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ABSTRACT

Single-image shadow removal is a significant task that is still unresolved. Most existing deep learn-
ing-based approaches attempt to remove the shadow directly, which can not deal with the shadow
well. To handle this issue, we consider removing the shadow in a coarse-to-fine fashion and propose a
simple but effective Progressive Recurrent Network (PRNet). The network aims to remove the shadow
progressively, enabing us to flexibly adjust the number of iterations to strike a balance between perfor-
mance and time. Our network comprises two parts: shadow feature extraction and progressive shadow
removal. Specifically, the first part is a shallow ResNet which constructs the representations of the
input shadow image on its original size, preventing the loss of high-frequency details caused by the
downsampling operation. The second part has two critical components: the re-integration module
and the update module. The proposed re-integration module can fully use the outputs of the previous
iteration, providing input for the update module for further shadow removal. In this way, the proposed
PRNet makes the whole process more concise and only uses 29% network parameters than the best
published method. Extensive experiments on the three benchmarks, ISTD, ISTD+, and SRD, demon-
strate that our method can effectively remove shadows and achieve superior performance.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Shadow is a widespread natural phenomenon that appears
when the light source is blocked. Generally, the shape, posi-
tion, and intensity of shadows can aid us in understanding nat-
ural scenes (Karsch et al., 2011; Lalonde et al., 2012; Okabe
et al., 2009; Panagopoulos et al., 2009). However, the exis-
tence of shadows may also degrade human perception expe-
rience as well as the performance of various computer vision
tasks, such as object detection (Mikic et al., 2000; Cucchiara
et al., 2003; Nadimi and Bhanu, 2004), object tracking (Khan
et al., 2015; Sanin et al., 2010), and others (Levine and Bhat-
tacharyya, 2005; Jung, 2009; Zhang et al., 2018; Sekhavat,
2016). To address this problem, shadow removal has become
an essential topic in the computer vision community and been
investigated for many years (Finlayson et al., 2009; Hu et al.,
2019a; Chen et al., 2021; Liu et al., 2021).

Traditional methods on shadow removal mainly rely on phys-
ical models, e.g., entropy minimization (Finlayson et al., 2009,
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2005; Guo et al., 2011) and intrinsic priors (Choi et al., 2010;
Gryka et al., 2015; Guo et al., 2012; Vicente et al., 2017; Xiao
et al., 2013; Wang et al., 2019). However, due to the complexity
and uncertainty of the real world, these physical models are not
well applicable to the natural shadow scenes. Recently, several
studies have suggested that deep learning-based methods are ef-
fective to address shadow removal (Qu et al., 2017; Xu et al.,
2017; Wang et al., 2018; Hu et al., 2019b,a; Le and Samaras,
2019; H. Le and D. Samaras, 2020; Cun et al., 2020; Fu et al.,
2021; Jin et al., 2021; Zhu et al., 2022b,a; Guo et al., 2023;
Liu et al., 2023). The mainstream methods commit to solving
this problem by designing various specialized architectures and
restoring the shadow region directly (Qu et al., 2017; Le and
Samaras, 2019; Hu et al., 2019a; Cun et al., 2020; Liu et al.,
2021; Fu et al., 2021; Jin et al., 2021; Guo et al., 2023). Albeit
the de-shadowing performance is improving, it still has blurry
shadow regions with incorrect color. We argue that the illumi-
nation information lost in the shadow region can be recovered
progressively. Imagine it is late at night, as the morning sun
rises, the dim environment gradually becomes brighter. Intu-
itively, the removing of shadows can also be a progressive pro-
cess. Therefore, we leverage a coarse-to-fine fashion to remove
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Our results

Fig. 1: Removal results of local shadow region in red bounding box by DSC (Hu
et al., 2019a), G2R (Liu et al., 2021), Fu et al. (Fu et al., 2021), Jin et al. (Jin
et al., 2021), BMNet (Zhu et al., 2022a) and our method (inference at iter=1,
3, 5, and 8), respectively. It can be seen that our method achieves the best
performance at and after the third iteration.

the shadow gradually, which is capable of handling the shadow
in different natural scenes with more or fewer iterations.

Typically, ARGAN (Ding et al., 2019) is the first method that
removes shadow in a recurrent manner and achieves great suc-
cess, proving the feasibility of restoring shadow region step-by-
step. The core design of ARGAN (Ding et al., 2019) is that it
formulates an attentive recurrent generative adversarial network
to jointly detect and remove shadows. Moreover, this method
is trained with an adversarial training strategy. Given that dur-
ing adversarial learning the discriminator becomes harder and
harder to distinguish whether the generated image is real or
fake, it utilizes a semi-supervised strategy to use sufficient un-
supervised shadow images available online to strengthen the
training and boost the de-shadowing performance. Neverthe-
less, as a crucial component of ARGAN, shadow attention de-
coder generates attention maps that directly impact the perfor-
mance of shadow removal. Additionally, the instability of ad-
versarial training presents challenges in training the network.

Formally, we propose a new simple but effective Progressive
Recurrent Network (PRNet) to iteratively recover the content
of shadow regions. Our approach follows a coarse-to-fine fash-
ion and allows for flexible adjustment of inference iterations
based on demand, thereby achieving a balance between perfor-
mance and time. The PRNet comprises two parts: shadow fea-
ture extraction and progressive shadow removal. The shadow
feature extraction network is a shallow ResNet with six resid-
ual blocks (He et al., 2016), which extracts features from the
original image size for subsequent processing. The progres-
sive shadow removal network is parameter-shared and exhibits
two main designs, i.e., the re-integration module and the up-
date module. By repeatedly feeding the refined features into
a GRU-based (Cho et al., 2014a) update module, we can ob-
tain more optimized features to achieve progressive shadow re-
moval. Different from the GRU proposed initially (Cho et al.,
2014a), we employ the ConvGRU as the recurrent unit as many
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Fig. 2: The PSNR performance v.s., the number of model parameters of shadow
removal models on SRD dataset (Qu et al., 2017). The metric is conducted on
images with 256 × 256 resolution.

other tasks (Tokmakov et al., 2017; Teed and Deng, 2020). Fur-
thermore, to better leverage the outputs of the previous itera-
tion, we propose a re-integration module. This module can use
the previous output information and guide the update module
to obtain better results than the previous one. As shown in Fig-
ure 1, a recurrent structure of 8 iterations achieves better results
than others (Hu et al., 2019a; Liu et al., 2021; Fu et al., 2021;
Jin et al., 2021; Zhu et al., 2022a).

The network is simple and has 2.7M parameters. As shown in
Figure 2, by only using 29% parameters of the state-of-the-art
methods, ShadowFormer(9.3M) (Guo et al., 2023), we achieve
the comparative results in terms of PSNR on SRD dataset (Qu
et al., 2017). Such a progressive method makes the pipeline
more concise and eases the difficulty of training CNNs directly
to recover shadow-free images from shadow images.

We summarize our contributions as follows:

• We propose a new Progressive Recurrent Network to ad-
dress the problem of shadow removal iteratively.

• The proposed re-integration module can efficiently inte-
grate the last output and hidden state, and provide the re-
fined features to the update module for better optimizing.

