Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes

Michel Mollard*

June 28, 2018

Abstract

The Fibonacci cube of dimension n, denoted as Γ_{n}, is the subgraph of n-cube Q_{n} induced by vertices with no consecutive 1's. In this short note we give an immediate proof that asymptotically all vertices of Γ_{n} are covered by a maximum set of disjoint subgraphs isomorphic to Q_{k}, answering an open problem proposed in [2] and solved with a longer proof in [3].

Keywords: Fibonacci cube, Fibonacci numbers.
AMS Subj. Class. (2010):

1 Introduction

Let n be a positive integer and denote $[n]=\{1, \ldots, n\}$, and $[n]_{0}=\{0, \ldots, n-1\}$. The n-cube, denoted as Q_{n}, is the graph with vertex set

$$
V\left(Q_{n}\right)=\left\{x_{1} x_{2} \ldots x_{n} \mid x_{i} \in[2]_{0} \text { for } i \in[n]\right\},
$$

where two vertices are adjacent in Q_{n} if the corresponding strings differ in exactly one position. The Fibonacci n-cube, denoted by Γ_{n}, is the subgraph of Q_{n} induced by vertices with no consecutive 1's. Let $\left\{F_{n}\right\}$ be the Fibonacci numbers: $F_{0}=0$, $F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The number of vertices of Γ_{n} is $\left|V\left(\Gamma_{n}\right)\right|=F_{n+2}$. Fibonacci cubes have been investigated from many points of view and we refer to the survey [1] for more information about them. Let $q_{k}(n)$ be the maximum number of disjoint subgraphs isomorphic to Q_{k} in Γ_{n}. This number is studied in a recent paper [2]. The authors obtained the following recursive formula

Theorem 1.1 For every $k \geq 1$ and $n \geq 3 q_{k}(n)=q_{k-1}(n-2)+q_{k}(n-3)$.

[^0]In [3] Elif Saygı and Ömer Eğecioğlu, solved an open problem proposed by the authors of [2]. They proved that asymptotically all vertices of Γ_{n} are covered by a maximum set of disjoint subgraphs isomorphic to Q_{k} thus that
Theorem 1.2 For every $k \geq 1, \lim _{n \rightarrow \infty} \frac{q_{k}(n)}{\left|V\left(\Gamma_{n}\right)\right|}=\frac{1}{2^{k}}$.
The ingenious, but long, proof they proposed is a nine cases study of the decomposition of the generating function of $q_{k}(n)$. The purpose of this short note is to deduce from Theorem 1.1 a recursive formula for the number of non covered vertices by a maximum set of disjoint hypercubes. We obtain as a consequence an immediate proof of Theorem 1.2 .

2 Number of non covered vertices

Definition 2.1 Let $\left\{P_{k}(n)\right\}_{k=1}^{\infty}$ be the family of sequences of integers defined by (i) $P_{k}(n+3)=P_{k}(n)+2 P_{k-1}(n+1)$ for $k \geq 2$ and $n \geq 0$
(ii) $P_{k}(0)=1, P_{k}(1)=2, P_{k}(2)=3$, for $k \geq 2$
(iii) $P_{1}(n)=0$ if $n \equiv 1[3]$ and $P_{1}(n)=1$ if $n \equiv 0[3]$ or $n \equiv 2[3]$.

Solving the recursion consecutively for the first values of k and each class of n modulo 3 we obtain the first values of $P_{k}(n)$.

$n \bmod 3$	0	1	2
$P_{1}(n)$	1	0	1
$P_{2}(n)$	1	$\frac{2}{3} n+\frac{4}{3}$	$\frac{2}{3} n+\frac{5}{3}$
$P_{3}(n)$	$\frac{2}{9} n^{2}+\frac{2}{3} n+1$	$\frac{2}{9} n^{2}+\frac{8}{9} n+\frac{8}{9}$	$\frac{2}{3} n+\frac{5}{3}$
$P_{4}(n)$	$\frac{4}{81} n^{3}+\frac{2}{9} n^{2}+\frac{2}{9} n+1$	$\frac{2}{9} n^{2}+\frac{8}{9} n+\frac{8}{9}$	$\frac{4}{81} n^{3}+\frac{4}{27} n^{2}+\frac{10}{27} n+\frac{103}{81}$

Table 1: $P_{k}(n)$ for $k=1, \ldots, 4$

Proposition 2.2 Let $n=3 p+r$ with $r=0,1$ or 2 . For a fixed $r, P_{k}(n)$ is a polynomial in n of degree at most $k-1$.

