Network (SMGARN) for image snow removal.
Specifically, SMGARN adopts an end-to-end modular de-
sign, and the overall model consists of three parts: Mask-
Net, Guidance-Fusion Network (GF-Net), and Reconstruct-
Net. Among them, Mask-Net is proposed to predict the snow
mask, GF-Net is specially designed to adaptively remove snow
with the guidance of the learned snow mask, and Reconstruct-
Net is used to suppress the veiling effect and reconstruct the
final snow-free image. In summary, the main contributions of
this paper are as follows

• We build an efficient Mask-Net to directly predict the
snow mask from the snowy image. With the help of
Self-pixel Attention (SA) and Cross-pixel Attention (CA),
Mask-Net can capture the features of snowflakes and
accurately localize the shape and location of snow.

• We design a multi-level Guidance-Fusion Network (GF-
Net) to adaptively remove snow from the image with the
guidance of the learned snow mask.

• We design a Reconstruct-Net to reconstruct the final
snow-free image by the specially designed multi-scale
aggregated residual blocks.

• We propose a novel Snow Mask Guided Adaptive Image
Residual Network (SMGARN) for Image Snow Removal.
Meanwhile, we construct a new real snow image test
dataset, named SnowWorld24, which contains 24 differ-
ent scenes of real snow images from all over the world.

The rest of this paper is organized as follows. Related
works are reviewed in Section II. A detailed explanation of

the proposed SMGARN is given in Section III. The experi-
mental results, ablation studies, and discussion are presented
in Section IV, V, and VI respectively. Finally, we draw a
conclusion in Section VI.

II. RELATED WORKS

Images are easily disturbed by atmospheric phenomena
such as rain, fog, and snow during the acquisition process.
This will contaminate and blur the acquired images, thus
affecting subsequent analysis of the image. Therefore, design-
ing efficient models to restore images distorted by extreme
atmospheric phenomena into clear images is necessary.

A. Single Image Dehazing

Early image dehazing algorithms [17]–[21] took the physi-
cal properties of hazy images, such as contrast, reflectivity,
etc., as research objects, to remove haze in images. For
example, He et al. [22] analyzed a large number of haze-free
images and proposed a well-known image dehazing algorithm
guided by dark channel priors. After that, a considerable part
of works take the dark channel as the research focus of image
dehazing [23], [24]. However, due to the lack of generalization
ability of manual setting priors, the generality of these meth-
ods is greatly limited. Recently, many deep learning-based
methods [25]–[34] have been proposed for image dehazing.
For instance, Cai et al. [26] proposed the first learning-based
image dehazing model called Dehazenet. Zhang et al. [25]
proposed a Densely Connected Pyramid Dehazing Network
(DCPDN) that can simultaneously estimate the transmission
map and atmospheric light intensity. Although these models
have achieved promising results, they cannot play the role of
image snow removal task since the haze phenomenon is quite
different from the snow phenomenon. Image dehazing methods
generally assume haze particles to be translucent and that there
are no fully occluded opaque regions. This is not useful for
snow removal since some snowflakes completely cover parts
of the image and are difficult to remove.

B. Single Image Deraining

Traditional image deraining methods usually use gradient
features [35] or sparse coding [36]–[38] to reconstruct rain-
free images. However, these methods have limited perfor-
mance and applicability. Recently, deep learning-based [39]–
[44] also promoted the development of image deraining. For
example, Fu et al. [39] proposed a deep neural network-
based image deraining method, called DerainNet, which train
the model on the high-pass layer rather than in the image
domain. Yang et al. [43] proposed a recurrent deep network
to progressively remove rain streaks. Yi et al. [44] proposed
a Structure Preserving Deraining Network (SPDNet) with the
guidance of the residue channel prior. Although rain images
are similar to snow images, directly using existing rain removal
methods cannot completely remove them from images due to
the diverse states of snow.
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Fig. 2. The complete architecture of the proposed Snow Mask Guided Adaptive Residual Network (SMGARN). SMGARN consists of three parts: Mask-Net,
GF-Net, and Reconstruct-Net.

C. Single Image Snow Removal

As another representation of atmospheric phenomena, the
changes of snow are more complex, and the spatial states
are more abundant. Traditional image snow removal methods
still use feature priors to model snow particle information,
such as histogram of gradients (HOG) [11], [45], frequency
separation [46], etc. However, these methods cannot guarantee
the generalization of snow removal and usually have poor
performance. In order to further improve the ability of snow
removal, Liu et al. [14] proposed the first deep neural network-
based snow removal method, called DesnowNet. DesnowNet
adopts the multi-scale pyramid model of Inception-v4 as
the backbone and performs well in its proposed Snow100K
dataset. Chen et al. [15] proposed a model named JSTASR
that takes into account the veiling effect and opaque snow
particles. It removes the effects caused by snow phenomena
using convolution and slightly darker channel priors. After
that, Chen et al. [8] proposed a hierarchical network based on
the Dual-tree Complex Wavelet Transform (DTCWT), named
HDCWNet, which solved the problem that JSTASR cannot
remove snow patterns and color distortion.