• Comprehensive experimental results on the three public
datasets, ISTD, ISTD+, and SRD, demonstrate that the
proposed method can address the shadow cases well and
achieve superior performance.

2. Related Work

Traditional shadow removal. Traditional methods mainly rely
on physical models with intrinsic shadow properties, e.g., illu-
mination (Shor and Lischinski, 2008; Xiao et al., 2013; Zhang
et al., 2015) and regions (Yang et al., 2012; Guo et al., 2012;
Vicente et al., 2017) for shadow removal.
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For illumination-based methods, Shor et al. (Shor and
Lischinski, 2008) use an illumination-invariant distance mea-
sure to identify shadow and lit areas, and then these areas are
used to estimate the affine shadow information model. This
method can produce shadow-free images and avoid loss of tex-
ture contrast and introduction of noise. After detecting shad-
ows using a gaussian mixture model, Xiao et al. (Xiao et al.,
2013) apply an adaptive illumination transfer approach to re-
move the shadows and leverage a multi-scale illumination trans-
fer technique to improve the contrast and noise level. Further,
the method can also extend to video dataset and achieve tem-
porally consistent de-shadowing results. Zhang et al. (Zhang
et al., 2015) propose a simple shadow removal framework for
single natural images as well as color aerial images using an
illumination recovering optimization method. The key idea of
this method is construting an optimized illumination recovering
operator, which can effectively remove the shadows and recover
the texture details.

For region-based methods, Yang et al. (Yang et al., 2012)
propose a fully automatic method which does not require
shadow detection. Based on the chromaticity, they extract a
2-D intrinsic image from a single RGB camera image. Then,
using the bilateral filtering technique and the 2-D intrinsic im-
age, a 3-D intrinsic image is recovered. By decomposing and
combing these patch regions, they can get the correct luminance
pixel values and obtain shadow-free images. Guo et al. (Guo
et al., 2012) consider the relative illumination between the seg-
mented regions and perform pairwise classification based on
these information. Then, they apply a lighting model to relight
the shadow pixels. Vicente et al. (Vicente et al., 2017) pro-
pose another region-based method for shadow removal. Given
a pair of shadow and non-shadow regions, they use a relight-
ing transformation method to relight the shadow pixel based on
histogram matching of non-shadow pixels.

Additionally, there are other physics based methods. For in-
stance, Finlayson et al. (Finlayson et al., 2005, 2009) formu-
lated a physics-based method, entropy minimization, to cap-
ture the invariant features of shadow and non-shadow regions
belonging to the same surfaces in the log-chromaticity space.
Such method is more insensitive to quantization and is quite re-
liable. However, the above methods rely heavily on the intrinsic
properties of shadows. Due to the prior limitations, traditional
methods are not effective to handle shadow regions in complex
natural scenes.

Deep learning-based shadow removal. Recently, deep
learning-based methods have shown remarkable success in
the shadow removal field based on the published large-scale
datasets (Qu et al., 2017; Wang et al., 2018; Hu et al., 2019b).
Specifically, DeshadowNet (Qu et al., 2017) designs a multi-
context architecture to predict shadow matte for shadow re-
moval. Inspired by physical models of shadow formation, Le et
al. (Le and Samaras, 2019; H. Le and D. Samaras, 2020) formu-
late a linear illumination model and apply the network to pre-
dict the corresponding shadow parameters for shadow removal.
Hu et al. (Hu et al., 2019a) propose a direction-aware method
to analyze the spatial image context, and use these information
for shadow removal. Zhang et al. (Zhang et al., 2020) propose

RIS-GAN, which conducts shadow removal in a coarse-to-fine
fashion. The network predicts negative residual images and in-
verse illumination maps to optimize the coarse shadow-removal
image, and generates the fine shadow-free image. In the same
year, Cun et al. (Cun et al., 2020) propose a context aggrega-
tion network and hierarchically aggregate these features to pro-
duce high-quality border-free images. Fu et al. (Fu et al., 2021)
estimate multiple over-exposure images and then compensate
each pixel individually to tackle position specified color and il-
lumination degradation problem. Niu et al. (Niu et al., 2022)
propose a boundary-aware network to perform shadow removal
and shadow boundary optimization simultaneously. Zhu et
al. (Zhu et al., 2022b) introduce a new shadow illumination
model and reformulate the shadow removal task as a variational
optimization problem. The new model is effective and effi-
cient. BMNet (Zhu et al., 2022a) leverages auxiliary shadow
invariant color information for bidirectional shadow genera-
tion and removal, which can benefit from each other. Wan et
al. (Wan et al., 2022) design a style-guided shadow removal net-
work to restore the style consistency between shadow and non-
shadow regions. Most recently, Guo et al. (Guo et al., 2023)
propose ShadowFormer, the first transformer-based method for
shadow removal. The proposed method exploits the global con-
textual correlation between shadow and non-shadow regions,
which can effectively model the context correlation between
these two regions. ST-CGAN (Wang et al., 2018) and AR-
GAN (Ding et al., 2019) design a novel framework to jointly
perform shadow detection and removal, and use the predicted
mask of shadow detection to assist shadow removal. Different
from the above approaches, some unsupervised deep learning-
based methods (Hu et al., 2019b; H. Le and D. Samaras, 2020;
Liu et al., 2021; Jin et al., 2021) are proposed, making it pos-
sible to perform shadow removal on unpaired datasets with
promising results. Furthermore, some tasks also treat shadow
removal as a subtask. Zhang et al. (Zhang et al., 2021) pro-
pose a novel unsupervised framework called UIDNet for in-
trinsic image decomposition of natural images. Comprising a
reflectance prediction network (RPN) and a shading prediction
network (SPN), this framework can decompose images into re-
flectance and shading by promoting the internal self-similarity
of the reflectance component. The method can be trained using
individual images solely and has demonstrated superior perfor-
mance. Jin et al. (Jin et al., 2023) propose a two-stage learn-
ing method for single-image reflectance prediction. In the first
stage, an initial reflectance layer is obtained from shadow-free
and specular-free priors. In the second stage, a S-Aware net-
work is introduced to distinguish the reflectance image from the
input image, further enhancing the performance of the network.

Among the methods mentioned above, ARGAN (Ding et al.,
2019) is the most relevant to us. This method employs the up-
date module to gradually optimize hidden features. However,
the new features fed into the update module suffer from sub-
optimal optimization,leading to poor performance. To perform
semi-supervised learning, ARGAN (Ding et al., 2019) resorts
to utilizing additional unlabelled data. In contrast, we propose
a re-integration module to optimize the features input to the
update module, which achieves SOTA performance with only
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2.1% parameters of it without the need for additional data.

Progressive learning. Progressive learning mechanism has
been explored in a range of computer vision tasks, such as im-
age generation (Gregor et al., 2015; Ahn et al., 2018; Ren et al.,
2019), object detection (Cai and Vasconcelos, 2018; Gidaris
and Komodakis, 2015; Najibi et al., 2016), and others (Carreira
et al., 2016; Liu et al., 2018). More specifically, in low-level
vision tasks, Ren et al. (Ren et al., 2019) propose a progressive
ResNet (He et al., 2016) to take advantage of recursive com-
putation for rain steaks removal. Ahn et al. (Ahn et al., 2018)
design a CARN module to maintain the stability of training pro-
cess, and the model can increase the resolution of the output
image in a recurrent manner. Moreover, Zamir et al. (Zamir
et al., 2021) present a novel synergistic multi-stage network to
progressively restore the degraded images. Jin et al. (Jin et al.,
2022) propose a novel progressive method for removing self
and soft shadows using a diffusion model (Ho et al., 2020). This
method is based on self-tuned ViT feature similarity and color
convergence. Additionally, a color convergence loss is intro-
duced to mitigate color deviations, thus facilitating the profi-
cient elimination of hard, soft, and self shadows.