Proof. From (i) we can write

$$
P_{k}(n)=2 \sum_{i=0}^{p-1} P_{k-1}(n-2-3 i)+P_{k}(r) .
$$

For any integer d the classical Faulhaber's formula expresses the sum $\sum_{m=0}^{n} m^{d}$ as a polynomial in n of degree $d+1$. Thus if $Q(n)$ is a polynomial of degree at most d then $\sum_{m=0}^{n} Q(m)$ is a polynomial in n of degree at most $d+1$. Let $Q^{\prime}(m)=Q(m)$ if
$m \equiv 0[3]$ and 0 otherwise. Applying this to Q^{\prime} we obtain that $\sum_{m=0, m \equiv 0[3]}^{n} Q(m)$ is also a polynomial in n of degree at most $d+1$. Thus if $P_{k-1}(n)$ is a polynomial in n of degree at most $k-2$ then $\sum_{i=0}^{p-1} P_{k-1}(n-2-3 i)$ is a polynomial of degree at most $k-1$. Since for a fixed $r P_{1}(n)$ is a constant, by induction on $k, P_{k}(n)$ is a polynomial in n of degree at most $k-1$.

Theorem 2.3 The number of non covered vertices of Γ_{n} by $q_{k}(n)$ disjoint Q_{k} 's is $P_{k}(n)$.

Proof. This is true for $k=1$ since the Fibonacci cube Γ_{n} has a perfect matching for $n \equiv 1[3]$ and a maximum matching missing a vertex otherwise.
For $k>1$ this is true for $n=0,1,2$ since the values of $P_{k}(n)$ are respectively $1,2,3$ thus are equal to $\left|V\left(\Gamma_{n}\right)\right|$ and there is no Q_{k} in Γ_{n}.
Assume the property is true for some $k \geq 1$ and any n. Then consider $k+1$. By induction on n we can assume that the property is true for Γ_{n-3}. Let us prove it for Γ_{n}.
From Theorem 1.1] we have $q_{k+1}(n)=q_{k}(n-2)+q_{k+1}(n-3)$.
Thus the number of non covered vertices of Γ_{n} by $q_{k+1}(n)$ disjoint Q_{k+1} 's is

$$
\left|V\left(\Gamma_{n}\right)\right|-2^{k+1} q_{k+1}(n)=F_{n+2}-2^{k+1}\left[q_{k}(n-2)+q_{k+1}(n-3)\right]=F_{n+2}-2 \cdot 2^{k} q_{k}(n-2)-2^{k+1} q_{k+1}(n-3) .
$$

Using equalities $P_{k}(n-2)=F_{n}-2^{k} q_{k}(n-2)$ and $P_{k+1}(n-3)=F_{n-1}-2^{k+1} q_{k+1}(n-3)$ we obtain

$$
\left|V\left(\Gamma_{n}\right)\right|-2^{k+1} q_{k+1}(n)=F_{n+2}+2\left(P_{k}(n-2)-F_{n}\right)+P_{k+1}(n-3)-F_{n-1} .
$$

From $F_{n+2}-2 F_{n}-F_{n-1}=0$ and $2 P_{k}(n-2)+P_{k+1}(n-3)=P_{k+1}(n)$ the number of non covered vertices is $P_{k+1}(n)$. So the theorem is proved.

For any k, since the number of non covered vertices is polynomial in n and $\left|V\left(\Gamma_{n}\right)\right|=$ $F_{n+2} \sim \frac{3+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ we obtain, like in [3], that

$$
\lim _{n \rightarrow \infty} \frac{P_{k}(n)}{\left|V\left(\Gamma_{n}\right)\right|}=0
$$

thus

$$
\lim _{n \rightarrow \infty} \frac{q_{k}(n)}{\left|V\left(\Gamma_{n}\right)\right|}=\frac{1}{2^{k}}
$$

References

[1] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim. 25 (2011) 1-18.
[2] Sylvain Gravier, Michel Mollard, Simon Špacapan, Sara Sabrina Zemljič, On disjoint hypercubes in Fibonacci cubes, Discrete Applied Mathematics, Volumes 190191(2015) 50-55, http://dx.doi.org/10.1016/j.dam.2015.03.016.
[3] Elif Saygı, Ömer Eğecioğlu, Counting Disjoint Hypercubes in Fibonacci cubes, Discrete Applied Mathematics, Volume 215 (2016) 231-237, http://dx.doi.org/10.1016/j.dam.2016.07.004

[^0]: ${ }^{*}$ Institut Fourier, CNRS Université Grenoble Alpes, email: michel.mollard@univ-grenoble-alpes.fr