Although HDCWNet has achieved state-of-the-art results,
we observe that it will produces blurry images. This is because
the downsampling unit is excessively used in HDCWNet
to remove snowflakes and snow streaks. With the help of
downsampling operations, snowflakes and snow streaks can
be effectively removed, but also cause the loss of useful
information, which is not conducive to reconstructing clear
images. In this work, we aim to explore a more effective snow
removal method that can remove snow from the image while
preserving the quality of the image.

III. METHODOLOGY

Predicting an accurate snow mask can help the model to
accurately locate and remove snow. More importantly, this

method will not mistakenly remove the original information
of the image as snow, which greatly improves the quality of
reconstructed image. To achieve efficient snow removal, we
propose a Snow Mask Guided Adaptive Residual Network
(SMGARN). As shown in Fig. 2, SMGARN consists of
three parts: Mask-Net, Guidance-Fusion Network (GF-Net),
and Reconstruct-Net. Among them, Mask-Net is specially
designed to predict the snow mask of the snowy image. With
the help of Self-pixel Attention (SA) and Cross-pixel Attention
(CA) mechanisms, Mask-Net can quickly and accurately cap-
ture snowflakes and snow streaks in the image, thus can predict
accurate snow mask. However, snow affects different regions
of the image differently. Directly using snow masks and snow
images to do residuals will generate a large number of dark
areas, which will affect the quality of the reconstructed images.
Therefore, we propose a multi-level Guidance-Fusion Network
(GF-Net) to adaptively remove snow with the guidance of the
predicted snow mask. Finally, in order to remove the haze
phenomenon caused by the veiling effect, we design a multi-
scale based Reconstruct-Net to achieve the effect of dehazing
and further correct the area affected by snow. Each sub-
network will be described in detail in the following chapters.

A. Mask-Net

As we all know, the key for image snow removal is to
accurately capture snowflakes and snow streaks in the image.
In HDCWNet [8], the authors use wavelet transform to decom-
pose the high and low-frequency information to model snow.
However, this method will confuse the information of non-
snow targets in the image, and training with such features will
affect the final result. To address this issue, we propose a mask
prediction network (Mask-Net) to directly predict snow mask
by using of the convolutional neural network. Specifically,
Mask-Net (M) takes the snowy image Isnowy as input and
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output the snow mask m and the mask feature map Fmask

Fmask,m =M(Isnowy). (3)

As shown in Fig. 2, the backbone of Mask-Net consists
of one SnowMaskBlock and two convolutional layers. In
SnowMaskBlock, we design two kinds of pixel attention units,
namely Self-pixel Attention (SA) unit and Cross-pixel Atten-
tion (CA) unit. It should be noted that the attention used in this
paper is different from the operation performed by constructing
a similarity matrix in the self-attention mechanism. The pixel
attention we use here aims to enhance the activations of
snow-covered regions in images with snow to help the model
better extract snow features. Furthermore, we add residual con-
nections on SnowMaskBlock to facilitate feature expression.
Among them, SA is used to enhance the representation of
important features and suppress unimportant features in the
image. CA adopts two different encoding functions to improve
the adaptability of the network. The operations of CA and SA
can be defined as follows

SA(X ) = f0(X )� f0(X ), (4)

CA(X ) = f1(X )� f2(X ), (5)

where SA(·) and CA(·) denote the Self-pixel Attention and the
Cross-pixel Attention, respectively. X represents the feature
matrix. f0(·), f1(·) and f2(·) represent the encoding functions,
and � represents the Hadamard product operation. To ade-
quately encode features to extract deep information, we replace
the encoding functions in Eq.(4) and Eq.(5) with convolutional
layers

SA(X ) = Conv0(X )� Conv0(X ), (6)

CA(X ) = Conv1(X )� Conv2(X ). (7)

Specifically, we first square each element in the feature ma-
trix, which will highlight regions with high activation value
(regions with snow) and suppress regions with low activation
(regions without snow). To further enhance the representation
of features, we operate on the feature matrix through two par-
allel convolutional units, and then use the Hadamard porduct
to intersect the two features.

The Mask-Net can be used as part of any image snow re-
moval model to provide the snow mask or works independently
to predict snow mask from the snowy image directly. The goal
of Mask-Net is to learn a prediction function that can predict
an accurate snow mask from the corresponding snowy input.
To achieve this, we apply a mask loss Lmask on Mask-Net

Lmask = ‖M(Isnowy)− Imask‖1 , (8)

whereM(·) denotes the Mask-Net,M(Isnowy) represents the
predicted mask, and Imask is the corresponding ground-truth
snow mask. It is worth noting that we embed the Mask-Net
as part of the SMGARN to provide the snow mask prior for
snow-free images reconstruction in this work.

Fig. 3. The complete architecture of the proposed Guidance-Fusion Network.