In this paper, we propose a new simple progressive shadow
removal method, PRNet. While many of the individual ingre-
dients used in the progressive networks can be found in the
literature, e.g., ConvGRU (Cho et al., 2014b). How to make
subtle modifications and combinations of them, and apply them
to solve the task of shadow removal is novel. Specifically, we
conduct extensive experiments on widely used datasets (Wang
et al., 2018; Le and Samaras, 2019; Qu et al., 2017) and
achieves comparable results with the SOTA methods.

3. METHODOLOGY

In this section, we present our PRNet for shadow removal.
As shown in Figure 3, we first apply a shallow ResNet with six
residual blocks (He et al., 2016) to extract shadow features from
image without downsampling operation. Subsequently, the ex-
tracted features are fed into the GRU-based update module as
the initial hidden state. By repeatedly feeding the refined fea-
tures into the update module, we can obtain the output hidden
state with more shadow-free signals rather than shadow signals
which we refer to as shadow-attenuated features next. For these
features, we apply a predict tail for iterative prediction. In the
following, we elaborate on the components of our framework
separately.

3.1. Shadow Feature Extraction

As shown in Figure 3, given the input shadow image Iin ∈

RH×W×3 and corresponding shadow mask Min ∈ RH×W×1, we
first use the feature extraction module Eθ to extract shadow fea-
tures. Since shadow removal is a low-level vision restoration
task and the downsampling operation would sacrifice the high-
frequency details, the feature extraction is performed on the
original input scale. Specifically, our shadow feature extraction
is a residual module with six residual blocks (He et al., 2016).
As shown in Table 1, we first extract features from the shadow
image and its mask using a convolutional layer with a kernel

Table 1: The detailed structure of the feature extraction network Eθ in PRNet.

Layer Output size Operation

conv1 64 × 256 × 256 7 × 7, 64, s1, p3

layer1 64 × 256 × 256

3 × 3, 64, s1, p1
3 × 3, 64, s1, p1
3 × 3, 64, s1, p1
3 × 3, 64, s1, p1

layer2 96 × 256 × 256

3 × 3, 96, s1, p1
3 × 3, 96, s1, p1
3 × 3, 96, s1, p1
3 × 3, 96, s1, p1

layer3 128 × 256 × 256

3 × 3, 128, s1, p1
3 × 3, 128, s1, p1
3 × 3, 128, s1, p1
3 × 3, 128, s1, p1

conv2 128 × 256 × 256 1 × 1, 128, s1, p0

size of 7, where the input channel is 4, similar to previous meth-
ods (Hu et al., 2019a; Cun et al., 2020; Zhu et al., 2022a,b; Guo
et al., 2023). Next, the network is divided into three layers, and
each layer contains two residual blocks. After each layer, we in-
crease the number of channels by 24, and the output channel in
layer three is 128. To dramatically accelerate the training speed
as well as boost the network performance, instance normaliza-
tion (Ulyanov et al., 2016) and ReLU activation function (Nair
and Hinton, 2010) are added after every convolution operation.
Finally, we use a convolution with kernel size 1 to further en-
hance the nonlinear ability of the network. The shadow fea-
ture extraction network Eθ produces the feature h0 ∈ RH×W×C ,
where C = 128. h0 will be integrated with the shadow image as
the input of the update module, whereas it will also be used as
the initial hidden state of the update module. Note that our fea-
ture extraction module Eθ will only extract features once. Then
all subsequent iterative processes will be carried out in the pro-
gressive shadow removal, which is discussed in the following
subsection.

3.2. Progressive Shadow Removal
Progressive shadow removal is the critical component of our

method, which consists of two parts: the re-integration module
and the update module. The re-integration module is applied to
fuse the outputs of the last iteration and provide the input of the
update module, while the update module is utilized to obtain
the predicted results of each iteration.
Re-integration module. Figure 4 left shows the proposed re-
integration module, which integrates the outputs of the last it-
eration to provide input for the next iteration. Taking the kth

iteration as an example, there are two outputs in the last it-
eration: one is the shadow-attenuated image Ik−1 ∈ RH×W×3,
and the other is the hidden state hk−1 ∈ RH×W×C . For shadow-
attenuated image Ik−1, we first concatenate it with the corre-
sponding shadow mask Min to provide the shadow region infor-
mation, and then extract features through the convolution oper-
ation to obtain the feature Fs ∈ RH×W×C1 . For the hidden state
hk−1, we also perform feature refinement through the convolu-
tional layer, and obtain the feature Fl ∈ RH×W×C2 , where we
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Fig. 3: An overview of the proposed PRNet. PRNet is divided into two parts: shadow feature extraction and progressive shadow removal. Shadow feature extraction
is a shallow ResNet Eθ with six residual blocks. Progressive shadow removal consists of two components: the re-integration module and the GRU-based update
module. The re-integration module fuses the outputs of last iteration and produces the integrated feature as the input of the next iteration. Then the update module
is applied to generate shadow-attenuated features and feed to the prediction tail for prediction. We iteratively conduct the update operation to progressively improve
the shadow removal result.
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ConvGRU
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Fig. 4: Illustration of the process of kth iteration. Given the hidden state hk−1
and the prediction results Ik−1 of the last iteration, first they are fed into the re-
integration module to produce the integrated features Fre. Then both hk−1 and
Fre are put into the ConvGRU (Cho et al., 2014b) operator and output the kth

hidden state hk . Subsequently, hk is sent to the predict tail for kth prediction.

set C1 = 192 and C2 = 64, respectively. Next, we concate-
nate both of them followed by another convolution operation
to generate the final integrated feature Fr ∈ RH×W×C . This re-
integrated feature combined with the prediction of last iteration
is set as the input of the update module. The whole process can
be viewed as using the prediction results of the last iteration to
enhance the current iteration. This way, the update module can
flexibly update and reset the upcoming hidden features.

Update module. Figure 5 shows our update module. The core
component of it is a ConvGRU (Cho et al., 2014b) block, which
has been used in many other computer vision tasks (Tokmakov
et al., 2017; Teed and Deng, 2020). ConvGRU is a variant of the
original GRU (Cho et al., 2014a), in which the fully connected
layers are replaced by the convolutional layers. The whole pro-
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cess can be formulated as follows,

zk = σ(Conv([hk−1, xk],Wz)),
rk = σ(Conv([hk−1, xk],Wr)),

h̃k = tanh(Conv([rk ⊙ hk−1, xk],Wh)),

hk = (1 − zk) ⊙ hk−1 + zk ⊙ h̃k,

(1)

where xk is the output of the re-integration module, which is the
fusion of the shadow-attenuated image Ik−1 and the hidden state
hk−1 of the last iteration. W is the learnable parameter of a con-
volutional layer. The other part of update module is the shadow
prediction tail which has two convolutional operation. The first
convolution is followed by a ReLU activation function (Nair
and Hinton, 2010) and the output channel is set as 256 and
the second convolution predicts the output directly. After the
hidden state is renewed by the ConvGRU (Cho et al., 2014b),
it is passed through the prediction tail to produce the shadow-
attenuated image Ik. Subsequently, this image is passed to the
re-integration module for next iteration.