B. Guidance-Fusion Network (GF-Net)

As an important bridge connecting snow images and
snow masks, the proposed Guidance-Fusion Network (GF-Net,
Fig. 3) plays a crucial role in improving the snow removal
performance of the model. In GF-Net, we design a multi-level
residual network to fully utilize the predicted snow mask to
guide the model for snow removing. Specifically, we found
that subtracting the snow image with the adaptively weighted
snow mask (the 	 symbol in Fig. 3 represents the residual
operation) can effectively remove snow streaks. Meanwhile,
we observe that it is impossible to remove all snow by directly
applying the predicted snow mask to the snowy image as a
residual. The reason is that the snowy image is not a simple
addition of the snow mask and the clear image, and the
predicted snow mask is just an enhanced schematic diagram
of the position and shape of the snow in the image. Therefore,
GF-Net adopts an adaptive way to guide the model to remove
snow according to the information provided by the snow mask.
In addition, to better preserve the features of the snow mask,
we use the feature map of the snow mask as input rather than
the snow mask itself.

As shown in Fig. 4, we also design a ResUnit (RU) for
high-dimensional features encoding. Since snow has different
effects in different regions, RU encodes these differences into
features, making the model more adaptive. Meanwhile, we
adopted a multi-level residual method to fuse the residual
information of the shallow layer and deep layer to further
improve the snow removal effect. Therefore, the adaptive
residual block in GF-Net has two levels, and the residual of
the i-th level can be expressed as

f ires = f isnowy − f imask, (9)

where f imask and f isnowy represent the feature encoding of the
snow mask and the snowy image at the i-th level, respectively.

The specific process of GF-Net is intuitively reflected in
Fig. 3. Firstly, it performs the first-level adaptive coding on
the input mask feature Fmask and the snowy image Isnowy

to obtain f1mask and f1snowy

f1snow = RU11(Conv1(Isnow)), (10)

f1mask = RU12(Conv2(Fmask)), (11)

where RU ij(·) represents the j-th ResUnit of the i-th level.
After that, the residuals of these two features are used to obtain
the first-level residual f1res. Secondly, the network performs



IEEE TRANSACTIONS 5

Fig. 4. The complete architecture of the proposed ResUnit (RU) and Multi-
scale Aggregated Residual Block (MARB).

second-level adaptive coding on f1mask and f1snow to obtain
f2mask and f2snow

f2snow = RU21(f1snow), (12)

f2mask = RU22(f1mask). (13)

Similarly, the residuals of f2mask and f2snow are used to obtain
the second-level residual f2res. Finally, we encode and fuse
f1res and f2res through two convolutional layers to obtain the
final feature Ffuse in a relatively snow-free state.

C. Reconstruct-Net

After GF-Net, we can obtained features Ffuse that are close
to snow-free. However, in addition to snow phenomena such as
snowflakes and snow streaks, the veiling effect often appears
in snow images. This phenomenon is similar to haze in that its
effect on an object depends on its distance. Therefore, image
snow removal must also include removal of the veiling effect.
Not only that, there are also some imperfections and residual
snow after GF-Net. To solve these problems, we also propose
a Reconstruct-Net to correct these areas to ensure the quality
of the reconstructed images.

As shown in Fig. 2, Reconstruct-Net consists of three
Multi-scale Aggregated Residual Blocks (MARBs) and a
convolutional layer. Among them, MARB (Fig. 4) is specially
designed to capture the multi-scale features with different
receptive fields, which is inspired by [47]–[49]. The haze
effect caused by the veiling effect and the residual snow
removal from the previous part of the network is unevenly
distributed in the image. Using the multi-scale receptive field

of MARB can well remove and repair the pollution in these
areas. Specifically, MARB consists of 1× 1, 3× 3, and 5× 5
parallel convolutional layers, and all of them will pass through
a 3 × 3 convolutional layer respectively. Then, the branch of
the 3 × 3 kernel size will be connected with the branches of
the 1×1 and 5×5 kernel size to form two new branches. After
the 3× 3 convolutional layer is performed on these two new
branches, they will also be connected as a new branch, and a
3×3 convolutional layer will be performed again. Finally, the
input of MARB is summed with output features to enhance
the information flow. In Reconstruct-Net, a global residual
connection is performed after the three MARBs are stacked to
enhance feature representation. The operation of Reconstruct-
Net can be defined as

I
′

clear = R(Ffuse), (14)

where R(·) denotes the Reconstruct-Net and I ′

clear is the
reconstructed snow-free image.

D. Loss Function

During training, we use L1 loss as the reconstruct loss to
minimize the difference between the reconstructed snow-free
image and the corresponding clear image Iclear

Lreconstruct =
∥∥∥I ′

clear − Iclear
∥∥∥
1
. (15)

In summary, Mask-Net, GF-Net, and Reconstruct-Ne form
the complete Snow Mask Guided Adaptive Residual Network
(SMGARN). In this work, Mask-Net served as a sub-network
to provide the snow mask and SMGARN adopts an end-to-end
training mode. Therefore, the reconstruct loss Lreconstruct and
mask loss Lmask form the complete mask-assisted loss Lmas

Lmas = Lreconstruct + λLmask, (16)

where λ is a hyper-parameter used to control the composition
of the mask loss. To ensure that Lreconstruct and Lmask

receive equal attention, we set λ to 1 in this work.

IV. EXPERIMENTS

In this part, we provide relevant experimental details,
descriptions, and results to verify the effectiveness and ex-
cellence of the proposed SMGARN.

A. Datasets

In this work, we trained our SMGARN with the CSD [8]
train set (8000 images) for synthetic images and use the
Snow100K [14] train set (50000 images) to train the model
for real images. For evaluation, we use three benchmark test
sets, including SRRS [15], CSD [8], and Snow100K [14].
Specifically, we adopted the last 2000 images in the SRRS test
set for evaluation. For CSD, we use its 2000 test images for
verification. In addition, we use the three test sets Snow100K-
S, Snow100K-M and Snow100K-L provided by Snow100K
for evaluation.

The training and testing datasets of the existing datasets
(SRRS, CSD, and Snow100K) are all generated by synthetic
techniques, so there are many abnormal images, such as
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Fig. 5. Some sample images from the proposed SnowWorld24 dataset. All of these images were taken with different cameras on different snowy days.

snowflakes in summer or sunny days, and the effect of directly
using them for evaluation is limited. Although Snow100K
has proposed a real snow scene dataset, most of the images
are extracted directly from web pages, and many images are
not clear and have watermarks. More importantly, there are
also a large number of post-processed artistic photos in this
dataset. Since there are no labels and snow masks in the real
scene, images need to be more clear and able to represent
the complex situation of the real world. Therefore, Only the
data provided by Snow100K cannot effectively evaluate the
performance of the model. In order to further evaluate the
performance and generalization of the snow removal model
more comprehensively, we construct a new real snow image
dataset, named SnowWorld24.

SnowWorld24. As shown in Fig. 5, SnowWorld24 contains
24 snow images of different scenes, which are directly ob-
tained under snow weather without any processing, and there
are no traces such as watermarks that are not related to the
images themselves. Meanwhile, all of these images were taken
with different cameras on different snowy days, and all of these
scenes are from different countries and regions. The purpose
of this is to increase the diversity of the snow images, so as
to better verify the generalization of the model. In summary,
SnowWorld24 is a real dataset specially proposed to verify
model validity and generalization.

B. Implementation Detail

1) Training Details: Following previous works, we ran-
domly extract 16 snowy patches with the size of 128 × 128
as inputs. Meanwhile, we augment the training data with flips
and rotates operations to further improve the generalization
ability of the model. The learning rate is initialized to 10−4

and halved every 100 epochs. We implement our model with
the PyTorch framework and update it with the Adam optimizer.

2) Model Details: In our final model, we use three MARBs
in the Reconstruct-Net. Meanwhile, we set the embedding
dimension of the model to 112 and the kernel size of the
convolutional layers in Fig. 2 are set to 3 × 3. In addition,
between the second and third convolutional layers of ResUnit,

TABLE I
QUANTITATIVE COMPARISON WITH OTHER ADVANCED METHODS ON

SNOW100K-S, SNOW100K-M, AND SNOW100K-L. AMONG THEM, BEST
RESULTS ARE HIGHLIGHT AND THE SECOND BEST RESULTS ARE ITALIC.

Method / Dataset Snow100K-S Snow100K-M Snow100K-L

Zheng [10] 20.29 / 0.73 20.18 / 0.71 18.83 / 0.66
DehazeNet [26] 22.06 / 0.78 21.54 / 0.74 20.19 / 0.70
HDCWNet [26] 22.13 / 0.78 21.66 / 0.72 19.91 / 0.69
DerainNet [39] 25.74 / 0.86 23.36 / 0.84 19.18 / 0.74
DeepLab [50] 25.94 / 0.87 24.36 / 0.85 21.29 / 0.77
JORDER [43] 25.62 / 0.88 24.97 / 0.87 23.40 / 0.80

DuRN-S-P [51] 32.27 / 0.94 30.92 / 0.93 27.21 / 0.88
DeSnowNet [14] 32.23 / 0.95 30.86 / 0.94 27.16 / 0.89

DS-GAN [16] 33.43 / 0.96 31.87 / 0.95 28.06 / 0.92
All in One [52] - / - - / - 28.33 / 0.88

SMGARN(Ours) 34.46 / 0.95 33.22 / 0.95 29.44 / 0.93

we expand the feature embedding dimension by 2 times, and
the channel of the final output will be reduced to the original
dimension.

C. Comparisons with State-of-the-Art Methods

In this section, we compare our proposed SMGARN with
other advanced methods to verify the validity of the proposed
model. Since image snow removal is an emerging field, the
test data and test method of some method are confusing. In
this work, we unify multiple classic snow removal models, and
all of which are trained on the same dataset and conditions. It
is worth noting that we re-produced or re-tested some models
whose experimental details were unclear. Besides, due to the
commonality of image restoration and atmospheric phenom-
ena, we also provide the results of classic models for image
restoration (SRCNN [53]), image dehazing (DehazeNet [26]),
and deraining (RESCAN [54]). All these methods are trained
under the same experimental setting and training set. For the
validation method, we adopt PSNR and SSIM to evaluate the
final results.