3.3. Loss Function
During the training phase, we supervise our progressive re-

current network with the L1 distance loss between the pre-
dicted shadow-attenuated image and the ground truth shadow-
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free image over all T iterations. With exponentially increasing
weights, the loss is formulated as follows

L =

T∑
i=1

γT−i∥Igt − Ii∥1, (2)

where Igt and Ii denote ground-truth shadow-free image and ith

iteration shadow-attenuated image, respectively. Empirically,
we set γ = 0.8 in our experiment.

4. Experiments

4.1. Experiment Setup

Benchmark datasets. We train and evaluate the proposed
method on three public datasets: ISTD (Wang et al., 2018), ad-
justed ISTD (ISTD+) (Le and Samaras, 2019), and SRD (Qu
et al., 2017). ISTD dataset (Wang et al., 2018) consists of
1870 image triples (shadow images, shadow-free images, and
shadow masks), which are divided into 1330 training triplets
and 540 testing triplets. Adjusted ISTD (ISTD+), presented
in (Le and Samaras, 2019), has the same number of triples as
ISTD. By applying the proposed color adjustment algorithm,
the color inconsistency between the shadow and shadow-free
images is decreased. SRD dataset (Qu et al., 2017) consists
of 2680 training pairs and 408 testing pairs of shadow and
shadow-free images without ground-truth shadow masks. Since
SRD (Qu et al., 2017) does not provide the ground-truth shadow
masks, we utilize the public SRD shadow masks provided by
DHAN (Cun et al., 2020) during training and testing, follow-
ing the previous methods (Cun et al., 2020; Fu et al., 2021; Zhu
et al., 2022a,b; Wan et al., 2022; Guo et al., 2023).

Evaluation metrics. We employ the root mean square er-
ror (RMSE) between the predicted shadow removal image and
the ground-truth shadow-free image in LAB color space. For
the RMSE metric, the lower the better. We also adopt the
Peak Siginal-to-Noise Ratio (PSNR) and the structural similar-
ity (SSIM) (Wang et al., 2004) to measure the de-shadowing
performance in the RGB color space. The higher the PSNR
and SSIM, the better the performance. Following the previous
works (Fu et al., 2021; Jin et al., 2021; Liu et al., 2021; Zhu
et al., 2022a), we conduct the evaluation with a resolution of
256×256 and compare our method with several state-of-the-art
methods on the ISTD, ISTD+, and SRD datasets (Wang et al.,
2018; Le and Samaras, 2019; Qu et al., 2017) in both quantita-
tive and qualitative ways.

Implementation details. Our proposed method is imple-
mented by PyTorch 1.8 on the linux platform with NVIDIA
RTX 2080Ti GPUs. During training, we randomly crop the im-
ages into 256×256 patches. For the three benchmarks, the total
training epochs and mini-batch size are set to 300 and 4, respec-
tively. An Adam (Kingma and Ba, 2014) optimizer with an ini-
tial learning rate of 2× 10−4 is applied to optimize the network,
and the learning rate will be linearly decayed to 0 in the last 250
epochs. For ISTD+ dataset (Le and Samaras, 2019), we set the
training iteration T = 7, while for SRD dataset (Qu et al., 2017)

which contains more training samples, we set T = 8. During in-
ference, we take the same number of iterations as during train-
ing. In practical application, the number of inference iterations
can be flexibly adjusted based on specific requirements to strike
a balance between the performance and time.

4.2. Comparison with State-of-the-art Methods

Shadow removal evaluation on ISTD dataset. We first report
the quantitative shadow removal results of our method on ISTD
dataset (Wang et al., 2018). As shown in Table 2 and Table 3,
to validate the scalability of the method, we conduct evaluation
on both 256 × 256 resolution and the original size. We com-
pare the proposed method with the state-of-the-art algorithms:
Guo et al. (Guo et al., 2012), ShadowGAN (Hu et al., 2019b),
ST-CGAN (Wang et al., 2018), ARGAN (Ding et al., 2019),
DSC (Hu et al., 2019a), DHAN (Cun et al., 2020), G2R (Liu
et al., 2021), Fu et al. (Fu et al., 2021), Jin et al. (Jin et al.,
2021), Zhu et al. (Zhu et al., 2022b), BMNet (Zhu et al., 2022a),
SG-ShadowNet (Wan et al., 2022), and ShadowFormer (Guo
et al., 2023). Note that different from other deep learning-based
methods, Guo et al. (Guo et al., 2012) is the traditional shadow
removal method. The results of the state-of-the-art methods are
directly provided by the authors or obtained from the original
paper. However, the code of ARGAN (Ding et al., 2019) is not
publicly available, so we carefully calculate it based on the de-
tails provided in the original paper. Our method performs bet-
ter than ARGAN (Ding et al., 2019) in terms of PSNR, SSIM,
and RMSE value, indicating the effectiveness of the progres-
sive method. Additionally, we only use 2.1% of its parame-
ters. Compared to G2R (Liu et al., 2021), Fu et al. (Fu et al.,
2021), and Jin et al. (Jin et al., 2021), our methods also achieves
the best performance among all metrics. Compared to the two
papers by Zhu et al. (Zhu et al., 2022b,a), most results of our
method are superior to them. ShadowFormer (Guo et al., 2023),
which is the first transformer-based shadow removal method,
achieves the state-of-the-art performance on this task. Our
method also obtains the competitive performance with it.

Figure 6 illustrates the visualization comparison results of
the shadow removal from other state-of-the-art methods and our
method on ISTD dataset (Wang et al., 2018). As mentioned in
the original paper (Wang et al., 2018), there are a slightly incon-
sistent colors between shadow and shadow-free images in this
dataset, which is caused by the different capturing times of the
day. We can see that for the traditional method, Guo et al. (Guo
et al., 2012) can not remove the shadow effectively due to the
limited modeling capacity in the relatively complex scenes. In
the third and fourth columns, DHAN (Cun et al., 2020) and Fu
et al. (Fu et al., 2021) tend to generate blurry images, and they
also contain random artifacts and incorrect colors. For the re-
sults of Zhu et al. (Zhu et al., 2022b), due to the inability of
physical model to adapt to various environments, it contains ar-
tifacts around the shadow region. ShadowFormer (Guo et al.,
2023) performs best among the above methods, and is able to
restore more realistic color in the shadow area. Compared to
them, by removing the shadows progressively, our method can
maintain the color consistency between the shadow and non-
shadow regions.
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Table 2: Quantitative comparison of our method with the state-of-the-art methods on ISTD dataset (Wang et al., 2018). The best and the second results are
highlighted in bold and underlined, respectively. “↑” indicates the higher the better and “↓” indicates the lower the better. S, NS, and ALL indicate the shadow
region, non-shadow region, and all the image, respectively. T represents the number of iterations. All metrics are conducted on images with 256 × 256 resolution.