1) Quantitative Comparison: In Tables I and II, we show
the quantitative comparison between our method and other
advanced methods. Among them, TABLE I shows the results
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Snowy Image Zheng [10] DehazeNet [26] RESCAN [54] HDCWNet [8] SMGARN(Ours) GT

Fig. 6. Visual comparison with other advanced models on Snow100K. Obviously, our proposed method can reconstruct high-quality snow-free images.

Snowy Image Zheng [10] DehazeNet [26] RESCAN [54] HDCWNet [8] SMGARN(Ours)

Fig. 7. Visual comparison on real snow images from Snow100K. Obviously, our proposed method can reconstruct clear images with less snow residue.

TABLE II
QUANTITATIVE COMPARISON WITH OTHER ADVANCED METHODS ON CSD

AND SRRS. AMONG THEM, BEST RESULTS ARE HIGHLIGHT AND THE
SECOND BEST RESULTS ARE ITALIC.

Method / Dataset CSD [8] SRRS [15]

Zheng [10] 14.21/0.61 16.34/0.69
SRCNN [53] 22.25/0.82 22.46/0.85

DehazeNet [26] 20.91/0.72 21.22/0.75
RESCAN [54] 22.11/0.81 22.79/0.86

DeSnowNet [14] 20.13/0.81 20.38/0.84
CycleGAN [55] 20.98/0.80 20.21/0.74

DAD [56] 24.33/0.85 24.31/0.86
All in One [52] 26.31/0.87 24.98/0.88

JSTASR [15] 27.96/0.88 -
HDCWNet [8] 28.62/0.89 25.03/0.89

SMGARN (Ours) 29.94/0.94 25.43/0.92

of these methods on three subsets of the Snow100K test
set (Snow100K-S, Snow100K-M, Snow100K-L). According
to the table, we can observe that the PSNR performance of
our method are significantly outperforms previous methods.
Compared with DS-GAN [16], SMGARN improves PSNR
by 1.03dB and 1.35dB in Snow100K-S and Snow100K-M,
respectively. Notably, on the hardest Snow100K-L, our method
achieves a PSNR improvement of 1.11dB over the previous
best model (All in One [52]). It can be seen that our model

improves the PSNR results more than 1dB compared to
the current SOTA model on these three datasets. This fully
demonstrated that the proposed SMGARN can significantly
improve the snow removal performance.

Since Snow100K does not take into account the influence
of the veiling effect, we tested it on the other snow removal
datasets, CSD and SRRS, to further evaluate the proposed
method. In TABLE II, we provide PSNR and SSIM results
of these methods. It is clear that SMGARN outperforms
all previous methods. Especially on the CSD test set, our
proposed method improves the PSNR performance by 1.32dB,
which is a huge improvement. All these results further verify
the effectiveness of the proposed SMGARN.

2) Visual Comparison: In Figs. 6 and 8, we pro-
vide the visual comparison with other advance models on
Snow100K [14], CSD [8], and SRRS [15], respectively (please
zoom in to see details). According to Fig. 6, we can clearly
observed that our SMGARN can reconstruct high-quality
snow-free image very close to GT. According to Fig. 8, we
can found that the snow-free images reconstructed by our
SMGARN are clearer and have less snow residue. Specifically,
the first 4 rows of results in Fig. 8 show that SMGARN can
effectively eliminate the interference of snow streaks and fine
snowflakes on the image. Rows 5 and 6 show that our method
is more helpful in removing large snowflakes without creating
large areas of shading.
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CSD-8066 12.27dB 22.22dB 20.70dB 20.05dB 27.28dB 29.08dB PSNR

CSD-8132 13.85dB 22.60dB 19.61dB 21.66dB 25.17dB 28.79dB PSNR

CSD-9983 14.61dB 22.77dB 21.23dB 23.81dB 27.56dB 31.65dB PSNR

CSD-9993 14.56dB 23.59dB 20.92dB 22.17dB 27.20dB 30.47dB PSNR

SRRS-14358 16.16dB 24.58dB 22.23dB 23.06dB 27.54dB 30.39dB PSNR

SRRS-14367
Snowy

14.55dB
Zheng [10]

22.96dB
SRCNN [53]

21.12dB
DehazeNet [26]

22.31dB
RESCAN [54]

25.32dB
HDCWNet [8]

26.92dB
Ours

PSNR
GT

Fig. 8. Visual comparison with other advanced models on CSD and SRRS. Obviously, our SMGARN can reconstruct high-quality snow-free images.

Further, we demonstrate the snow removal capability of
SMGARN in real scene in Fig. 7 to verify the generalization
ability of the proposed method (please zoom in to see details).
From the figure, we can clearly see that SMGARN can remove
both large particles of snow and dense snowflakes well. This
is benefit from the proposed Mask-Net, which can predict
accurate location and shape of the snow. With the help of
the predicted snow mask, the images reconstructed by our
SMGARN have almost no snow and texture details can be
better preserved.

3) Model Size and Performance Comparison: We also
provide the trade-off analysis of the proposed SMGARN
and other classic snow removal methods in the number of
parameters and performance in Fig. 9. Among them, JSTASR
also uses the information of the snow mask for snow removal,
but its parameters quantity is 10 times that of our SMGARN.
Meanwhile, our method improves the performance of PSNR
and SSIM by 1.98dB and 0.06 respectively compared to
JSTASR. Compared to HDCWNet, our method improves
snow removal performance by more than 1dB with fewer
parameters. The above results fully demonstrate that the pro-

Fig. 9. Model Size and Performance Comparison. The results in the
figure show that SMGARN achieves a more perfect balance between model
parameters and performance.

posed SMGARN can achieve better performance with few
parameters. Therefore, we can draw a conclusion that the
proposed SMGARN achieves a good balance between the
model performance and parameter quantity.
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CSD-8002-Mask Baseline SA CA SA+CA (Ours) GT Snow image (input)

Fig. 10. The effect of different attention mechanism on the quality of the snow mask predicted by Mask-Net. Obviously, lacking either SA or CA, some areas
(marked by red arrows) will be disturbed by the edge of the building in the original image, resulting in the wrong snow pattern in the predicted snow mask.

CSD-8602 Snow Case1 Case2 Case3 Case4 GT
Fig. 11. The effect of snow mask guidance on snow-free images reconstructed by the model. Due to the lack of guidance by the snow mask, there are residual
snow patterns in Case1 and Case2 (marked by red arrows).

V. INVESTIGATION

This section conducts a comprehensive ablation study on all
modules of SMGARN to verify the effect of different modules
on snow removing. We use PSNR and SSIM as evaluation
metrics, all experiments are evaluated on the CSD dataset,
and a patch size of 64 × 64 is used for training. In addition
to the ablation studies, we also investigate multiple aspects of
the model to fully validate the effectiveness of the model.

A. Study on Mask-Net

As a lightweight snow mask prediction network, Mask-Net
plays an important role in extracting snow information. In
order to verify the rationality of the Mask-Net, we evaluate
the effect of SA (Self-Pixel Attention) and CA (Cross-Pixel
Attention) in Mask-Net from both visual and quantization
perspectives. In Fig. 10, we compare the effect of different
attention mechanisms on the snow mask predicted by Mask-
Net. From the figure we can clearly see that the results
predicted by Mask-Net with both SA and CA are very close
to the ground-truth snow mask. On the contrary, if the Mask-
Net without any attention unit or composed of only one
attention unit, the generated snow mask will be disturbed by
other objects in the image. Meanwhile, we also provide the
quantitative comparison in TABLE III. According to the table,
we can observed that SA and CA can significantly promote
the final snow removal performance of the model. In addition,
the performance of the model can be further improved when
both SA and CA are adopted. This fully demonstrated the
rationality of the Mask-Net.

Moreover, we provide the effect of snow mask on model
performance in Fig. 11 and TABLE IV. Specifically, we use
the model without Mask-Net as the baseline model, denoted as
Case 1. Case 2 represents the model after removing Lmask and
Case 3 is the final SMGARN model. For Case 4, we directly
use the ground truth snow mask as a guide to further verify

TABLE III
STUDY OF TWO PIXEL ATTENTION MECHANISMS IN MASK-NET.

Model Case SA CA PSNR

Mask-Net-baseline × × 28.83
Mask-Net-SA X × 28.88
Mask-Net-CA × X 28.90

Mask-Net-CASA X X 29.01

TABLE IV
STUDY ON THE IMPORTANCE OF SNOW MASK. AMONG THEM, BEST

RESULTS ARE HIGHLIGHT AND THE SECOND BEST RESULTS ARE ITALIC.

Metric Case1 Case2 Case3 (Ours) Case4

PSNR/SSIM 28.62/0.93 28.92/0.93 29.01/0.93 30.07/0.95

the effect of snow mask on the snow removal ability of the
model. These results show that the snow mask plays a crucial
role in model performance, and the quality of the snow mask
will determine the effectiveness of snow removal. The higher
the quality of the provided snow mask, the better the model
performance. This experiment proves the decisive role of
the snow mask in the image snow removal task, making
up for the deficiency of the previous research.

B. Study on GF-Net

As the key structure of SMGARN, GF-Net plays an impor-
tant role in guiding snow mask to remove snow. In TABLE V,
we investigate the effectiveness of GF-Net. Specifically, in
Case 1, we concatenate the snow mask with the features of
the snow image and replace the GF-Net with 8 convolutional
layers. In Case 2, we replace the feature connection operation
with the residual operation based on Case 1. It can be seen
that since the snow image is a weighted combination of the
snow mask and the clean image, the performance of Case 2 is
significantly higher than that of Case 1. To further verify the
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Original Image Snowy Image HDCWNet [8] SMGARN (Ours) GT

Fig. 12. Comparison with HDCWNet on the quality of snow-free images. Obviously, our SMGARN can reconstruct more clear images.

TABLE V
INVESTIGATION OF GF-NET.