Method Params Flops
Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

Input Image - - 22.40 0.936 32.10 27.32 0.976 7.09 20.56 0.893 10.88
Guo et al. (Guo et al., 2012) - - 27.76 0.964 18.65 26.44 0.975 7.76 23.08 0.919 9.26
ShadowGAN (Hu et al., 2019b) 11.4M 56.8G - - 12.67 - - 6.68 - - 7.41
ST-CGAN (Wang et al., 2018) 29.2M 17.9G 33.74 0.981 9.99 29.51 0.958 6.05 27.44 0.929 6.65
ARGAN (Ding et al., 2019) 125.8M - - - 6.65 - - 5.41 - - 5.89
DSC (Hu et al., 2019a) 22.3M 123.5G 34.64 0.984 8.72 31.26 0.969 5.04 29.00 0.944 5.59
DHAN (Cun et al., 2020) 21.8M 262.9G 35.53 0.988 7.73 31.05 0.971 5.29 29.11 0.954 5.66
G2R (Liu et al., 2021) 22.8M 113.9G 32.66 0.984 10.47 26.27 0.968 7.57 25.07 0.946 7.88
Fu et al. (Fu et al., 2021) 143.0M 160.3G 34.71 0.975 7.91 28.61 0.880 5.51 27.19 0.945 5.88
Jin et al. (Jin et al., 2021) 21.2M 105.0G 31.69 0.976 11.43 29.00 0.958 5.81 26.38 0.922 6.57
Zhu et al. (Zhu et al., 2022b) 10.1M 56.1G 36.95 0.987 8.29 31.54 0.978 4.55 29.85 0.960 5.09
BMNet (Zhu et al., 2022a) 0.4M 11.0G 35.61 0.988 7.60 32.80 0.976 4.59 30.28 0.959 5.02
SG-ShadowNet (Wan et al., 2022) 6.2M 39.7G 36.03 0.988 7.30 32.56 0.978 4.38 30.23 0.961 4.80
ShadowFormer (Guo et al., 2023) 9.3M 100.9G 38.19 0.991 5.96 34.32 0.981 3.72 32.21 0.968 4.09
Ours 2.7M 73.7+88.5T 36.47 0.990 6.43 32.80 0.978 4.26 30.57 0.964 4.57

Table 3: Quantitative comparison of our method with the state-of-the-art methods on ISTD dataset (Wang et al., 2018). The best and the second results are
highlighted in bold and underlined, respectively. “↑” indicates the higher the better and “↓” indicates the lower the better. S, NS, and ALL indicate the shadow
region, non-shadow region, and all the image, respectively. All metrics are conducted on images with the original size.

Method
Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

Input Image 22.34 0.935 33.23 26.45 0.947 7.25 20.33 0.874 11.35
ARGAN (Ding et al., 2019) - - 9.21 - - 6.27 - - 6.63
DSC (Hu et al., 2019a) 33.45 0.967 9.76 28.18 0.885 6.14 26.62 0.845 6.67
DHAN (Cun et al., 2020) 34.79 0.983 8.13 29.54 0.941 5.94 27.88 0.921 6.29
G2R (Liu et al., 2021) 32.31 0.978 11.18 25.51 0.941 8.10 24.40 0.915 8.42
Fu et al. (Fu et al., 2021) 33.59 0.958 8.73 27.01 0.794 6.24 25.71 0.745 6.62
Jin et al. (Jin et al., 2021) 30.59 0.949 12.43 25.88 0.785 7.11 24.16 0.724 7.79
Zhu et al. (Zhu et al., 2022b) 33.78 0.956 9.44 27.39 0.786 6.23 26.06 0.734 6.68
BMNet (Zhu et al., 2022a) 34.84 0.983 8.31 31.14 0.949 5.16 29.02 0.929 5.59
SG-ShadowNet (Wan et al., 2022) 35.17 0.982 8.21 30.86 0.950 5.04 28.95 0.928 5.48
ShadowFormer (Guo et al., 2023) 37.03 0.985 6.76 32.20 0.953 4.44 30.47 0.935 4.79
Ours 35.65 0.985 7.12 31.17 0.951 4.85 29.29 0.933 5.17

Table 4: Quantitative comparison of our method with the state-of-the-art methods on SRD dataset (Qu et al., 2017). The best and the second results are highlighted in
bold and underlined, respectively. “↑” indicates the higher the better and “↓” indicates the lower the better. S, NS, and ALL indicate the shadow region, non-shadow
region, and all the image, respectively. All metrics are conducted on images with 256 × 256 resolution.

Method
Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

Input Image 18.96 0.871 36.69 31.47 0.975 4.83 18.19 0.830 14.05
Guo et al. (Guo et al., 2012) - - 29.89 - - 6.47 - - 12.60
DeShadowNet (Qu et al., 2017) - - 11.78 - - 4.84 - - 6.64
DSC (Hu et al., 2019a) 30.65 0.960 8.62 31.94 0.965 4.41 27.76 0.903 5.71
ARGAN (Ding et al., 2019) - - 6.35 - - 4.46 - - 5.31
DHAN (Cun et al., 2020) 33.67 0.978 8.94 34.79 0.979 4.80 30.51 0.949 5.67
Fu et al. (Fu et al., 2021) 32.26 0.966 8.55 31.87 0.945 5.74 28.40 0.893 6.50
Jin et al. (Jin et al., 2021) 34.00 0.975 7.70 35.53 0.981 3.65 31.53 0.955 4.65
Zhu et al. (Zhu et al., 2022b) 34.94 0.980 7.44 35.85 0.982 3.74 31.72 0.952 4.79
BMNet (Zhu et al., 2022a) 35.05 0.981 6.61 36.02 0.982 3.61 31.69 0.956 4.46
SG-ShadowNet (Wan et al., 2022) 36.55 0.981 7.56 34.23 0.961 3.06 31.31 0.927 4.30
ShadowFormer (Guo et al., 2023) 36.91 0.989 5.90 36.22 0.989 3.44 32.90 0.958 4.04

Ours 36.30 0.984 5.66 36.56 0.983 3.34 32.56 0.960 3.99

Shadow removal evaluation on ISTD+ dataset. We report
the shadow removal performance of our method on the adjusted
ISTD (ISTD+) dataset (Le and Samaras, 2019). As shown in
Table 6 and Table 7, we compare the proposed method with
several state-of-the-art algorithms: Guo et al. (Guo et al., 2012),

ST-CGAN (Wang et al., 2018), DeshadowNet (Qu et al., 2017),
Mask-ShadowGAN (Hu et al., 2019b), Param+M+D-Net (H.
Le and D. Samaras, 2020), G2R (Liu et al., 2021), SP+M-
Net (Le and Samaras, 2019), Fu et al. (Fu et al., 2021), Jin
et al. (Jin et al., 2021), SG-ShadowNet (Wan et al., 2022), BM-
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Table 5: Quantitative comparison of our method with the state-of-the-art methods on SRD dataset (Qu et al., 2017). The best and the second results are highlighted in
bold and underlined, respectively. “↑” indicates the higher the better and “↓” indicates the lower the better. S, NS, and ALL indicate the shadow region, non-shadow
region, and all the image, respectively. All metrics are conducted on images with the original size.