Metric Case1 Case2 Case3 Case4

PSNR/SSIM 27.22/0.91 27.31/0.91 28.39/0.92 29.01/0.93

TABLE VI
COMPARISON OF DIFFERENT NETWORK STRUCTURES IN THE PROPOSED

MARB.

Model Case Single-Scale Multi-Scale Single-Agg Multi-Agg PSNR

MARN-SS-SA X × X × 28.64
MARN-MS-SA × X X × 28.75
MARN-SS-MA X × × X 28.72
MARN-MS-MA × X × X 29.01

rationality of GF-Net, we replace the adaptive residual in the
original GF-Net with the connection operation and represent
it as Case 3. Compared with the original model Case 4, we
can find that the performance of Case 3 is severely degraded.
This means that the residual operation of adaptive coding is
more in line with the snow image generation mechanism, and
has better snow removal ability in high-dimensional feature
space, which is very beneficial to performance improvement.
In summary, Case 1 and Case 2 prove the effectiveness
of residual operation for snow removal. Case 3 and Case
4 demonstrate that adaptive residual structure is more
beneficial to reconstruct snow-free images than feature
connections. This experiment fully illustrate the effectiveness
and necessity of the proposed GF-Net.

C. Study on Reconstruct-Net

In this work, we propose a Reconstruct-Net to reconstruct
the final snow-free image by the specially designed MARBs.
In In TABLE VI, we provide the results for several different
MARB designs. Single-Scale (SS) means that the three input
branches use 3× 3 convolutional layers for feature extraction
in MARB. Multi-Scale (MS) means that MARB uses convo-

Fig. 13. Ablation study on different number of MARBs.

lutional layers with kernels of 1×1, 3×3, and 5×5 to process
features in parallel. Single-Agg (SA) means that only one join
operation is applied in MARB. Multi-Agg (MA) means that
MARB aggregates features from different branches multiple
times. It can be seen from the table that the multi-scale and
multi-aggregation design can significantly improve the model
performance, which proves the effectiveness of MARB.

To verify the effect of MARB on the model performance,
we also tested the model with different numbers of MARBs.
According to Fig. 13, we can clearly observe that the per-
formance of the model increases as the number of MARBs
increases. This illustrates the effectiveness of MARB and the
potential of Reconstructe-Net. However, we also noticed that
as the number of MARBs increases, the number of parameters
of the model also increases. Therefore, we used three MARBs
in the final model to achieve a good balance between the model
performance and size.
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Snowy Image Zheng [10] DehazeNet [26] RESCAN [54] HDCWNet [8] SMGARN(Ours)

Fig. 14. Visual comparison on real snow images from SnowWorld24. Obviously, our proposed method can reconstruct clear images with less snow residue.

D. Image Quality Comparison

For the image snow removal task, it is not only necessary
to eliminate the interference of snow in the image, but also to
retain the information in the original image to the maximum
extent possible for the reconstructed image. In this part, we
evaluate the image quality reconstructed by the proposed
method to further verify the effectiveness of SMGARN. In
TABLE VII, we show the NIQE results of our SMGARN and
other advanced methods. NIQE is a fully blind image quality
analyzer that can be used to assess the authenticity of images.
It is worth noting that lower NIQE values represent better
perceptual quality. According to the table, we can found that
our method has a lower NIQE, proving that it can generate
higher quality snow-free images. In addition, we also evaluated
the image quality from the visual aspect. According to the
first two lines of images in Figure 12, it can be clearly seen
that the images generated by SMGARN well retain the clear
text information in the original images. In contrast, the images
generated by HDCWNet blur the details of text regions, which
affects the image quality. In addition, the last line of Figure 12
shows that SMGARN can accurately distinguish the original
information of the image and the snow, and will not remove
other objects as snow particles. This further demostrated that
our proposed SMGARN can generate high-quality images and
have better robustness to be compatible with more scenes.

E. Study on SnowWorld24

To further verify the snow removal ability of the model
in the real snow scene, we test SMGARN on our proposed
SnowWorld24. SnowWorld24 is real snow image dataset that
can fully verify the model performance in the real scene.
According to Fig. 14, we can clearly see that HDCWNet
can only remove part of the snow with large particles, and
can do nothing for dense snowflakes. Although HDCWNet

TABLE VII
PERFORMANCE COMPARISON ON REAL-WORLD DATASET. ↓ INDICATES

THAT THE LOWER THE NIQE VALUE, THE HIGHER THE QUALITY OF THE
RECONSTRUCTED IMAGE.

Model SnowWorld24 (NIQE↓) Snow100K (NIQE↓)

Zheng [10] 4.3762 3.9886
DehazeNet [26] 4.6954 4.5731
RESCAN [54] 3.0795 3.3893
HDCWNet [8] 3.8623 4.0448

SMGARN(Ours) 2.9371 3.0751

TABLE VIII
QUESTIONNAIRE RESULTS. LARGE SNOWFLAKE, DENSE SNOWFLAKES,

AND QUALITY SCORES RANGE FROM 1 TO 5, WITH HIGHER SCORES
INDICATING BETTER IMAGES. THE FIRST AND SECOND METRICS

REPRESENT THE ABILITY OF THE MODEL TO REMOVE LARGE AND DENSE
SNOWFLAKES, RESPECTIVELY. QUALITY REPRESENTS THE CLARITY AND

FIDELITY OF THE IMAGE.

Model Name Big Snowflake Dense Snowflakes Quality

DehazeNet [26] 2.38 1.74 0.46
RESCAN [54] 2.75 2.06 1.21
HDCWNet [8] 3.41 2.96 3.16

SMGARN(Ours) 4.28 3.84 3.92

can improve the contrast of the image, it does not achieve
the original intention of removing snow from the image. In
contrast, our SMGARN can remove almost snow in the image
and fully retain the texture information of the image. All the
above results further illustrate the effectiveness and robustness
of the proposed SMGARN.

F. User Study

To evaluate the proposed model more objectively from the
visual aspect, we conduct a user study on real snow images.
Specifically, we collected 80 images from the Snow100K real
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Fig. 15. Examples of real snow image categories in the questionnaire
survey and the snow removal results corresponding to SMGARN. Column
1 represents snow images, and columns 2 to 5 correspond to DehazeNet,
RESCAN, HDCWNet and our proposed SMGARN, respectively.

Fig. 16. Example of our reconstructed image with artifacts.

snow dataset and our proposed SnowWorld24 dataset, and
invited 25 participants for evaluation. We set three evaluation
indicators as the basis for the participants to score, namely,
the ability to remove large snowflakes, the ability to remove
dense snowflakes, and the image quality. The 80 test images
cover various scenes in the real world, including buildings,
streets, crowds, and animals. In Fig. 15, we shows four sets
of examples. In addition, we evaluate DehazeNet, RESCAN,
HDCWNet, and our SMGARN as objects. Specific results are
listed in TABLE VIII. In the survey, more than half of the
participants believed that the snow-free images reconstructed
by SMGARN are closer to the real situation. Some participants
believed that the snow-free image of SMGARN will not
destroy the scene in the original image, such as the fourth
row in Fig. 15. Meanwhile, the snow-free image generated
by the four methods only SMGARN retains the details of the
wheel hub in the lower right corner of the image . Therefore,
in TABLE VIII, our method achieves the highest score. This
proves that SMGARN has excellent performance in real scenes
and can greatly preserve the original information of the image.

G. Application on High-Level Tasks

Image snow removal aims to restore clear images from
images disturbed by snow phenomenon. It is not only a part
of image processing, but also serves as a data preprocess-
ing method for other vision tasks. To demonstrate that our
proposed SMGARN can benefit high-level computer vision
tasks, we use Google Vision API to evaluate the snow removal
results. As a new evaluation method, it has been applied to

Snowy Image SMGARN (Ours)

Fig. 17. The desnowing results are tested on the Google Vision API (snow
classification). Please zoom in to see the details.

Snowy Image SMGARN (Ours)
Fig. 18. The desnowing results are tested on the Google Vision API (object
detection). Please zoom in to see the details.

image rain and snow removal to verify model performance
from an application point of view. From Fig. 17, it can be
seen that the probability of SMGARN-processed images being
judged as snow drops significantly. Meanwhile, according
to Fig. 18, the images reconstructed by our SMGARN can
improve the accuracy of the object detection model. The
confidence represents the probability of snowy weather and the
probability of target, respectively. According to these results,
we can observe that the results generated by our SMGARN
effectively promote the performance of high-level vision tasks,
which further demonstrates the effectiveness of SMGARN.

VI. DISCUSSION

Although our SMGARN has obvious improvement in both
quantification performance and visual performance, there are
artifacts that cannot be removed in some images heavily
affected by the veiling effect, as shown in Fig. 16. This is
because SMGARN lacks sufficient constraints for the haze
phenomenon caused by the veiling effect. However, if too
many constraints are imposed, the phenomenon of image
blurring in HDCWNet will occur. Therefore, we believe that
image desnowing should be regarded as an image restoration
task covering a variety of extreme weather phenomena, which
needs to be modeled by combining the characteristics of image
dehazing and image deraining. Meanwhile, a new training
dataset is also critical to the image snow removal field. In
future works, we will make more contributions to this field.

VII. CONCLUSION

In this paper, we proposed a Snow Mask Guided Adap-
tive Residual Network (SMGARN) for image snow removal.
Specifically, we build a Mask-Net to directly predict the snow
mask from the snowy image with the help of Self-pixel
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Attention (SA) and Cross-pixel Attention (CA) mechanisms.
Meanwhile, a multi-level Guidance-Fusion Network (GF-Net)
is designed to adaptively remove snow from the image with
the guidance of the predicted snow mask. In addition, a
Reconstruct-Net is proposed to reconstruct the final snow-
free image by the specially designed Multi-scale Aggregated
Residual Blocks (MARBs). Extensive experimental results
show that the proposed SMGARN achieves excellent results
on multiple datasets, and also shows great potential in practical
applications. Although the current models and strategies have
achieved excellent results, further improvements can be made
in terms of visual presentation and training methods. In the
future, we will explore better image prior guidance strategies
to further improve model performance.
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