Method
Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)

PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

Input Image 19.00 0.871 39.23 28.41 0.949 5.86 17.87 0.804 14.62
DSC (Hu et al., 2019a) 25.95 0.912 20.40 22.46 0.748 16.89 20.15 0.642 17.75
DHAN (Cun et al., 2020) 32.21 0.969 8.39 30.58 0.943 5.02 27.70 0.898 5.88
Fu et al. (Fu et al., 2021) 31.19 0.955 9.65 28.10 0.894 6.63 25.83 0.825 7.32
Jin et al. (Jin et al., 2021) 31.21 0.955 9.23 28.62 0.896 5.91 26.18 0.827 6.72
Zhu et al. (Zhu et al., 2022b) 28.25 0.930 11.57 23.83 0.803 8.48 21.95 0.700 9.19
BMNet (Zhu et al., 2022a) 33.28 0.973 7.84 32.71 0.963 4.38 29.21 0.923 5.24

Ours 34.07 0.975 6.93 32.98 0.962 4.16 29.70 0.925 4.85

Table 6: Quantitative comparison of our method with the state-of-the-art meth-
ods on ISTD+ datasets (Le and Samaras, 2019). The best and the second results
are highlighted in bold and underlined, respectively. “↓” indicates the lower the
better. All metrics are conducted on images with 256 × 256 resolution.

Method
RMSE↓

Shadow Non-Shadow All Image

Input Images 39.0 2.6 8.4
Guo et al. (Guo et al., 2012) 22.0 3.1 6.1
ST-CGAN (Wang et al., 2018) 13.4 7.7 8.7
DeshadowNet (Qu et al., 2017) 15.9 6.0 7.6
Mask-ShadowGAN (Hu et al., 2019b) 12.4 4.0 5.3
Param+M+D-Net (H. Le and D. Samaras, 2020) 9.7 3.0 4.0
G2R (Liu et al., 2021) 7.3 2.9 3.6
SP+M-Net (Le and Samaras, 2019) 7.9 3.1 3.9
Fu et al. (Fu et al., 2021) 6.7 3.8 4.2
Jin et al. (Jin et al., 2021) 10.4 3.6 4.7
SG-ShadowNet (Wan et al., 2022) 5.9 2.9 3.4
BMNet (Zhu et al., 2022a) 5.6 2.5 3.0
ShadowFormer (Guo et al., 2023) 5.2 2.3 2.8
Ours 5.5 2.3 2.9

Table 7: Quantitative comparison of our method with the state-of-the-art meth-
ods on ISTD+ datasets (Le and Samaras, 2019). The best and the second results
are highlighted in bold and underlined, respectively. “↓” indicates the lower the
better. All metrics are conducted on images with the original size.

Method
RMSE↓

Shadow Non-Shadow All Image

Input Images 38.5 3.3 9.2
Fu et al. (Fu et al., 2021) 10.4 8.0 8.4
Jin et al. (Jin et al., 2021) 11.9 5.3 6.3
SG-ShadowNet (Wan et al., 2022) 7.3 3.8 4.3
BMNet (Zhu et al., 2022a) 6.6 3.2 3.7
ShadowFormer (Guo et al., 2023) 6.2 3.2 3.6
Ours 6.3 3.1 3.6

Net (Zhu et al., 2022a), and ShadowFormer (Guo et al., 2023).
Unlike other methods, Mask-ShadowGAN (Hu et al., 2019b)
adopts unpaired shadow and shadow-free images for training.
For ARGAN (Ding et al., 2019), due to the using of extra on-
line data for semi-supervised learning and the hyperparameters
of the training detail are unknown, we can not reproduce it.
The results show that our method outperforms most previous
methods. For instance, compared to the second best method
BMNet (Zhu et al., 2022a), our method outperforms it by re-
ducing the RMSE from 3.0 to 2.9 for the whole image, indi-
cating the effectiveness of our method. Compared to the latest
method ShadowFormer (Guo et al., 2023), our method obtains
the same shadow removal results with the lowest RMSE in the
non-shadow region. While for the shadow and the whole image,
our method also has competitive results. Specifically, our PR-

Net is 0.1 worse than ShadowFormer (Guo et al., 2023) in the
whole image in terms of RMSE on the images with 256 × 256
resolution. We argue that the performance can be further im-
proved by increasing the number of iterations.

Figure 7 illustrates the visualization comparison results of
the shadow removal from other state-of-the-art methods and our
method on ISTD+ dataset (Le and Samaras, 2019). G2R (Liu
et al., 2021) and Jin et al. (Jin et al., 2021) tend to generate
blurry images, and they also contain random artifacts and in-
correct colors. For the results of Param+M+D-Net (H. Le and
D. Samaras, 2020), due to the simplified linear shadow model,
it contains artifacts around the shadow region. Although the
methods (Wan et al., 2022; Zhu et al., 2022a) can remove most
of the shadows, they still suffer from the inconsistent color and
shadow boundaries between the restored shadow region and the
non-shadow region. In contrast, ShadowFormer (Guo et al.,
2023) and our method perform well in these cases.

Shadow removal evaluation on SRD dataset. As shown in
Table 4 and Table 5, we report the comparison results with
other state-of-the-art methods on SRD dataset (Qu et al., 2017),
including Guo et al. (Guo et al., 2012), DeshadowNet (Qu
et al., 2017), DSC (Hu et al., 2019a), ARGAN (Ding et al.,
2019), DHAN (Cun et al., 2020), Fu et al. (Fu et al., 2021),
Jin et al. (Jin et al., 2021), Zhu et al. (Zhu et al., 2022b), BM-
Net (Zhu et al., 2022a), SG-ShadowNet (Wan et al., 2022), and
ShadowFormer (Guo et al., 2023). In terms of RMSE value,
the proposed method obtains the best shadow removal perfor-
mance in the all image. Specifically, our method outperforms
the ARGAN (Ding et al., 2019) in the shadow, non-shadow,
and the whole image. Compared to Fu et al. (Fu et al., 2021),
Jin et al. (Jin et al., 2021) and Zhu et al. (Zhu et al., 2022b),
our method performs best among all the metrics, including
PSNR, SSIM and RMSE values. In addition, our method out-
performs the method BMNet (Zhu et al., 2022a) by 14.4%,
7.5%, and 10.5% RMSE decreasing in the shadow region, non-
shadow region, and the whole image, respectively. Compared
to SG-ShadowNet (Wan et al., 2022), our method reduces the
RMSE from 4.30 to 3.99, achieving 7.21% decreasing in the
whole image. While for the transformer-based method Shad-
owFormer (Guo et al., 2023), we still have competitive results.
In addition, we also provide the visual comparison results in
Figure 8. For the first row, the PRNet can well restore the orig-
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(b) DHAN (c) Fu et al. (d) Zhu et al. (e) ShadowFormer ours GTInput (a) Guo et al.

Fig. 6: Visual comparison results of shadow removal on the ISTD dataset (Wang et al., 2018) . (a) to (f) are the predicted results from SOTA methods: Guo et
al. (Guo et al., 2012), DHAN (Cun et al., 2020), Fu et al. (Fu et al., 2021), Zhu et al. (Zhu et al., 2022b), and ShadowFormer (Guo et al., 2023), respectively.

Table 8: Ablation study of the component on SRD dataset (Qu et al., 2017).
The best result is highlighted in bold.

re-integration update RMSE↓

Basic × × 6.32
Basic+re ✓ × 4.61
Basic+up × ✓ 4.50

Ours ✓ ✓ 3.99

inal color information of shadow region, avoiding color-bias
effect. Other visual comparison results show that our method
can well remove the shadows, and have good visual perception
effect. Additionally, as shown in Figure 10, we present more vi-
sual results of our method and show various types of shadows,
including small shadows, soft shadows, and dark shadows on
black objects.

4.3. Ablation Studies of Network Component

We conduct ablation studies on the re-integration module and
update module to verify the effectiveness of our network de-
sign, and all experiments are conducted on the SRD dataset (Qu
et al., 2017). Here we consider three baseline networks. The
first baseline network (denoted as ”Basic”) only has feature ex-
traction network. The second (denoted as ”Basic+re”) and the
third (denoted as ”Basic+up”) consider the re-integration mod-
ule and update module, respectively. Table 8 shows the quan-
titative comparison results. Both the re-integration module and

Table 9: Ablation study of the number of training iteration T on SRD
dataset (Qu et al., 2017). Empirically, we set T = 8 in our paper.

Iteration
Metrics

PSNR↑ SSIM↑ RMSE↓

1 31.13 0.952 4.57
2 31.48 0.954 4.38
3 31.98 0.956 4.25
4 32.19 0.958 4.19
5 32.33 0.958 4.11
6 32.35 0.958 4.06
7 32.44 0.959 4.01
8 32.56 0.960 3.99
9 32.58 0.960 3.98
10 32.60 0.960 3.97

the update module can boost the shadow removal performance.
More specifically, with the re-integration module and the up-
date module, the RMSE value is improved from 6.32 to 4.61
and 6.32 to 4.50, respectively. By using both the two modules,
the RMSE value reaches 3.99, demonstrating the importance of
each component for shadow removal.

4.4. Generalization ability

To verify the generalization ability of our method, we con-
duct experiments on the SBU-Timelapse dataset (Le and Sama-
ras, 2021), and compare it with the state-of-the-art methods,
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Input GTOurs(a) Guo et al. (b) Param+M+D-Net (c) G2R (d) Jin et al. (e) Wan et al. (f) BMNet (g) ShadowFormer

Fig. 7: Visual comparison results of shadow removal on the ISTD+ dataset (Le and Samaras, 2019) . (a) to (f) are the predicted results from SOTA methods: Guo et
al. (Guo et al., 2012), Param+M+D-Net (H. Le and D. Samaras, 2020), G2R (Liu et al., 2021), Jin et al. (Jin et al., 2021), Wan et al. (Wan et al., 2022), BMNet (Zhu
et al., 2022a), and ShadowFormer (Guo et al., 2023), respectively.

Table 10: Quantitative comparison of our method with the state-of-the-art meth-
ods on the SBU-Timelapse dataset (Le and Samaras, 2021). The best and the
second results are highlighted in bold and underlined, respectively. “↑” indi-
cates the higher the better and “↓” indicates the lower the better. The evaluation
is conducted in the shadow region.

Method RMSE↓ PSNR↑ SSIM↑

SID (Le and Samaras, 2021) 18.2 20.54 0.893
Fu et al. (Jin et al., 2021) 19.0 19.63 0.893
SG-ShadowNet (Wan et al., 2022) 17.5 20.33 0.894

Ours 16.0 21.66 0.903

including SID (Le and Samaras, 2021), Fu et al. (Jin et al.,
2021), and SG-ShadowNet (Wan et al., 2022). As shown in Ta-
ble 10, our method outperforms the other three methods in all
metrics. Compared to SG-ShadowNet (Wan et al., 2022), we
decrease the RMSE from 17.5 to 16.0, and achieve an increase
in PSNR from 20.33 to 21.66 and SSIM from 0.894 to 0.903 for
shadow regions. Compared to SID (Le and Samaras, 2021) and
Fu et al. (Jin et al., 2021), our method also exhibits best per-
formance. As shown in Figure 11, through progressive learn-
ing, our method achieves acceptable perceptual performance in
complex environments, demonstrating the generalization abil-
ity of our method.

4.5. Discussions about Network Iterations

Analysis of the training iterations. Following previous meth-
ods (Ding et al., 2019), we conduct experiments with training
iteration T = 1, 2, ..., 10 to explore how the training iteration
impacts the performance. We choose the SRD dataset (Qu et al.,

2017) which contains more samples than ISTD (Wang et al.,
2018) and it can well evaluate the algorithm capability to han-
dle various natural scenes. In Table 9, it can be concluded that
when the number of iterations is increasing gradually, the per-
formance of our method first has a significant improvement and
then tends to be stable. In our experiments, we observe that
the training iteration T = 8 is a good trade-off between com-
putational cost and performance. In order to clearly show how
does our proposed progressive shadow removal method work,
we take T = 8 and present the visual results for different infer-
ence iterations. As shown in Figure 9, after eight iterations, our
network can deal with the problem of shadow boundary and re-
store its original color. Specifically, PRNet mainly recovers the
color of the shadow region for the first three iterations, and for
the following iterations, it aims to refine the shadow boundary
traces.

Analysis of the inference iterations. To provide a more spe-
cific view of the progressive shadow removal, we select the
training iteration T = 8 on SRD dataset (Qu et al., 2017) and
adopt different iterations for inference. As shown in Table 11,
we can see that the RMSE value is improving continuously in
the top 1 ∼ 4 iterations, while for the later iterations, the per-
formance slightly increases until iteration 7. Note that when
the inference iteration is 7, we can obtain the best performance.
After that, the performance remains stable even if we continue
to iterate. Through this, we conclude that the best results can
be reached during inference by setting the same iteration as
training. Therefore, we can avoid extra computational overhead
caused by additional iterations.
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Input GTOurs(a) DSC (b) DHAN (c) Jin et al. (d) Fu et al. (e) BMNet (f) ShadowFormer

Fig. 8: Visual comparison results of shadow removal on the SRD dataset (Qu et al., 2017). (a) to (f) are the predicted results from SOTA methods: DSC (Hu
et al., 2019a), DHAN (Cun et al., 2020), Jin et al. (Jin et al., 2021), Fu et al. (Fu et al., 2021), BMNet (Zhu et al., 2022a), and ShadowFormer (Guo et al., 2023),
respectively.

Input Image GT Iteration 1 Iteration 8Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

Fig. 9: Visualization of the process of our method for different inference iterations, where we set training iteration T = 8. From the results we can conclude that for
the first three iterations, our method mainly focuses on recovering the intrinsic color of the shadow region, while for the following iterations, it aims to refine the
shadow boundary traces and finally produces more realistic shadow-free images.

Input Mask Output Input Mask Output

Fig. 10: More visualization results of our method on the SRD dataset (Qu et al.,
2017), including small shadows, soft shadows, and dark shadows on black ob-
jects.

Analysis of the output of each iteration. Different from the
progressive optical flow prediction (Teed and Deng, 2020) and

Input (a) SID (b) Jin et al. (c) SG-ShadowNet Ours

Fig. 11: Visual comparison results of shadow removal on the SBU-Timelapse
dataset (Le and Samaras, 2021). (a) to (c) are the predicted results from state-
of-the-art methods: SID (Le and Samaras, 2021), Fu et al. (Jin et al., 2021), and
SG-ShadowNet (Wan et al., 2022), respectively.

other image restoration tasks (Wang et al., 2022; Zamir et al.,
2021), which aim to learn residual signals, our update module
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Table 11: Ablation study of the number of inference iteration T on SRD
dataset (Qu et al., 2017). Empirically, we set T = 8 in our paper.

Iterations of Inference

RMSE↓

1 2 3 4 5
4.37 4.16 4.09 4.05 4.02

6 7 8 9 10
4.00 3.99 3.99 3.99 3.99

Iteration 1 Iteration 2 Iteration 3 Iteration 5 Iteration 8

Iteration 1 Iteration 2 Iteration 3 Iteration 5 Iteration 8

Input

direct output

residual output

Input

direct output

residual output

Fig. 12: Visualization of direct output and residual output at different iterations,
where we set training iteration T = 8.

directly outputs the results in the current stage. Referring to
their method, we change the output of each iteration into resid-
ual output, and then add it to the original shadow image to ob-
tain the shadow-attenuated image. We report the RMSE value
as 4.02 which is close to our result 3.99. As shown in Fig-
ure 12, we also provide the visualization results of the residual
learning method. We can clearly see that for the first three iter-
ations, the residual images are changing rapidly. In the fifth and
eighth iterations, the residual images nearly turn into the same
color over all regions, indicating most regions in the image has
already been recovered. Through the residual image, we can
also come to the same conclusion as before, i.e., the color in-
formation is recovered in the first few iterations and the shadow
boundary traces are refined in the following iterations.

4.6. More Discussions about Our Method

Analysis of the effectiveness of shadow masks. The shadow
only occupies a part of the image. It is crucial to know the
location of the shadow because it can provide the shadow infor-
mation and help the network pay more attention to the shadow
region. Shadow detection is another important and challenging
task. The results of shadow detection can be used to provide
auxiliary information for shadow removal. Here we use the
results of the latest shadow detection method, FDRNet (Zhu
et al., 2021), as auxiliary information to remove shadows on
the ISTD+ dataset (Le and Samaras, 2019). With the detected
shadow masks, the de-shadowing performance of our method is
slightly decreased to 3.3, but it can still outperform most exist-
ing methods in Table 6. Further, the mask for SRD dataset (Qu
et al., 2017) is from DHAN (Cun et al., 2020) and the pro-

Input Mask Output Input Mask Output

Fig. 13: Visualization results of our method with inaccurate masks, which can
also remove the shadow successfully.

Input Mask Input Mask

Fig. 14: Inaccurate masks on the SRD dataset (Qu et al., 2017).

vided masks are noisily-annotated. As shown in Figure 13,
our method can still robustly remove the shadows even though
the shadow masks are inaccurate. We analyze the reason that
the training dataset includes some noisy data. As shown in
Figure 14, some masks within the dataset are discontinuous
or inaccurate. Consequently, during the training of the model
on such noisily-annotated data, the model implicitly learns the
ability to accommodate inaccurate masks, thereby enhancing its
robustness.

Analysis of the parameter-shared update module. Different
from the previous method (Ding et al., 2019), our update mod-
ule is parameter-shared and has no extra parameter cost when
we conduct more iterations in both training and testing phases.
To evaluate the effectiveness of the parameter-shared update
module, we conduct another experiment on SRD dataset (Qu
et al., 2017) that the parameter of each update module is in-
dependent. In this way, the parameters of the network will in-
crease linearly with the number of iterations. We report that the
RMSE value of shared and not shared modules over all the im-
ages are 3.99 and 4.00, respectively. The result shows that our
parameter-shared model performs similarly to the independent
one, but our parameter-shared update module can reduce the
number of network parameters which simplifies the structure.

Analysis of the images to be best performance. We calculate
how many images can reach the best performance before the
pre-defined 8 iterations on SRD dataset (Qu et al., 2017). The
results are shown in Figure 15. From the statistical results we
can see that most shadow images obtain the best performance
in the pre-defined 8 iterations. In addition, about a quarter of
images reach the optimal performance before 8 iterations.

Analysis of the loss function. In our experiments, we perform
L1 distance loss over all iterations, and the loss is exponentially
increasing through the iteration. Here, we conduct another ex-
periment that only calculates the loss at the last iteration. We
report the RMSE result is 4.47 in SRD dataset (Qu et al., 2017),
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Fig. 15: The number of images to be best performance in the inference stage.

Table 12: Comparison of inference time and parameters with previous methods
on the 3090Ti GPU device.

Method Time(s) Params(M)

DHAN 0.117 21.8
Param+M+D-Net 0.105 141.2

G2R 0.254 22.8
ShadowFormer 0.127 9.3

Ours iter2 0.090 2.7
Ours iter4 0.135 2.7
Ours iter6 0.181 2.7
Ours iter8 0.226 2.7

which is worse than ours (3.99).

4.7. Computational efficiency

In terms of computational efficiency, we compare our
method with previous methods: DHAN (Cun et al., 2020),
Param+M+D-Net (H. Le and D. Samaras, 2020), G2R (Liu
et al., 2021), and ShadowFormer (Guo et al., 2023). We em-
ploy an NVIDIA GTX 3090Ti GPU and test on an image with
the resolution of 480×640. The overall comparison is shown in
Table 12, When we set the iteration as two, the inference time
is 0.090s per image. In order to achieve better shadow removal
results, in this paper, we set the number of iteration as 8, which
takes 0.226s to process an image. Compared to the other meth-
ods, we argue that the cost is also acceptable. In addition, users
can choose the appropriate number of iterations based on their
needs or computational resources.

5. Conclusion

In this work, we present a simple Progressive Recurrent Net-
work (PRNet), which aims to address the de-shadowing prob-
lem iteratively. The key idea of our method is to apply a
parameter-shared GRU-based update module and removes the
shadow progressively. The results show that our method re-
stores the color information of the shadow region in the first few
iterations and refine to eliminate the shadow boundary traces in
the following iterations. The results produced by our method
are inconsistent in color and do not suffer from artifacts be-
tween shadow and non-shadow regions, resulting in a superior
shadow removal performance. Extensive experiments on the

three datasets with both quantitative and qualitative results val-
idate the effectiveness of our method.

In the future, we will explore the potential of our PRNet and
further improve its modeling capability. Besides, we also plan
to apply this progressive method to other computer vision ap-
plications, such as detection and tracking.

References

Ahn, N., Kang, B., Sohn, K.A., 2018. Image super-resolution via progressive
cascading residual network, in: CVPRW, pp. 791–799.

Cai, Z., Vasconcelos, N., 2018. Cascade R-CNN: Delving into high quality
object detection, in: CVPR, pp. 6154–6162.

Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J., 2016. Human pose estima-
tion with iterative error feedback, in: CVPR, pp. 4733–4742.

Chen, Z., Long, C., Zhang, L., Xiao, C., 2021. CANet: A context-aware net-
work for shadow removal, in: ICCV, pp. 4743–4752.
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